GlueGen Manual

Table of Contents

Chapter 1 - Introduction Chapter 2 - Using GlueGen Chapter 3 - Configuration File Examples
TO DO:

Chapter 1 - Introduction

Introduction

GlueGen is a tool which automatically generates the Java and JNI code necessary to call C libraries. It reads as input ANSI C header files and separate configuration files which provide control over many aspects of the glue code generation. GlueGen uses a complete ANSI C parser and an internal representation (IR) capable of representing all C types to represent the APIs for which it generates interfaces. It has the ability to perform significant transformations on the IR before glue code emission. GlueGen is currently powerful enough to bind even low-level APIs such as the Java Native Interface (JNI) and the AWT Native Interface (JAWT) back up to the Java programming language. This allows libraries needing to access such low-level APIs to be written in Java instead of a combination of handwritten JNI and C code as well as Java code.

GlueGen is currently used to generate the JOGL interface to the OpenGL 3D graphics API and the JOAL interface to the OpenAL audio library. In the case of JOGL, GlueGen is used not only to bind OpenGL to Java, but also the low-level windowing system APIs on the Windows, X11 and Mac OS X platforms. The implementation of the JOGL library is thereby written in the Java programming language rather than in C, which has offered considerable advantages during the development of the library.

GlueGen is designed in modular form and can be extended to alter the glue code emission style or to generate interface code for other languages than Java.

This manual describes how to use GlueGen to bind new C libraries to the Java programming language.

Structure of the Generated Glue Code

GlueGen supports two basic styles of glue code generation: everything in one class, or a separate interface and implementing class. The first mode, "AllStatic", exposes the underlying C functions as a set of static Java methods in a concrete class. This is a straightforward binding mechanism, but has the disadvantage of tying users to a concrete class (which may or may not be a problem) and makes it more difficult to support certain kinds of call-through-function-pointer semantics required by certain C APIs. The second mode, "InterfaceAndImpl", exposes the C functions as methods in an interface and emits the implementation of that interface into a separate class and package. The implementing class is not intended to be in the public API; this more strongly separates the user from the implementation of the API. Additionally, because it is necessary to hold an instance of the implementing class in order to access the underlying C routines, it is easier to support situations where call-through-function-pointer semantics must be followed, in particular where those function pointers might change from instance to instance.

The generated glue code follows some basic rules in binding C APIs to Java:

Unique Features

GlueGen contains several unique features making it both a powerful and easy-to-use tool.

Background and Design Principles

This section provides motivation for the design of the GlueGen tool and is not necessary to understand how to use the tool.

There are many tools available for assisting in the autogeneration of foreign function interfaces for various high-level languages. Only a few examples include Header2Scheme, an early tool allowing binding of a limited subset of C++ to the Scheme programming language; SWIG, a tool released at roughly the same time as Header2Scheme which by now supports binding C and C++ libraries to a variety of scripting languages; and JNIWrapper, a commercial tool automating the binding of C APIs to Java. Other language-specific tools such as Perl's XS, Boost.Python and many others exist.

GlueGen was designed with a few key principles in mind. The most fundamental was to support binding of the lowest-level APIs on a given platform up to the Java programming language. The intended goal, in the context of the JOGL project, was to allow subsets of the Win32 and X11 APIs to be exposed to Java, and to use those APIs to write the behind-the-scenes OpenGL context creation and management code in Java instead of C. This informed several other design goals:

In order to make the problem more tractable, support for binding C++ to the Java programming language was not considered. C++ adds many constructs over ANSI C which make it much more difficult to reason about and to find a useful subset to support binding to Java. Additionally, it seems that there are relatively few C++-specific libraries in general use which could be usefully bound to Java, although this may be a matter of opinion.

GlueGen was designed with the Java programming language in mind, but is not necessarily restricted to generating glue code for the Java language. The tool is divided into separate parse and code generation phases, and the internal representation is fairly easy to iterate over. The core driver of GlueGen may therefore be useful in producing other tools which autogenerate foreign function interfaces to C libraries for other languages.

Basic Operation

GlueGen accepts four kinds of command-line arguments:

PCPP

GlueGen contains and uses a minimal C preprocessor called the "Pseudo C Pre-Processor", or PCPP. A slightly specialized C preprocessor is required for correct glue code generation with most libraries. Constant values intended for use by end users are defined in many C libraries' headers using #defines rather than constant int declarations, and if the header is processed by a full C preprocessor then the #define statements will be stripped become unavailable for processing by the glue code generator.

PCPP is largely an invisible part of the glue code generation process; however, it has certain limitations which make it difficult to parse certain header files. First, it does not support macro evaluation in any form, so if a header relies on macro evaluation in order to generate code, PCPP will fail. It is possible that PCPP may fail silently in this situation, causing GlueGen to simply not produce code for the associated constructs. If GlueGen's output is not as expected and there is heavy use of the C preprocessor in the header, run PCPP against the header directly (PCPP takes simply the -I and filename arguments accepted by GlueGen) and examine the output.

Second, PCPP contains only limited support for #if clauses. Generally speaking, its handling of #if defined(foo) || defined(bar) constructs is limited to approximately what is required to handle the OpenGL header files. If the header being parsed relies on moderately complicated expressions being evaluated by the C preprocessor, check the output from PCPP and ensure it is as expected.

Contributions to PCPP would be especially welcome. It would be very desirable to turn it into a full-blown C preprocessor with simply the option of passing through #define statements unchanged.

Error Reporting

Error reporting by GlueGen's parser is currently less than ideal. Because PCPP makes #include directives disappear completely with respect to the C parser (it appears that the #line directives it emits are not being consumed properly -- an area which needs more investigation), the line numbers reported in parse failures are incorrect in all but the simplest cases. This makes it difficult to determine in exactly what header file and on exactly what construct the C parser failed.

Fortunately, there is a relatively simple workaround. PCPP can be run with all of the same -I arguments passed to GlueGen and the result piped to a new .c file. GlueGen can then be invoked on that .c file (now containing no #include directives) and the line numbers on any parse failures will be correct.

Stub Headers

As much as is possible, GlueGen is intended to operate on unmodified C header files, so that it is easy to upgrade the given C API being bound to Java simply by dropping in a new set of header files. However, most C headers contain references to standard headers like stdio.h, and if this header is parsed by GlueGen, the tool will automatically attempt to generate Java entry points for such routines as fread and fwrite, among others. It is impractical to exclude these APIs on a case by case basis. Therefore, the suggested technique to avoid polluting the binding with these APIs is to "stub out" the headers.

GlueGen searches the include path for headers in the order the include directories were specified to the tool. Placing another directory in front of the one in which the bulk of the headers are found allows, for example, an alternative stdio.h to be inserted which contains few or no declarations but which satisfies the need of the dependent header to find such a file.

GlueGen uses a complete ANSI and GNU C parser written by John Mitchell and Monty Zukowski from the set of grammars available for the ANTLR tool by Terrence Parr. As a complete C parser, this grammar requires all data types encountered during the parse to be fully defined. Often a particular header will be included by another one in order to pick up data type declarations rather than API declarations. Stubbing out the header with a smaller one providing a "fake" type declaration is a useful technique for avoiding the binding of unnecessary APIs during the glue code process.

Here's an example from the JOGL glue code generation process. The glext.h header defining OpenGL extensions references stddef.h in order to pick up the ptrdiff_t data type. We choose to not include the real stddef.h but instead to swap in a stub header. The contents of this header are therefore as follows:

  #if defined(_WIN64)
    typedef __int64 ptrdiff_t;
  #elif defined(__ia64__) || defined(__x86_64__)
    typedef long int ptrdiff_t;
  #else
    typedef int ptrdiff_t;
  #endif
This causes the ptrdiff_t data type to be defined appropriately for the current architecture. It will be referenced during the glue code generation and cause a Java value of the appropriate type (int or long) to be used to represent it.

This is not the best example because it involves a data type which changes size between 32- and 64-bit platforms, and there are otner considerations to take into account in these situations (see the section 32- and 64-bit considerations). Here's another example, again from the JOGL source tree. JOGL binds the AWT Native Interface, or JAWT, up to the Java programming language so that the low-level code which binds OpenGL contexts to Windows device contexts may be written in Java. The JDK's jawt_md.h on the Windows platform includes windows.h to pick up the definitions of data types such as HWND (window handle) and HDC (handle to device context). However, it is undesirable to try to parse the real windows.h just to pick up these typedefs; not only does this header contain thousands of unneeded APIs, but it also uses certain macro constructs not supported by GlueGen's minimal C preprocessor. To avoid these problems, a "stub" windows.h header is placed in GlueGen's include path containing only the necessary typedefs:

  typedef struct _handle*     HANDLE;
  typedef HANDLE              HDC;
  typedef HANDLE              HWND;
Note that it is essential that the type being specified to GlueGen is compatible at least in semantics with the real definition of the HANDLE typedef in the real windows.h, so that during compilation of GlueGen's autogenerated C code, when the real windows.h is referenced by the C compiler, the autogenerated code will compile correctly.

This example is not really complete as it also requires consideration of the size of data types on 32- and 64-bit platforms as well as a discussion of how certain opaque data types are described to GlueGen and exposed in its autogenerated APIs. Nonetheless, it illustrates at a basic level why using a stub header is necessary and useful in certain situations.

32- and 64-bit Considerations

When binding C functions to the Java programming language, it is important that the resulting Java code support execution on a 64-bit platform if the associated native methods are compiled appropriately. In other words, the public Java API should not change if the underlying C data types change to another data model such as LP64 (in which longs and pointers become 64-bit).

GlueGen internally maintains two descriptions of the underlying C data model: one for 32-bit architectures and one for 64-bit architectures. These machine descriptions are used when deciding the mapping between integral C types such as int and long and the corresponding Java types, as well as when laying out C structs for access by the Java language. For each autogenerated C struct accessor, both a 32-bit and 64-bit variant are generated behind the scenes, ensuring that the resulting Java code will run correctly on both 32-bit and 64-bit architectures.

When generating the main class containing the bulk of the method bindings, GlueGen uses the 64-bit machine description to map C data types to Java data types. This ensures that the resulting code will run properly on 64-bit platforms. Note that it also generally means that C longs will be mapped to Java longs, since an LP64 data model is assumed.

If Opaque directives are used to cause a given C integer or pointer data type to be mapped directly to a Java primitive type, care should be taken to make sure that the Java primitive type is wide enough to hold all of the data even on 64-bit platforms. Even if the data type is defined in the header file as being only a 32-bit C integer, if there is a chance that on a 64-bit platform the same header may define the data type as a 64-bit C integer or long, the Opaque directive should map the C type to a Java long.

Opaque Directives

Complex header files may contain declarations for certain data types that are either too complex for GlueGen to handle or unnecessarily complex from the standpoint of glue code generation. In these situations a stub header may be used to declare a suitably compatible typedef for the data type. An Opaque directive can be used to map the resulting typedef to a Java primitive type if it is undesirable to expose it as a full-blown Java wrapper class.

GlueGen hashes all typedefs internally down to their underlying primitive type. (This is probably not really correct according to the C type system, but is correct enough from a glue code generation standpoint, where if the types are compatible they are considered equivalent.) This means that if the parser encounters

  typedef void* LPVOID;
then an Opaque directive stating
  Opaque long LPVOID
will cause all void* or LPVOID arguments in the API to be mapped to Java longs, which is almost never desirable. Unfortunately, it is not currently possible to distinguish between the LPVOID typedef and the underlying void* data type in this situation.

A similar problem occurs for other data types for which Opaque directives may be desired. For example, a Windows HANDLE equates to a typedef to void*, but performing this typedef in a stub header and then adding the Opaque directive

  Opaque long HANDLE
will cause all void* arguments to be exposed as Java longs instead of Buffers, which is again undesirable. Attempting to work around the problem by typedef'ing HANDLE to an integral type, as in:
  typedef long HANDLE;
may itself have problems, because GlueGen will assume the two integral types are compatible and not perform any intermediate casts between HANDLE and jlong in the autogenerated C code. (When casting between a pointer type and a JNI integral type such as jlong in C code, GlueGen automatically inserts casts to convert the pointer first to an "intptr_t" and then to the appropriate JNI type, in order to silence compiler warnings and/or errors.)

What is desired is to produce a new type name distinct from all others but still compatible with the pointer semantics of the original type. Then an Opaque directive can be used to map the new type name to, for example, a Java long.

To implement this in the context of the HANDLE example, the following typedef may be inserted into the stub header:

  typedef struct _handle*     HANDLE;
This uses a pointer to an anonymous struct name to produce a new pointer type. This is legal ANSI C and is supported by GlueGen's parser without having seen a declaration for "struct _handle". Subsequently, an Opaque directive can be used to map the HANDLE data type to a Java long:
  Opaque long HANDLE
Now HANDLEs are exposed to Java as longs as desired. A similar technique is used to expose XIDs on the X11 platform as Java longs.

Configuration File Directives

In addition to the C headers, GlueGen requires a certain amount of metadata in the form of configuration files in order to produce its glue code. There are three basic reasons for this: first, GlueGen must be informed into which Java classes the C methods are to be bound; second, there are many configuration options for the generated glue code, and passing them all on the command line is infeasible; and third, there are ambiguities in many constructs in the C programming language which must be resolved before a Java binding can be produced.

The contents of the configuration file are dependent on the class of emitter specified to GlueGen. Currently there are three built-in emitter classes: JavaEmitter, which produces a basic, static Java binding of C functions; ProcAddressEmitter, which extends JavaEmitter by calling the underlying C functions through function pointers, resulting in more dynamic behavior and supporting C APIs with optional functionality; and GLEmitter, which specializes ProcAddressEmitter to support some OpenGL-specific constructs. The GLEmitter will be ignored in this manual as it is specialized for JOGL and provides very little additional functionality beyond the ProcAddressEmitter. The JavaEmitter and ProcAddressEmitter support many options in their configuration files. As the ProcAddressEmitter is a subclass of JavaEmitter, all of the constructs in the JavaEmitter's configuration files are also legal in the ProcAddressEmitter's configuration files.

The configuration files have a very simple line-by-line structure, and are parsed by a very rudimentary, hand-written parser. Each non-whitespace and non-comment line (note: comment lines begin with '#') contains a directive like Package, Style or JavaClass followed by arguments to that directive. There are a certain set of directives that are required for any code generation; others are optional and their omission results in some default behavior. Directives are case-insensitive.

The following is an exhaustive list of the options currently supported by each of these emitters' configuration files. It is difficult to see exactly how to use the tool based simply on these descriptions, so the examples (FIXME) may be more helpful in seeing exactly how to structure a configuration file for proper glue code generation.

JavaEmitter Configuration

Note that only a very few of the following directives are specified as being "required" rather than "optional"; these indicate the minimal directives needed for a valid configuration file to begin to get glue code to be produced. In general, these are Package, ImplPackage, JavaClass, ImplJavaClass, and Style. Other directives such as NioDirectOnly are required in some circumstances for the glue code to be correct, and some such as ReturnedArrayLength, ReturnValueCapacity, and ReturnValueLength should be specified in some situations in order for certain return values to be useful at the Java level.

The following directives are specified in alphabetical order, although this is not necessarily the best semantic order.

AccessControl
Syntax: AccessControl [method name] [ PUBLIC | PROTECTED | PRIVATE | PACKAGE_PRIVATE ]
(optional) Controls the access control of a certain Java method corresponding to a C function. The access control of all APIs defaults to public. This is useful when using the C binding of a particular function only as one implementation strategy of the real public API and using CustomJavaCode to write the exposed API. In this case is most useful in conjunction with RenameJavaMethod.
ArgumentIsString
Syntax: ArgumentIsString [function name] [indices...] where the first argument index is 0
(optional) For a C function with one or more outgoing char* (or compatible data type) arguments, indicates that those arguments are semantically null-terminated C strings rather than arbitrary arrays of bytes. The generated glue code will be modified to emit those arguments as java.lang.String objects rather than byte[] or ByteBuffer.
ClassJavadoc
Syntax: ClassJavadoc [class name] [code...]
(optional) Causes the specified line of code to be emitted in the appropriate place in the generated code to become the per-class Javadoc for the specified class. By default GlueGen produces no Javadoc for its generated classes, so this is the mechanism by which a user can emit Javadoc for these classes. The specified Javadoc undergoes no transformation by GlueGen, so the initial /** and trailing */ must be included in the correct place. Each line of Javadoc is emitted in the order encountered during parsing of the configuration files.
CustomCCode
Syntax: CustomCCode [code...]
(optional) Causes the specified line of C code to be emitted into the generated native code for the implementing class. Currently there is no way (and no real need) to be able to emit custom C code into any other generated .c file, so the class name in the CustomJavaCode directive is omitted.
CustomJavaCode
Syntax: CustomJavaCode [class name] [code...]
(optional) Causes the specified line of Java code to be emitted into the specified generated Java class. Can be used to emit code into any generated class: the public interface, the implementing class, the sole concrete class (in the case of the AllStatic Style), or any of the Java classes corresponding to referenced C structs in the parsed headers. This usage is somewhat verbose, and the IncludeAs directive provides a more concise way of including large bodies of Java code into the generated code.
EmitStruct
Syntax: EmitStruct [C struct type name]
(optional) Forces a Java class to be emitted for the specified C struct. Normally only those structs referenced directly by the parsed C APIs have corresponding Java classes emitted.
Extends
Syntax: Extends [Java interface name] [interface name to extend]
(optional) Causes the specified autogenerated Java interface to declare that it extends another one. This directive may only be applied to autogenerated interfaces, not concrete classes. For concrete classes, use the Implements directive.
HierarchicalNativeOutput
Syntax: HierarchicalNativeOutput true
(optional) If "true", makes subdirectories for the generated native code matching the package names of the associated classes. This is typically not needed (or desired, as it complicates the compilation process for this native code) and defaults to false.
Ignore
Syntax: Ignore [regexp]
(optional) Ignores one or more functions or data types matching the regexp argument which are encountered during parsing of the C headers. By default GlueGen will emit all encountered C functions as well as Java classes corresponding to all C structs referenced by those functions. Related directives are IgnoreNot, Unignore and EmitStruct.
IgnoreField
Syntax: IgnoreField [struct type name] [field name]
(optional) Causes the specified field of the specified struct type to be ignored during code generation, typically because it is too complex for GlueGen to handle.
IgnoreNot
Syntax: see Ignore. (optional) Similar to the Ignore directive, but evaluates the negation of the passed regexp when deciding whether to ignore the given function or data type. NOTE: there is currently no mechanism for using Unignore with IgnoreNot. This is a bug. The IgnoreNot mechanism may ultimately turn out to be superfluous.
Implements
Syntax: Implements [Java class name] [interface name to implement]
(optional) Causes the specified autogenerated Java concrete class to declare that it implements the specified interface. This directive may only be applied to autogenerated concrete classes, not interfaces. For interfaces, use the Extends directive.
ImplJavaClass
Syntax: ImplJavaClass [class name]
(optional) Specifies the name of the typically non-public, implementation Java class which contains the concrete Java and native methods for the glue code. If the emission style is AllStatic, there is no distinction between the public and implementation class and ImplJavaClass should not be specified. Otherwise, if the ImplJavaClass is unspecified, it defaults to the JavaClass name plus "Impl". (If both are unspecified in this configuration, an error is reported.) See also JavaClass.
ImplPackage
Syntax: ImplPackage [package name]
(optional) Specifies the package name into which the implementing class containing the concrete Java and native methods will be emitted, assuming an emission style of InterfaceAndImpl or ImplOnly. If AllStatic, there is no separate implementing class from the public interface. If the emission style is not AllStatic and the ImplPackage is not specified, it defaults to the Package plus ".impl". See also Package.
Import
Syntax: Import [package name] (no trailing semicolon)
(optional) Adds an import statement at the top of each generated Java source file.
Include
Syntax: Include [filename]
(optional) Causes another configuration file to be read at the current point in parsing the current configuration file. The filename argument may be either absolute or relative; in the latter case it is specified relative to the location of the current configuration file.
IncludeAs
Syntax: IncludeAs [prefix tokens] [filename]
(optional) Similar to the Include directive, but prepends the specified prefix tokens on to every line of the file to be read. The last token parsed is the name of the file to be read. This allows, for example, CustomJavaCode to be stored as Java source rather than in the configuration file; in this example the configuration file might contain IncludeAs CustomJavaCode MyClass MyClass-CustomJavaCode.java.
JavaClass
Syntax: JavaClass [class name]
(optional / required) Specifies the name of the public, non-implementation Java class or interface into which the glue code will be generated. If the emission style is not ImplOnly, the JavaClass directive is required. See also ImplJavaClass.
JavaEpilogue
Syntax: JavaEpilogue [C function name] [code...]
(optional) Adds the specified code as an epilogue in the Java method for the specified C function; this code is run after the underlying C function has been called via the native method but before any result is returned. No transformations are currently performed on this code, unlike in the ReturnedArrayLength and other directives. See also JavaPrologue.
JavaOutputDir
Syntax: JavaOutputDir [directory name]
(optional) Specifies the root directory into which the emitted Java code will be produced. Subdirectories for the packages of the associated Java classes will be automatically created. If unspecified, defaults to the current working directory.
JavaPrologue
Syntax: JavaPrologue [C function name] [code...]
(optional) Adds the specified code as a prologue in the Java method for the specified C function; this code is run before the underlying C function is called via the native method. No transformations are currently performed on this code, unlike in the ReturnedArrayLength and other directives. See also JavaEpilogue.
ManuallyImplement
Syntax: ManuallyImplement [function name]
(optional) Indicates to GlueGen to not produce a method into the implementing class for the specified C function; the user must provide one via the CustomJavaCode directive. If the emission style is InterfaceAndImpl or InterfaceOnly, a public method will still be generated for the specified function.
NativeOutputDir
Syntax: NativeOutputDir [directory name]
(optional) Specifies the root directory into which the emitted JNI code will be produced. If unspecified, defaults to the current working directory. See also HierarchicalNativeOutput.
NioDirectOnly
Syntax: NioDirectOnly [function name]
(required when necessary) When passing a pointer down to a C API, it is semantically undefined whether the underlying C code expects to treat that pointer as a persistent pointer, living past the point of return of the function call, or whether the pointer is used only during the duration of the function call. For APIs taking C primitive pointers such as void*, float*, etc., GlueGen will typically generate up to two overloaded Java methods, one taking a Buffer or Buffer subclass such as FloatBuffer, and one taking a primitive array such as float[]. (In the case of void* outgoing arguments, GlueGen produces only one variant taking a Buffer.) Normally the generated glue code accepts either a "direct" or non-"direct" buffer (according to the New I/O APIs) as argument. However, if the semantics of the C function are that it either expects to hold on to this pointer past the point of the function call, or if it can block while holding on to the pointer, the NioDirectOnly directive must be specified for this C function in order for the generated glue code to be correct. Failing to observe this requirement may cause JVM hangs or crashes.
Opaque
Syntax: Opaque [Java primitive data type] [C data type]
(optional) Causes a particular C data type to be exposed in opaque form as a Java primitive type. This is most useful for certain pointer types for which it is not desired to generate full Java classes but instead expose them to Java as e.g. longs. It is also useful for forcing certain integral C data types to be exposed as e.g. long to Java to ensure 64-bit cleanliness of the generated glue code. See the (FIXME) examples. The C data type may be a multiple-level pointer type; for example Opaque long void**. Note that it is not currently supported to make a given data type opaque for just a few functions; the Opaque directive currently applies to all C functions in the headers being parsed. This means that sweeping Opaque declarations like Opaque long void* will likely have unforseen and undesirable consequences.
Package
Syntax: Package [package name] (no trailing semicolon)
(optional / required) Specifies the package into which the public interface or class for the autogenerated glue code will be generated. Required whenever the emission style is not ImplOnly. See also ImplPackage.
RangeCheck
Syntax: RangeCheck [C function name] [argument number] [expression]
(optional) Causes a range check to be performed on the specified array or Buffer argument of the specified autogenerated Java method. This range check ensures, for example, that a certain number of elements are remaining in the passed Buffer, knowing that the underlying C API will access no more than that number of elements. For range checks that should be expressed in terms of a number of bytes rather than a number of elements, see the RangeCheckBytes directive. As in the ReturnedArrayLength and other directives, MessageFormat expressions such as "{0}" are replaced with the corresponding incoming argument name, where the first incoming argument is index 0.
RangeCheckBytes
Syntax: RangeCheckBytes [C function name] [argument number] [expression]
(optional) Same as the RangeCheck directive, but the specified expression is treated as a minimum number of bytes remaining rather than a minimum number of elements remaining.
RenameJavaMethod
Syntax: RenameJavaMethod [from name] [to name]
(optional) Causes the specified C function to be emitted under a different name in the Java binding. This is most useful in conjunction with the AccessControl directive when the C function being bound to Java is only one potential implementation of the public API, or when a considerable amount of Java-side custom code is desired to wrap the underlying C native method entry point.
RenameJavaType
Syntax: RenameJavaType [from name] [to name]
(optional) Causes the specified C struct to be exposed as a Java class under a different name. This only applies to autogenerated classes corresponding to C structs encountered during glue code generation; full control is provided over the name of the top-level classes associated with the set of C functions via the JavaClass and ImplJavaClass directives.
ReturnedArrayLength
Syntax: ReturnedArrayLength [C function name] [expression] where expression is a legal Java expression with MessageFormat specifiers such as "{0}". These specifiers will be replaced in the generated glue code with the incoming argument names where the first argument to the method is numbered 0.
(optional) For a function returning a compound C pointer type such as an XVisualInfo*, indicates that the returned pointer is to be treated as an array and specifies the length of the returned array as a function of the arguments passed to the function. Note that this directive differs subtly from ReturnValueCapacity and ReturnValueLength. It is also sometimes most useful in conjunction with the TemporaryCVariableDeclaration and TemporaryCVariableAssignment directives.
ReturnsString
Syntax: ReturnsString [function name]
(optional) Indicates that the specified C function which returns a char* or compatible type actually returns a null-terminated C string which should be exposed as a java.lang.String.
ReturnValueCapacity
Syntax: ReturnValueCapacity [C function name] [expression]
(optional) Specifies the capacity of a java.nio Buffer or subclass wrapping a C primitive pointer such as char* or float* being returned from a C function. Typically necessary in order to properly use such pointer return results from Java. As in the ReturnedArrayLength directive, argument name substitution is performed on MessageFormat expressions such as "{0}" where the first argument is index 0.
ReturnValueLength
Syntax: ReturnValueLength [C function name] [expression]
(optional) Specifies the length of a returned array of pointers, typically to C structs, from a C function. This differs from the ReturnedArrayLength directive in the pointer indirection to the array elements. The ReturnedArrayLength directive handles slicing up of a linear array of structs, while the ReturnValueLength directive handles boxing of individual elements of the array (which are pointers) in to the Java class which wraps that C struct type. See the (FIXME) examples for a concrete example of usage. As in the ReturnedArrayLength directive, argument name substitution is performed on MessageFormat expressions such as "{0}" where the first argument is index 0.
RuntimeExceptionType
Syntax: RuntimeExceptionType [class name]
(optional) Specifies the class name of the exception type which should be thrown when run-time related exceptions occur in the generated glue code, for example if a non-direct Buffer is passed to a method for which NioDirectOnly was specified. Defaults to RuntimeException.
StructPackage
Syntax: StructPackage [C struct type name] [package name]. Package name contains no trailing semicolon.
(optional) Indicates that the specified Java class corresponding to the specified C struct should be placed in the specified package. By default, these autogenerated Java classes corresponding to C structs are placed in the main package (that defined by PackageName).
Style
Syntax: Style [ AllStatic | InterfaceAndImpl | InterfaceOnly | ImplOnly ]
(optional) Defines how the Java API for the parsed C headers is structured. If AllStatic, one concrete Java class will be generated containing static methods corresponding to the C entry points. If InterfaceAndImpl, a public Java interface will be generated into the Package with non-static methods corresponding to the C functions, and an "implementation" concrete Java class implementing this interface will be generated into the ImplPackage. If InterfaceOnly, the InterfaceAndImpl code generation style will be followed, but only the interface will be generated. If ImplOnly, the InterfaceAndImpl code generation style will be followed, but only the concrete implementing class will be generated. The latter two options are useful when generating a public API in which certain operations are unimplemented on certain platforms; platform-specific implementation classes can be generated which implement or leave unimplemented various parts of the API.
TemporaryCVariableAssignment
Syntax: TemporaryCVariableAssignment [C function name] [code...]
(optional) Inserts a C variable assignment declared using the TemporaryCVariableDeclaration directive in to the body of a particular autogenerated native method. The assignment is performed immediately after the call to the underlying C function completes. This is typically used in conjunction with the ReturnValueCapacity or ReturnValueLength directives to capture the size of a returned C buffer or array of pointers. See the (FIXME) examples for a concrete example of usage of this directive. Note that unlike, for example, the ReturnedArrayLength directive, no substitution is performed on the supplied code, so the user must typically have previously looked at the generated code and seen what work needed to be done and variables needed to be examined at exactly that line.
TemporaryCVariableDeclaration
Syntax: TemporaryCVariableDeclaration [C function name] [code...]
(optional) Inserts a C variable declaration in to the body of a particular autogenerated native method. This is typically used in conjunction with the TemporaryCVariableAssignment and ReturnValueCapacity or ReturnValueLength directives to capture the size of a returned C buffer or array of pointers. See the (FIXME) examples for a concrete example of usage of this directive.
Unignore
Syntax: Unignore [regexp]
(optional) Removes a previously-defined Ignore directive. This is useful when one configuration file includes another and wishes to disable some of the Ignores previously specified.
Unimplemented
Syntax: Unimplemented [regexp]
(optional) Causes the binding for the functions matching the passed regexp to have bodies generated which throw the stated RuntimeExceptionType indicating that this function is unimplemented. This is most useful when an API contains certain functions that are not supported on all platforms and there are multiple implementing classes being generated, one per platform.

ProcAddressEmitter Configuration

The ProcAddressEmitter is a subclass of the core JavaEmitter which knows how to call C functions through function pointers. In particular, the ProcAddressEmitter detects certain constructs in C header files which imply that the APIs are intended to be called through function pointers, and generates the glue code appropriately to support that.

The ProcAddressEmitter detects pairs of functions and function pointer typedefs in a set of header files. If it finds a matching pair, it converts the glue code emission style for that API to look for the function to call in an autogenerated table called a ProcAddressTable rather than linking the autogenerated JNI code directly to the function. It then changes the calling convention of the underlying native method to pass the function pointer from Java down to C, where the call-through-function-pointer is performed.

The ProcAddressEmitter discovers the function and function pointer pairs by being informed of the mapping between their names by the user. In the OpenGL and OpenAL libraries, there are fairly simple mappings between the functions and function pointers. For example, in the OpenGL glext.h header file, one may find the following pair:

  GLAPI void APIENTRY glFogCoordf (GLfloat);
...
  typedef void (APIENTRYP PFNGLFOGCOORDFPROC) (GLfloat coord);
Therefore the mapping rule between the function name and the function pointer typedef for the OpenGL extension header file is "PFN + Uppercase(funcname) + PROC". Similarly, in the OpenAL 1.1 header files, one may find the following pair:
  AL_API void AL_APIENTRY alEnable( ALenum capability );
...
  typedef void           (AL_APIENTRY *LPALENABLE)( ALenum capability );
Therefore the mapping rule between the function name and the function pointer typedef for the OpenAL header files is "LP + Uppercase(funcname)".

These are the two principal function pointer-based APIs toward which the GlueGen tool has currently been applied. It may turn out to be that this simple mapping heuristic is insufficient, in which case it will need to be extended in a future version of the GlueGen tool.

Note that it is currently the case that in order for the ProcAddressEmitter to notice that a given function should be called through a function pointer, it must see both the function prototype as well as the function pointer typedef. Some headers, in particular the OpenAL headers, have their #ifdefs structured in such a way that either the declaration or the typedef is visible, but not both simultaneously. Because the PCPP C preprocessor GlueGen uses obeys #ifdefs, it is in a situation like this that the headers would have to be modified to allow GlueGen to see both declarations.

The following directives are specified in alphabetical order, although this is not necessarily the best semantic order. The ProcAddressEmitter also accepts all of the directives supported by the JavaEmitter. The required directives are GetProcAddressTableExpr and ProcAddressNameExpr.

EmitProcAddressTable
Syntax: EmitProcAddressTable [true | false]
(optional) Indicates whether to emit the ProcAddressTable during glue code generation. Defaults to false.
ForceProcAddressGen
Syntax: ForceProcAddressGen [function name]
(optional) Indicates that a ProcAddressTable entry should be produced for the specified function even though it does not have an associated function pointer typedef in the header. This directive does not currently cause the autogenerated Java and C code to change to call-through-function-pointer style, which should probably be considered a bug. (FIXME)
GetProcAddressTableExpr
Syntax: GetProcAddressTableExpr [expression]
(required) Defines the Java code snippet used by the generated glue code to fetch the ProcAddressTable containing the function pointers for the current API. It is up to the user to decide where to store the ProcAddressTable. Common places for it include in an instance field of the implementing class, in an associated object with which there is a one-to-one mapping, or in a static field of another class accessed by a static method. In the JOGL project, for example, each GLImpl instance has an associated GLContext in an instance field called "_context", so the associated directive is GetProcAddressTableExpr _context.getGLProcAddressTable(). In the JOAL project, the ProcAddressTables are currently held in a separate class accessed via static methods, so one of the associated directives is GetProcAddressTableExpr ALProcAddressLookup.getALCProcAddressTable().
ProcAddressNameExpr
Syntax: ProcAddressNameExpr [expression]
(required) Defines the mapping from function name to function pointer typedef to be able to properly identify this function as needing call-through-function-pointer semantics. The supplied expression uses a set of simple commands to describe certain operations on the function name: The corresponding ProcAddressNameExpr for the OpenGL extension functions as described at the start of this section is PFN $UPPERCASE({0}) PROC. The ProcAddressNameExpr for the OpenAL functions as described at the start of this section is LP $UPPERCASE({0}).
ProcAddressTableClassName
Syntax: ProcAddressTableClassName [class name]
(optional) Specifies the class name into which the table containing the function pointers will be emitted. Defaults to "ProcAddressTable".
ProcAddressTablePackage
Syntax: ProcAddressTablePackage [package name] (no trailing semicolon)
(optional) Specifies the package into which to produce the ProcAddressTable for the current set of APIs. Defaults to the implementation package specified by the ImplPackage directive.
SkipProcAddressGen
Syntax: SkipProcAddressGen [function name]
(optional) Indicates that the default behavior of call-through-function-pointer should be skipped for this function despite the fact that it has an associated function pointer typedef in the header.