1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
|
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>index.md</title>
<style>
div#header, header
{
border-bottom: 1px solid #aaa;
margin-bottom: 0.5em;
}
.title
{
text-align: center;
}
.author, .date
{
text-align: center;
}
div#TOC, nav#TOC
{
border-bottom: 1px solid #aaa;
margin-bottom: 0.5em;
}
nav#TOC {
margin-bottom: var(--line-height);
padding-bottom: 0.5rem;
}
nav#TOC input {
display: none;
}
nav#TOC label {
color: var(--color-link);
cursor: pointer;
}
nav#TOC > ul {
display: none;
}
nav#TOC > input:checked + ul {
display: block;
}
@media print
{
div#TOC, nav#TOC
{
display: none;
}
}
div.content
{
color: #111111;
font-size: 14px;
line-height: 1.6;
}
div#cgit a
{
color: #1212a0;
}
div#cgit a.sourceLine
{
color: #111111;
}
h1, h2, h3, h4, h5, h6
{
font-family: "Helvetica Neue", Helvetica, "Liberation Sans", Calibri, Arial, sans-serif;
page-break-after: avoid;
margin: 20px 0 10px;
padding: 0;
}
h2 {
border-bottom: 1px solid #ccc;
}
div div
{
}
section section
{
margin-left: 2em;
}
p {}
blockquote
{
font-style: italic;
}
li
{
}
li > p
{
margin-top: 1em;
}
ul
{
}
ul li
{
}
ol
{
}
ol li
{
}
hr {}
sub
{
}
sup
{
}
em
{
}
em > em
{
font-style: normal;
}
strong
{
}
a
{
text-decoration: none;
}
@media screen
{
a:hover
{
text-decoration: underline;
}
}
@media print
{
a {
color: black;
background: transparent;
}
a[href^="http://"]:after, a[href^="https://"]:after
{
content: " (" attr(href) ") ";
font-size: 90%;
}
}
img
{
vertical-align: middle;
}
div.figure
{
margin-left: auto;
margin-right: auto;
text-align: center;
font-style: italic;
}
p.caption
{
}
pre, code
{
background-color: #f8f8f8;
white-space: pre-wrap;
white-space: -moz-pre-wrap !important;
white-space: -pre-wrap;
white-space: -o-pre-wrap;
word-wrap: break-word;
}
pre
{
padding: 0.5em;
border-radius: 5px;
background-color: #f8f8f8;
border: 1px solid #ccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
margin-left: 0.5em;
margin-right: 0.5em;
}
@media screen
{
pre
{
white-space: pre;
overflow: auto;
border: 1px dotted #777;
}
}
code
{
}
p > code, li > code
{
padding-left: 2px;
padding-right: 2px;
}
li > p code
{
padding: 2px;
}
span.math
{
}
div.math
{
}
span.LaTeX
{
}
eq
{
}
table
{
border-collapse: collapse;
border-spacing: 0;
margin-left: auto;
margin-right: auto;
}
thead
{
border-bottom: 1pt solid #000;
background-color: #eee;
}
tr.header
{
}
tbody
{
}
tr {
}
tr.odd:hover, tr.even:hover
{
background-color: #eee;
}
tr.odd {}
tr.even {}
td, th
{
vertical-align: top;
vertical-align: baseline;
padding-left: 0.5em;
padding-right: 0.5em;
padding-top: 0.2em;
padding-bottom: 0.2em;
}
th
{
font-weight: bold;
}
tfoot
{
}
caption
{
caption-side: top;
border: none;
font-size: 0.9em;
font-style: italic;
text-align: center;
margin-bottom: 0.3em;
padding-bottom: 0.2em;
}
dl
{
border-top: 2pt solid black;
padding-top: 0.5em;
border-bottom: 2pt solid black;
}
dt
{
font-weight: bold;
}
dd+dt
{
border-top: 1pt solid black;
padding-top: 0.5em;
}
dd
{
margin-bottom: 0.5em;
}
dd+dd
{
border-top: 1px solid black;
}
a.footnote, a.footnoteRef {
font-size: small;
vertical-align: text-top;
}
a[href^="#fnref"], a.reversefootnote
{
}
@media print
{
a[href^="#fnref"], a.reversefootnote
{
display: none;
}
}
div.footnotes
{
}
div.footnotes li[id^="fn"]
{
}
@media print
{
.noprint
{
display:none;
}
}
</style>
</head>
<body>
<nav id="TOC" role="doc-toc">
<strong>Contents</strong><label for="contents">⊕</label>
<input type="checkbox" id="contents">
<ul>
<li><a href="#gluegen-manual">GlueGen Manual</a>
<ul>
<li><a href="#references">References</a></li>
<li><a href="#chapter-1---introduction"><span id="Chapter1">Chapter 1
- Introduction</span></a>
<ul>
<li><a
href="#introduction"><span id="SecIntroduction">Introduction</span></a></li>
<li><a
href="#structure-of-the-generated-glue-code"><span id="SecStructure">Structure
of the Generated Glue Code</span></a></li>
<li><a href="#unique-features"><span id="SecUnique">Unique
Features</span></a></li>
<li><a
href="#background-and-design-principles"><span id="SecBackground">Background
and Design Principles</span></a></li>
</ul></li>
<li><a href="#chapter-2---using-gluegen"><span id="Chapter2">Chapter 2
- Using GlueGen</span></a>
<ul>
<li><a
href="#acquiring-and-building-gluegen"><span id="SecAcquiring">Acquiring
and Building GlueGen</span></a></li>
<li><a href="#basic-operation"><span id="SecBasic">Basic
Operation</span></a></li>
<li><a
href="#running-gluegen-as-an-ant-task"><span id="SecAnt">Running
GlueGen as an Ant Task</span></a></li>
<li><a href="#jcpp"><span id="SecJCPP">JCPP</span></a></li>
<li><a href="#stub-headers"><span id="SecStub">Stub
Headers</span></a></li>
<li><a href="#32--and-64-bit-considerations"><span id="Sec32">32- and
64-bit Considerations</span></a></li>
<li><a href="#opaque-directives"><span id="SecOpaque">Opaque
Directives</span></a></li>
<li><a
href="#argument-name-substitution"><span id="SecSubstitution">Argument
Name Substitution</span></a></li>
<li><a
href="#configuration-file-directives"><span id="SecConfiguration">Configuration
File Directives</span></a></li>
</ul></li>
<li><a
href="#chapter-3---configuration-file-examples"><span id="Chapter3">Chapter
3 - Configuration File Examples</span></a>
<ul>
<li><a
href="#simplest-possible-example"><span id="SecSimplest">Simplest
possible example</span></a></li>
<li><a href="#arrays-and-buffers"><span id="SecArrays">Arrays and
buffers</span></a></li>
<li><a href="#string-handling"><span id="SecString">String
handling</span></a></li>
<li><a href="#memory-allocation"><span id="SecMemory">Memory
allocation</span></a></li>
<li><a
href="#ingoing-and-outgoing-structs"><span id="SecStructs">Ingoing and
outgoing structs</span></a></li>
<li><a
href="#returned-arrays-of-structs"><span id="SecStructArrays">Returned
arrays of structs</span></a></li>
<li><a
href="#returned-arrays-of-pointers"><span id="SecPointerArrays">Returned
arrays of pointers</span></a></li>
</ul></li>
</ul></li>
</ul>
</nav>
<!---
We convert markdown using pandoc using `gfm` (GitHub-Flavored Markdown) as source format
and `html5+smart` with a custom template as the target.
Recipe:
```
~/pandoc-buttondown-cgit/pandoc_md2html_local.sh index.md > index.html
```
Git repos:
- https://jausoft.com/cgit/users/sgothel/pandoc-buttondown-cgit.git/about/
- https://github.com/sgothel/pandoc-buttondown-cgit
-->
<style>
table, th, td {
border: 1px solid black;
}
</style>
<h1 id="gluegen-manual">GlueGen Manual</h1>
<p><em>Disclaimer: This documented shall be synchronized with source
code, especially the configuration options.</em></p>
<p>Please also consider reading <a
href="../GlueGen_Mapping.html">GlueGen Native Data & Function
Mapping</a> for details on native data and function mappings.</p>
<h2 id="references">References</h2>
<ul>
<li><a href="https://jogamp.org/cgit/gluegen.git/about/">GlueGen Git
Repo</a></li>
<li><a
href="https://jogamp.org/deployment/jogamp-next/javadoc/gluegen/javadoc/">GlueGen
Java™ API-Doc</a></li>
</ul>
<ul>
<li><a href="../GlueGen_Mapping.html">GlueGen Native Data & Function
Mapping for Java™</a></li>
</ul>
<ul>
<li><a href="https://jogamp.org/gluegen/www/">GlueGen Project
Page</a></li>
<li><a href="../HowToBuild.html">How To Build</a></li>
</ul>
<h2 id="chapter-1---introduction"><span id="Chapter1">Chapter 1 -
Introduction</span></h2>
<h3
id="introduction"><span id="SecIntroduction">Introduction</span></h3>
<p>GlueGen is a tool which automatically generates the Java and JNI code
necessary to call C libraries. It reads as input ANSI C header files and
separate configuration files which provide control over many aspects of
the glue code generation. GlueGen uses a complete ANSI C parser and an
internal representation (IR) capable of representing all C types to
represent the APIs for which it generates interfaces. It has the ability
to perform significant transformations on the IR before glue code
emission. GlueGen is currently powerful enough to bind even low-level
APIs such as the Java Native Interface (JNI) and the AWT Native
Interface (JAWT) back up to the Java programming language.</p>
<p>GlueGen is currently used to generate the JOGL interface to the
OpenGL 3D graphics API and the JOAL interface to the OpenAL audio
library. In the case of JOGL, GlueGen is used not only to bind OpenGL to
Java, but also the low-level windowing system APIs on the Windows, X11
and Mac OS X platforms. The implementation of the JOGL library is
thereby written in the Java programming language rather than in C, which
has offered considerable advantages during the development of the
library.</p>
<p>GlueGen is designed in modular form and can be extended to alter the
glue code emission style or to generate interface code for other
languages than Java.</p>
<p>This manual describes how to use GlueGen to bind new C libraries to
the Java programming language.</p>
<h3
id="structure-of-the-generated-glue-code"><span id="SecStructure">Structure
of the Generated Glue Code</span></h3>
<p>GlueGen supports two basic styles of glue code generation: everything
in one class, or a separate interface and implementing class. The first
mode, "AllStatic", exposes the underlying C functions as a set of static
Java methods in a concrete class. This is a straightforward binding
mechanism, but has the disadvantage of tying users to a concrete class
(which may or may not be a problem) and makes it more difficult to
support certain kinds of call-through-function-pointer semantics
required by certain C APIs. The second mode, "InterfaceAndImpl", exposes
the C functions as methods in an interface and emits the implementation
of that interface into a separate class and package. The implementing
class is not intended to be in the public API; this more strongly
separates the user from the implementation of the API. Additionally,
because it is necessary to hold an instance of the implementing class in
order to access the underlying C routines, it is easier to support
situations where call-through-function-pointer semantics must be
followed, in particular where those function pointers might change from
instance to instance.</p>
<p>The generated glue code follows some basic rules in binding C APIs to
Java:</p>
<ul>
<li>C primitive types are exposed as the corresponding Java primitive
type.</li>
<li>Pointers to typed C primitives (<code>int*</code>,
<code>float*</code>) are bound to java.nio Buffer subclasses
(<code>IntBuffer</code>, <code>FloatBuffer</code>) and optionally to
Java arrays (<code>int[]</code>, <code>float[]</code>).
<ul>
<li>If a C function takes such a pointer as an outgoing argument, two
method overloadings will generally be produced; one which accepts a
Buffer, and one which accepts a primitive array plus an integer offset
argument. The variant taking a Buffer may accept either a "direct" NIO
Buffer or a non-direct one (wrapping a Java array). The exception is
when such a routine is specified by the <a
href="#NioDirectOnly">NioDirectOnly</a> directive to keep a persistent
pointer to the passed storage, in which case only the Buffer variant
will be generated, and will only accept a direct Buffer as
argument.</li>
<li>If a C function returns such a pointer as its result, it will be
exposed as the corresponding Buffer type. In this case it is also
typically necessary to specify to GlueGen via the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> directive the number
of addressable elements in the resulting array.</li>
</ul></li>
<li>Pointers to <code>void*</code> are bound to java.nio.Buffer.
<ul>
<li>By default any C function accepting a <code>void*</code> argument
will allow either a direct or non-direct java.nio Buffer to be passed as
argument. If the <a href="#NioDirectOnly">NioDirectOnly</a> directive is
specified, however, only a direct Buffer will be accepted.</li>
<li>Similar rules for <code>void*</code> return values apply to those
for pointers to typed primitives.</li>
</ul></li>
<li>To avoid an explosion in the number of generated methods, if a
particular API accepts more than one typed primitive pointer argument,
only two overloadings continue to be produced: one accepting all arrays
as arguments and one accepting all Buffers as arguments. When calling
the variant accepting Buffers, all of the Buffers passed in a particular
call must be either direct or non-direct. Mixing of direct and
non-direct Buffers in a given function call is not supported.</li>
<li>When a java.nio Buffer is passed from Java to C, the position of the
Buffer is taken into account. The resulting pointer passed to C is equal
to the base address of the Buffer plus the position scaled appropriately
for the size of the primitive elements in the Buffer. This feature is
called "auto-slicing", as it mimics the behavior of calling
Buffer.slice() without the overhead of explicit object creation.</li>
<li>Pointers to constant <code>char*</code> may be bound to
java.lang.String using the <a
href="#ArgumentIsString">ArgumentIsString</a> or <a
href="#ReturnsString">ReturnsString</a> directives.</li>
<li><code>#define</code> statements in header files mapping names to
constant values are exposed as public static final constant values in
either the generated interface or AllStatic class.</li>
<li>C structs encountered during the glue code generation process and
referenced by the C functions are exposed as Java classes of the same
name (typically the name to which the struct is typedefed). Each
primitive field in the struct is exposed as two methods; a getter, which
accepts no arguments, and a setter, which accepts as argument a
primitive value of the type of the field. Static factory methods are
exposed allowing allocation of these structs from Java code. The backing
storage for these Java classes is a direct java.nio Buffer. GlueGen
fully supports returning of pointers to C structs up to Java.</li>
</ul>
<h3 id="unique-features"><span id="SecUnique">Unique
Features</span></h3>
<p>GlueGen contains several unique features making it both a powerful
and easy-to-use tool.</p>
<ul>
<li>C structs are exposed as Java classes. The generated code for these
classes supports both 32-bit and 64-bit platforms.</li>
<li>C structs containing function pointers are exposed as Java classes
with methods. This makes it easy to interact with low-level C APIs such
as the AWT Native Interface (JAWT) from the Java programming language
level.
<ul>
<li>In this context, GlueGen automatically detects which argument to the
various function pointers indicates the "this" pointer, hiding it at the
Java level and passing it automatically.</li>
<li>GlueGen offers automatic handling of JNI-specific data types such as
<code>JNIEnv*</code> and <code>jobject</code>. The tool understands that
the <code>JNIEnv*</code> argument is implicit and that
<code>jobject</code> maps to java.lang.Object at the Java programming
language level. While this is most useful when binding JDK-internal APIs
such as the JAWT to Java, there may be other JNI libraries which expose
C functions taking these data types, and GlueGen can very easily bind to
them.</li>
</ul></li>
</ul>
<h3
id="background-and-design-principles"><span id="SecBackground">Background
and Design Principles</span></h3>
<p>This section provides motivation for the design of the GlueGen tool
and is not necessary to understand how to use the tool.</p>
<p>There are many tools available for assisting in the autogeneration of
foreign function interfaces for various high-level languages. Only a few
examples include <a
href="http://alumni.media.mit.edu/~kbrussel/Header2Scheme/">Header2Scheme</a>,
an early tool allowing binding of a limited subset of C++ to the Scheme
programming language; <a href="http://www.swig.org/">SWIG</a>, a tool
released at roughly the same time as Header2Scheme which by now supports
binding C and C++ libraries to a variety of scripting languages; <a
href="http://www.jniwrapper.com/">JNIWrapper</a>, a commercial tool
automating the binding of C APIs to Java; and <a
href="http://web.archive.org/web/20070419183658/http://www.noodleglue.org/noodleglue/noodleglue.html">NoodleGlue</a>,
a recently-released tool automating the binding of C++ APIs to Java.
Other language-specific tools such as Perl's XS, Boost.Python and many
others exist.</p>
<p>GlueGen was designed with a few key principles in mind. The most
fundamental was to support binding of the lowest-level APIs on a given
platform up to the Java programming language. The intended goal, in the
context of the JOGL project, was to allow subsets of the Win32 and X11
APIs to be exposed to Java, and to use those APIs to write the
behind-the-scenes OpenGL context creation and management code in Java
instead of C. This informed several other design goals:</p>
<ul>
<li>Avoid touching the C headers as much as possible. This makes it
easier to upgrade to a more recent version of the C API just by copying
in a new set of headers.</li>
<li>Avoid touching the generated glue code completely.</li>
<li>Avoid having to hand-write a lot of generated glue code. Instead,
handle many complex constructs automatically and provide sufficient
control over the glue code generation to avoid having to handwrite
certain native methods where one or two lines of tweaking would
suffice.</li>
<li>Support all C constructs in the parser and intermediate
representation. The rationale is that it is acceptable to cut corners in
the number of constructs supported in the Java binding, but not whether
the tool can internally represent it in its C type system. This design
goal implies starting with complete a ANSI C parser coupled with a
complete C type system.</li>
<li>As the tool is targetting the Java programming language, build the
tool in the Java programming language.</li>
</ul>
<p>In order to make the problem more tractable, support for binding C++
to the Java programming language was not considered. C++ adds many
constructs over ANSI C which make it much more difficult to reason about
and to find a useful subset to support binding to Java. Additionally, it
seems that there are relatively few C++-specific libraries in general
use which could be usefully bound to Java, although this may be a matter
of opinion.</p>
<p>GlueGen was designed with the Java programming language in mind, but
is not necessarily restricted to generating glue code for the Java
language. The tool is divided into separate parse and code generation
phases, and the internal representation is fairly easy to iterate over.
The core driver of GlueGen may therefore be useful in producing other
tools which autogenerate foreign function interfaces to C libraries for
other languages.</p>
<h2 id="chapter-2---using-gluegen"><span id="Chapter2">Chapter 2 - Using
GlueGen</span></h2>
<h3
id="acquiring-and-building-gluegen"><span id="SecAcquiring">Acquiring
and Building GlueGen</span></h3>
<p>The source code for GlueGen may be obtained by cloning the Git
repository:</p>
<pre><code> $git clone --recursive git://jogamp.org/srv/scm/gluegen.git gluegen</code></pre>
<p>To build GlueGen, cd into the gluegen/make folder and invoke ant.</p>
<pre><code> $ant clean all test</code></pre>
<p>Ant 1.8 or later and a Java 6 compatible JDK is required.</p>
<h4 id="common-build-problems"><span id="SecCommon">Common Build
Problems</span></h4>
<p><strong>CharScanner; panic: ClassNotFoundException:
com.jogamp.gluegen.cgram.CToken</strong><br />
This occurs because ANTLR was dropped into the Extensions directory of
the JRE/JDK. On Windows and Linux, delete any ANTLR jars from
jre/lib/ext, and on Mac OS X, delete them from /Library/Java/Extensions.
Use the antlr.jar property in the build.xml to point to a JRE-external
location of this jar file.</p>
<h3 id="basic-operation"><span id="SecBasic">Basic Operation</span></h3>
<p>GlueGen can be run either as an executable jar file
(<code>java -jar gluegen.jar</code>; note
that antlr.jar must be in the same directory as gluegen.jar in order for
this invocation to work) or from within Ant as described in the
following section. When run from the command line, GlueGen accepts four
kinds of command-line arguments:</p>
<ul>
<li>-I<em>dir</em> (optional) adds <em>dir</em> to the include path.
Similarly to a C compiler or preprocessor, GlueGen scans a set of
directories to locate header files it encounters in
<code>#include</code> directives. Unlike most C preprocessors, however,
GlueGen has no default include path, so it is typically necessary to
supply at least one <code>-I</code> option on the command line in order
to handle any <code>#include</code> directives in the file being
parsed.</li>
<li>-E<em>emitterClassName</em> (optional) uses
<em>emitterClassName</em> as the fully-qualified name of the emitter
class which will be used by GlueGen to generate the glue code. The
emitter class must implement the
<code>com.jogamp.gluegen.GlueEmitter</code> interface. If this option is
not specified, a <code>com.jogamp.gluegen.JavaEmitter</code> will be
used by default.</li>
<li>-C<em>cfgFile</em> adds <em>cfgFile</em> to the list of
configuration files used to set up the chosen emitter. This is the means
by which a large number of options are passed in to the GlueGen tool and
to the emitter in particular. Configuration files are discussed more in
the following section.</li>
<li>[ filename | - ] selects the file or standard input from which
GlueGen should read the C header file for which glue code should be
generated. This must be the last command-line argument, and only one
filename argument is supported. To cause multiple header files to be
parsed, write a small .c file #including the multiple headers and point
GlueGen at the .c file.</li>
</ul>
<h3 id="running-gluegen-as-an-ant-task"><span id="SecAnt">Running
GlueGen as an Ant Task</span></h3>
<p>GlueGen can also be invoked as a subtask within Ant. In order to do
so, a path element should be defined as follows:</p>
<pre><code> <path id="gluegen.classpath">
<pathelement location="${gluegen.jar}" />
<pathelement location="${antlr.jar}" />
</path></code></pre>
<p>where the <code>gluegen.jar</code> and <code>antlr.jar</code>
properties point to the respective jar files. A taskdef defining the
GlueGen task should then be specified as follows:</p>
<pre><code><taskdef name="gluegen"
classname="com.jogamp.gluegen.ant.GlueGenTask"
classpathref="gluegen.classpath" /></code></pre>
<p>At this point GlueGen may be invoked as follows:</p>
<pre><code><gluegen src="[header to parse]"
config="[configuration file]"
includeRefid="[dirset for include path]"
emitter="com.jogamp.gluegen.JavaEmitter">
<classpath refid="gluegen.classpath" />
</gluegen></code></pre>
<p>Please see the <a href="http://jogamp.org/jogl/">JOGL</a> and <a
href="http://jogamp.org/joal/">JOAL</a> build.xml files for concrete,
though non-trivial, examples of how to invoke GlueGen via Ant.</p>
<h3 id="jcpp"><span id="SecJCPP">JCPP</span></h3>
<p>GlueGen contains and uses the <a
href="https://jogamp.org/cgit/jcpp.git/about/">C preprocessor JCPP</a>,
see <a href="https://www.anarres.org/projects/jcpp/">original
homepage</a>.</p>
<p>Constant values intended for use by end users are defined in many C
libraries' headers using <code>#define</code>s rather than constant int
declarations. If the header would be processed by a full C preprocessor,
the <code>#define</code> statement's macro name become unavailable for
processing by the glue code generator. Using JCPP allows us to utilize
the <code>#define</code> macro names and values.</p>
<p>JCPP is largely an invisible part of the glue code generation
process. If GlueGen's output is not as expected and there is heavy use
of the C preprocessor in the header, run JCPP against the header
directly (JCPP takes simply the -I and filename arguments accepted by
GlueGen) and examine the output.</p>
<h3 id="stub-headers"><span id="SecStub">Stub Headers</span></h3>
<p>As much as is possible, GlueGen is intended to operate on unmodified
C header files, so that it is easy to upgrade the given C API being
bound to Java simply by dropping in a new set of header files. However,
most C headers contain references to standard headers like
<code>stdio.h</code>, and if this header is parsed by GlueGen, the tool
will automatically attempt to generate Java entry points for such
routines as <code>fread</code> and <code>fwrite</code>, among others. It
is impractical to exclude these APIs on a case by case basis. Therefore,
the suggested technique to avoid polluting the binding with these APIs
is to "stub out" the headers.</p>
<p>GlueGen searches the include path for headers in the order the
include directories were specified to the tool. Placing another
directory in front of the one in which the bulk of the headers are found
allows, for example, an alternative <code>stdio.h</code> to be inserted
which contains few or no declarations but which satisfies the need of
the dependent header to find such a file.</p>
<p>GlueGen uses a complete ANSI and GNU C parser written by John
Mitchell and Monty Zukowski from the set of grammars available for the
ANTLR tool by Terrence Parr. As a complete C parser, this grammar
requires all data types encountered during the parse to be fully
defined. Often a particular header will be included by another one in
order to pick up data type declarations rather than API declarations.
Stubbing out the header with a smaller one providing a "fake" type
declaration is a useful technique for avoiding the binding of
unnecessary APIs during the glue code process.</p>
<p>Here's an example from the JOGL glue code generation process. The
<code>glext.h</code> header defining OpenGL extensions references
<code>stddef.h</code> in order to pick up the <code>ptrdiff_t</code>
data type. We choose to not include the real stddef.h but instead to
swap in a stub header. The contents of this header are therefore as
follows:</p>
<pre><code> #if defined(_WIN64)
typedef __int64 ptrdiff_t;
#elif defined(__ia64__) || defined(__x86_64__)
typedef long int ptrdiff_t;
#else
typedef int ptrdiff_t;
#endif</code></pre>
<p>This causes the ptrdiff_t data type to be defined appropriately for
the current architecture. It will be referenced during the glue code
generation and cause a Java value of the appropriate type (int or long)
to be used to represent it.</p>
<p>This is not the best example because it involves a data type which
changes size between 32- and 64-bit platforms, and there are otner
considerations to take into account in these situations (see the section
<a href="#Sec32">32- and 64-bit considerations</a>). Here's another
example, again from the JOGL source tree. JOGL binds the AWT Native
Interface, or JAWT, up to the Java programming language so that the
low-level code which binds OpenGL contexts to Windows device contexts
may be written in Java. The JDK's <code>jawt_md.h</code> on the Windows
platform includes <code>windows.h</code> to pick up the definitions of
data types such as <code>HWND</code> (window handle) and
<code>HDC</code> (handle to device context). However, it is undesirable
to try to parse the real <code>windows.h</code> just to pick up these
typedefs; not only does this header contain thousands of unneeded APIs,
but it also uses certain macro constructs not supported by GlueGen's
contained <a href="#SecJCPP">C preprocessor</a>. To avoid these
problems, a "stub" <code>windows.h</code> header is placed in GlueGen's
include path containing only the necessary typedefs:</p>
<pre><code> typedef struct _handle* HANDLE;
typedef HANDLE HDC;
typedef HANDLE HWND;</code></pre>
<p>Note that it is essential that the type being specified to GlueGen is
compatible at least in semantics with the real definition of the HANDLE
typedef in the real <code>windows.h</code>, so that during compilation
of GlueGen's autogenerated C code, when the real <code>windows.h</code>
is referenced by the C compiler, the autogenerated code will compile
correctly.</p>
<p>This example is not really complete as it also requires <a
href="#Sec32">consideration of the size of data types on 32- and 64-bit
platforms</a> as well as a discussion of how certain <a
href="#SecOpaque">opaque data types</a> are described to GlueGen and
exposed in its autogenerated APIs. Nonetheless, it illustrates at a
basic level why using a stub header is necessary and useful in certain
situations.</p>
<h3 id="32--and-64-bit-considerations"><span id="Sec32">32- and 64-bit
Considerations</span></h3>
<p>When binding C functions to the Java programming language, it is
important that the resulting Java code support execution on a 64-bit
platform if the associated native methods are compiled appropriately. In
other words, the public Java API should not change if the underlying C
data types change to another data model such as LP64 (in which longs and
pointers become 64-bit).</p>
<p>GlueGen internally maintains two descriptions of the underlying C
data model: one for 32-bit architectures and one for 64-bit
architectures. These machine descriptions are used when deciding the
mapping between integral C types such as int and long and the
corresponding Java types, as well as when laying out C structs for
access by the Java language. For each autogenerated C struct accessor,
both a 32-bit and 64-bit variant are generated behind the scenes,
ensuring that the resulting Java code will run correctly on both 32-bit
and 64-bit architectures.</p>
<p>When generating the main class containing the bulk of the method
bindings, GlueGen uses the 64-bit machine description to map C data
types to Java data types. This ensures that the resulting code will run
properly on 64-bit platforms. Note that it also generally means that C
<code>long</code>s will be mapped to Java <code>long</code>s, since an
LP64 data model is assumed.</p>
<p>If <a href="#SecOpaque">Opaque directives</a> are used to cause a
given C integer or pointer data type to be mapped directly to a Java
primitive type, care should be taken to make sure that the Java
primitive type is wide enough to hold all of the data even on 64-bit
platforms. Even if the data type is defined in the header file as being
only a 32-bit C integer, if there is a chance that on a 64-bit platform
the same header may define the data type as a 64-bit C integer or long,
the Opaque directive should map the C type to a Java long.</p>
<h3 id="opaque-directives"><span id="SecOpaque">Opaque
Directives</span></h3>
<p>Complex header files may contain declarations for certain data types
that are either too complex for GlueGen to handle or unnecessarily
complex from the standpoint of glue code generation. In these situations
a stub header may be used to declare a suitably compatible typedef for
the data type. An <a href="#Opaque">Opaque</a> directive can be used to
map the resulting typedef to a Java primitive type if it is undesirable
to expose it as a full-blown Java wrapper class.</p>
<p>GlueGen hashes all typedefs internally down to their underlying
primitive type. (This is probably not really correct according to the C
type system, but is correct enough from a glue code generation
standpoint, where if the types are compatible they are considered
equivalent.) This means that if the parser encounters</p>
<pre><code> typedef void* LPVOID;</code></pre>
<p>then an Opaque directive stating</p>
<pre><code> Opaque long LPVOID</code></pre>
<p>will cause all <code>void*</code> or <code>LPVOID</code> arguments in
the API to be mapped to Java longs, which is almost never desirable.
Unfortunately, it is not currently possible to distinguish between the
LPVOID typedef and the underlying <code>void*</code> data type in this
situation.</p>
<p>A similar problem occurs for other data types for which Opaque
directives may be desired. For example, a Windows HANDLE equates to a
typedef to <code>void*</code>, but performing this typedef in a stub
header and then adding the Opaque directive</p>
<pre><code> Opaque long HANDLE</code></pre>
<p>will cause all void* arguments to be exposed as Java longs instead of
Buffers, which is again undesirable. Attempting to work around the
problem by typedef'ing HANDLE to an integral type, as in:</p>
<pre><code> typedef long HANDLE;</code></pre>
<p>may itself have problems, because GlueGen will assume the two
integral types are compatible and not perform any intermediate casts
between HANDLE and jlong in the autogenerated C code. (When casting
between a pointer type and a JNI integral type such as jlong in C code,
GlueGen automatically inserts casts to convert the pointer first to an
"intptr_t" and then to the appropriate JNI type, in order to silence
compiler warnings and/or errors.)</p>
<p>What is desired is to produce a new type name distinct from all
others but still compatible with the pointer semantics of the original
type. Then an Opaque directive can be used to map the new type name to,
for example, a Java long.</p>
<p>To implement this in the context of the HANDLE example, the following
typedef may be inserted into the stub header:</p>
<pre><code> typedef struct _handle* HANDLE;</code></pre>
<p>This uses a pointer to an anonymous struct name to produce a new
pointer type. This is legal ANSI C and is supported by GlueGen's parser
without having seen a declaration for "struct _handle". Subsequently, an
Opaque directive can be used to map the HANDLE data type to a Java
long:</p>
<pre><code> Opaque long HANDLE</code></pre>
<p>Now HANDLEs are exposed to Java as longs as desired. A similar
technique is used to expose XIDs on the X11 platform as Java longs.</p>
<h3 id="argument-name-substitution"><span id="SecSubstitution">Argument
Name Substitution</span></h3>
<p>Certain configuration file directives allow the insertion of Java or
C code at various places in the generated glue code, to both eliminate
the need to hand-edit the generated glue code as well as to minimize the
hand-writing of glue code, which sidesteps the GlueGen process. In some
situations the inserted code may reference incoming arguments to compute
some value or perform some operation. Examples of directives supporting
this substitution include <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> and <a
href="#ReturnedArrayLength">ReturnedArrayLength</a>.</p>
<p>The expressions in these directives may contain Java MessageFormat
expressions like <code>{0}</code> which refer to the incoming argument
names to the function. <code>{0}</code> refers to the first incoming
argument.</p>
<p>Strongly-typed C primitive pointers such as <code>int*</code>, which
ordinarily expand to overloaded Java methods taking e.g.
<code>int[]</code> as well as <code>IntBuffer</code>, present a problem.
The expansion to <code>int[] arr</code> also generates an
<code>int arr_offset</code> argument to be able to pass a pointer into
the middle of the array down to C. To allow the same MessageFormat
expression to be used for both cases, the subsitution that occurs when
such a primitive array is referenced is the string
<code>arr, arr_offset</code>; in other
words, the subtituted string contains a comma. This construct may be
used in the following way: the code being manually inserted may itself
contain a method call taking e.g. <code>{3}</code> (the incoming
argument index of the primitive array or buffer). The user should supply
two overloaded versions of this method, one taking a strongly-typed
Buffer and one taking e.g. an <code>int[] arr</code> and
<code>int arr_offset</code> argument. The implementation of
<code>RangeCheck</code>s for primitive arrays and strongly-typed buffers
uses this construct.</p>
<p>It should be noted that in the autogenerated C code the offset
argument is expressed in bytes while at the Java level it is expressed
in elements. Most uses of GlueGen will probably not have to refer to the
primitive array arguments in C code so this slight confusion should be
minor.</p>
<h3
id="configuration-file-directives"><span id="SecConfiguration">Configuration
File Directives</span></h3>
<p>In addition to the C headers, GlueGen requires a certain amount of
metadata in the form of configuration files in order to produce its glue
code. There are three basic reasons for this: first, GlueGen must be
informed into which Java classes the C methods are to be bound; second,
there are many configuration options for the generated glue code, and
passing them all on the command line is infeasible; and third, there are
ambiguities in many constructs in the C programming language which must
be resolved before a Java binding can be produced.</p>
<p>The contents of the configuration file are dependent on the class of
emitter specified to GlueGen. Currently there are three built-in emitter
classes: JavaEmitter, which produces a basic, static Java binding of C
functions; ProcAddressEmitter, which extends JavaEmitter by calling the
underlying C functions through function pointers, resulting in more
dynamic behavior and supporting C APIs with optional functionality; and
GLEmitter, which specializes ProcAddressEmitter to support some
OpenGL-specific constructs. The GLEmitter will be ignored in this manual
as it is specialized for JOGL and provides very little additional
functionality beyond the ProcAddressEmitter. The JavaEmitter and
ProcAddressEmitter support many options in their configuration files. As
the ProcAddressEmitter is a subclass of JavaEmitter, all of the
constructs in the JavaEmitter's configuration files are also legal in
the ProcAddressEmitter's configuration files.</p>
<p>The configuration files have a very simple line-by-line structure,
and are parsed by a very rudimentary, hand-written parser. Each
non-whitespace and non-comment line (note: comment lines begin with '#')
contains a directive like <code>Package</code>, <code>Style</code> or
<code>JavaClass</code> followed by arguments to that directive. There
are a certain set of directives that are required for any code
generation; others are optional and their omission results in some
default behavior. Directives are case-insensitive.</p>
<p>The following is an exhaustive list of the options currently
supported by each of these emitters' configuration files. It is
difficult to see exactly how to use the tool based simply on these
descriptions, so the <a href="#Chapter3">examples</a> may be more
helpful in seeing exactly how to structure a configuration file for
proper glue code generation.</p>
<h4 id="javaemitter-configuration"><span id="SecJavaEmitter">JavaEmitter
Configuration</span></h4>
<p>Note that only a very few of the following directives are specified
as being "required" rather than "optional"; these indicate the minimal
directives needed for a valid configuration file to begin to get glue
code to be produced. In general, these are <a
href="#Package">Package</a>, <a href="#ImplPackage">ImplPackage</a>, <a
href="#JavaClass">JavaClass</a>, <a
href="#ImplJavaClass">ImplJavaClass</a>, and <a href="#Style">Style</a>.
Other directives such as <a href="#NioDirectOnly">NioDirectOnly</a> are
required in some circumstances for the glue code to be correct, and some
such as <a href="#ReturnedArrayLength">ReturnedArrayLength</a>, <a
href="#ReturnValueCapacity">ReturnValueCapacity</a>, and <a
href="#ReturnValueLength">ReturnValueLength</a> should be specified in
some situations in order for certain return values to be useful at the
Java level.</p>
<p>The following directives are specified in alphabetical order,
although this is not necessarily the best semantic order.</p>
<p><strong><span id="AccessControl">AccessControl</span></strong><br />
Syntax:
<code>AccessControl [method name] [ PUBLIC | PROTECTED | PRIVATE | PACKAGE_PRIVATE ]</code><br />
(optional) Controls the access control of a certain Java method
corresponding to a C function. The access control of all APIs defaults
to public. This is useful when using the C binding of a particular
function only as one implementation strategy of the real public API and
using <a href="#CustomJavaCode">CustomJavaCode</a> to write the exposed
API. In this case is most useful in conjunction with <a
href="#RenameJavaMethod">RenameJavaMethod</a>.</p>
<p><strong><span id="ArgumentIsString">ArgumentIsString</span></strong><br />
Syntax:
<code>ArgumentIsString [function name] [indices...]</code>
where the first argument index is 0<br />
(optional) For a C function with one or more outgoing <code>char*</code>
(or compatible data type) arguments, indicates that those arguments are
semantically null-terminated C strings rather than arbitrary arrays of
bytes. The generated glue code will be modified to emit those arguments
as java.lang.String objects rather than <code>byte[]</code> or
<code>ByteBuffer</code>.</p>
<p><strong><span id="ArgumentIsPascalString">ArgumentIsPascalString</span></strong><br />
Syntax:
<code>ArgumentIsPascalString [function name] [indice-tuples...]</code>,
with each tuple being the argument-index for the
'<code>int length</code>' and the '<code>char* value</code>' argument
with index 0 for the the first argument<br />
(optional) For a C function with one or more outgoing
'<code>int length</code>' and '<code>char* value</code>' (or compatible
data type) arguments, indicates that those arguments are semantically
non-null-terminated Pascal strings rather than null-terminated C strings
or arbitrary arrays of bytes. The generated glue code will be modified
to emit those arguments as java.lang.String objects rather than
<code>byte[]</code> or <code>ByteBuffer</code>.</p>
<p><strong><span id="ClassJavadoc">ClassJavadoc</span></strong><br />
Syntax: <code>ClassJavadoc [class name] [code...]</code><br />
(optional) Causes the specified line of code to be emitted in the
appropriate place in the generated code to become the per-class Javadoc
for the specified class. By default GlueGen produces no Javadoc for its
generated classes, so this is the mechanism by which a user can emit
Javadoc for these classes. The specified Javadoc undergoes no
transformation by GlueGen, so the initial <code>/**</code> and trailing
<code>*/</code> must be included in the correct place. Each line of
Javadoc is emitted in the order encountered during parsing of the
configuration files.</p>
<p><strong><span id="CustomCCode">CustomCCode</span></strong><br />
Syntax: <code>CustomCCode [code...]</code><br />
(optional) Causes the specified line of C code to be emitted into the
generated native code for the implementing class. Currently there is no
way (and no real need) to be able to emit custom C code into any other
generated .c file, so the class name in the <a
href="#CustomJavaCode">CustomJavaCode</a> directive is omitted.</p>
<p><strong><span id="CustomJavaCode">CustomJavaCode</span></strong><br />
Syntax: <code>CustomJavaCode [class name] [code...]</code><br />
(optional) Causes the specified line of Java code to be emitted into the
specified generated Java class. Can be used to emit code into any
generated class: the public interface, the implementing class, the sole
concrete class (in the case of the AllStatic <a
href="#Style">Style</a>), or any of the Java classes corresponding to
referenced C structs in the parsed headers. This usage is somewhat
verbose, and the <a href="#IncludeAs">IncludeAs</a> directive provides a
more concise way of including large bodies of Java code into the
generated code.</p>
<p><strong><span id="CustomJNICode">CustomJNICode</span></strong><br />
Syntax: <code>CustomJNICode [class name] [code...]</code><br />
(optional) Causes the specified line of C code to be emitted into the
generated JNI code related of specified Java class. Can be used to emit
JNI code related of any generated class: the public interface, the
implementing class, the sole concrete class (in the case of the
AllStatic <a href="#Style">Style</a>), or any of the Java classes
corresponding to referenced C structs in the parsed headers. This usage
is somewhat verbose, and the <a href="#IncludeAs">IncludeAs</a>
directive provides a more concise way of including large bodies of C
code into the generated code.</p>
<p><strong><span id="EmitStruct">EmitStruct</span></strong><br />
Syntax: <code>EmitStruct [C struct type name]</code><br />
(optional) Forces a Java class to be emitted for the specified C struct.
Normally only those structs referenced directly by the parsed C APIs
have corresponding Java classes emitted.</p>
<p><strong><span id="GlueGenRuntimePackage">GlueGenRuntimePackage</span></strong><br />
Syntax:
<code>GlueGenRuntimePackage [package name, like com.jogamp.gluegen.runtime]</code><br />
(optional) Changes the package in which the generated glue code expects
to find its run-time helper classes (like Buffers, CPU, StructAccessor).
Defaults to <code>com.jogamp.gluegen.runtime</code> (no quotes). This is
useful if you want to bundle the runtime classes in your application
without the possibility of interfering with other versions elsewhere in
the system.</p>
<p><strong><span id="ExtendedInterfaceSymbolsIgnore">ExtendedInterfaceSymbolsIgnore</span></strong><br />
Syntax: <code>ExtendedInterfaceSymbolsIgnore [Java file]</code><br />
(optional) Causes all autogenerated Java interface ignore all symbols
from interface declared inside named Java source file.<br />
This directive can be used with <a href="#Extends">Extends</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="ExtendedInterfaceSymbolsOnly">ExtendedInterfaceSymbolsOnly</span></strong><br />
Syntax: <code>ExtendedInterfaceSymbolsOnly [Java file]</code><br />
(optional) Causes all autogenerated Java interface generate only symbols
from interface declared inside named Java source file.<br />
This directive can be used with <a href="#Extends">Extends</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="ExtendedImplementationSymbolsIgnore">ExtendedImplementationSymbolsIgnore</span></strong><br />
Syntax:
<code>ExtendedImplementationSymbolsIgnore [Java file]</code><br />
(optional) Causes all autogenerated Java classes ignore all symbols from
interface or classe declared inside named Java source file.<br />
This directive can be used with <a href="#ParentClass">ParentClass</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="ExtendedImplementationSymbolsOnly">ExtendedImplementationSymbolsOnly</span></strong><br />
Syntax: <code>ExtendedImplementationSymbolsOnly [Java file]</code><br />
(optional) Causes all autogenerated Java classes generate only symbols
from interface or classe declared inside named Java source file.<br />
This directive can be used with <a href="#ParentClass">ParentClass</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="ExtendedIntfAndImplSymbolsIgnore">ExtendedIntfAndImplSymbolsIgnore</span></strong><br />
Syntax: <code>ExtendedIntfAndImplSymbolsIgnore [Java file]</code><br />
(optional) Causes all autogenerated Java interface and classes ignore
all symbols from interface or classe declared inside named Java source
file.<br />
This directive can be used with <a href="#Extends">Extends</a> or <a
href="#ParentClass">ParentClass</a> directives.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="ExtendedIntfAndImplSymbolsOnly">ExtendedIntfAndImplSymbolsOnly</span></strong><br />
Syntax: <code>ExtendedIntfAndImplSymbolsOnly [Java file]</code><br />
(optional) Causes all autogenerated Java interface and classes generate
only symbols from interface or classe declared inside named Java source
file.<br />
This directive can be used with <a href="#Extends">Extends</a> or <a
href="#ParentClass">ParentClass</a> directives.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="Extends">Extends</span></strong><br />
Syntax:
<code>Extends [Java interface name] [interface name to extend] </code><br />
(optional) Causes the specified autogenerated Java interface to declare
that it extends another one. This directive may only be applied to
autogenerated interfaces, not concrete classes. For concrete classes,
use <a href="#Implements">Implements</a> directive or <a
href="#ParentClass">ParentClass</a> directive.</p>
<p><strong><span id="HierarchicalNativeOutput">HierarchicalNativeOutput</span></strong><br />
Syntax: <code>HierarchicalNativeOutput true</code><br />
(optional) If "true", makes subdirectories for the generated native code
matching the package names of the associated classes. This is typically
not needed (or desired, as it complicates the compilation process for
this native code) and defaults to false.</p>
<p><strong><span id="Ignore">Ignore</span></strong><br />
Syntax: <code>Ignore [regexp]</code><br />
(optional) Ignores one or more functions or data types matching the
regexp argument which are encountered during parsing of the C headers.
By default GlueGen will emit all encountered C functions as well as Java
classes corresponding to all C structs referenced by those functions.
Related directives are <a href="#IgnoreNot">IgnoreNot</a>, <a
href="#Unignore">Unignore</a> and <a
href="#EmitStruct">EmitStruct</a>.</p>
<p><strong><span id="IgnoreField">IgnoreField</span></strong><br />
Syntax: <code>IgnoreField [struct type name] [field name]</code><br />
(optional) Causes the specified field of the specified struct type to be
ignored during code generation, typically because it is too complex for
GlueGen to handle.</p>
<p><strong><span id="IgnoreNot">IgnoreNot</span></strong><br />
Syntax: see <a href="#Ignore">Ignore</a>. (optional) Similar to the <a
href="#Ignore">Ignore</a> directive, but evaluates the negation of the
passed regexp when deciding whether to ignore the given function or data
type. The <a href="#Unignore">Unignore</a> mechanism may be used with
IgnoreNot as well. NOTE: the IgnoreNot mechanism may ultimately turn out
to be superfluous; the authors do not have sufficient experience with
regular expressions to know whether general negation of a regexp is
possible. Feedback in this area would be appreciated.</p>
<p><strong><span id="Implements">Implements</span></strong><br />
Syntax:
<code>Implements [Java class name] [interface name to implement]</code><br />
(optional) Causes the specified autogenerated Java concrete class to
declare that it implements the specified interface. This directive may
only be applied to autogenerated concrete classes, not interfaces. For
interfaces, use the <a href="#Extends">Extends</a> directive.</p>
<p><strong><span id="ImplJavaClass">ImplJavaClass</span></strong><br />
Syntax: <code>ImplJavaClass [class name]</code><br />
(optional) Specifies the name of the typically non-public,
implementation Java class which contains the concrete Java and native
methods for the glue code. If the emission style is AllStatic, there is
no distinction between the public and implementation class and
ImplJavaClass should not be specified. Otherwise, if the ImplJavaClass
is unspecified, it defaults to the JavaClass name plus "Impl". (If both
are unspecified in this configuration, an error is reported.) See also
<a href="#JavaClass">JavaClass</a>.</p>
<p><strong><span id="ImplPackage">ImplPackage</span></strong><br />
Syntax: <code>ImplPackage [package name]</code><br />
(optional) Specifies the package name into which the implementing class
containing the concrete Java and native methods will be emitted,
assuming an emission style of InterfaceAndImpl or ImplOnly. If
AllStatic, there is no separate implementing class from the public
interface. If the emission style is not AllStatic and the ImplPackage is
not specified, it defaults to the Package plus ".impl". See also <a
href="#Package">Package</a>.</p>
<p><strong><span id="Import">Import</span></strong><br />
Syntax: <code>Import [package name]</code> (no trailing semicolon)<br />
(optional) Adds an import statement at the top of each generated Java
source file.</p>
<p><strong><span id="Include">Include</span></strong><br />
Syntax: <code>Include [filename]</code><br />
(optional) Causes another configuration file to be read at the current
point in parsing the current configuration file. The filename argument
may be either absolute or relative; in the latter case it is specified
relative to the location of the current configuration file.</p>
<p><strong><span id="IncludeAs">IncludeAs</span></strong><br />
Syntax: <code>IncludeAs [prefix tokens] [filename]</code><br />
(optional) Similar to the <a href="#Include">Include</a> directive, but
prepends the specified prefix tokens on to every line of the file to be
read. The last token parsed is the name of the file to be read. This
allows, for example, <a href="#CustomJavaCode">CustomJavaCode</a> to be
stored as Java source rather than in the configuration file; in this
example the configuration file might contain
<code>IncludeAs CustomJavaCode MyClass MyClass-CustomJavaCode.java</code>.</p>
<p><strong><span id="JavaClass">JavaClass</span></strong><br />
Syntax: <code>JavaClass [class name]</code><br />
(optional / required) Specifies the name of the public,
non-implementation Java class or interface into which the glue code will
be generated. If the emission style is not ImplOnly, the JavaClass
directive is required. See also <a
href="#ImplJavaClass">ImplJavaClass</a>.</p>
<p><strong><span id="JavaEpilogue">JavaEpilogue</span></strong><br />
Syntax: <code>JavaEpilogue [C function name] [code...]</code><br />
(optional) Adds the specified code as an epilogue in the Java method for
the specified C function; this code is run after the underlying C
function has been called via the native method but before any result is
returned. As in the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> and other
directives, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions in the specified code. See also
<a href="#JavaPrologue">JavaPrologue</a>.</p>
<p><strong><span id="JavaOutputDir">JavaOutputDir</span></strong><br />
Syntax: <code>JavaOutputDir [directory name]</code><br />
(optional) Specifies the root directory into which the emitted Java code
will be produced. Subdirectories for the packages of the associated Java
classes will be automatically created. If unspecified, defaults to the
current working directory.</p>
<p><strong><span id="JavaPrologue">JavaPrologue</span></strong><br />
Syntax: <code>JavaPrologue [C function name] [code...]</code><br />
(optional) Adds the specified code as a prologue in the Java method for
the specified C function; this code is run before the underlying C
function is called via the native method. As in the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> and other
directives, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions in the specified code. See also
<a href="#JavaEpilogue">JavaEpilogue</a>.</p>
<p><strong><span id="ManuallyImplement">ManuallyImplement</span></strong><br />
Syntax: <code>ManuallyImplement [function name]</code><br />
(optional) Indicates to GlueGen to not produce a method into the
implementing class for the specified C function; the user must provide
one via the <a href="#CustomJavaCode">CustomJavaCode</a> directive. If
the emission style is InterfaceAndImpl or InterfaceOnly, a public method
will still be generated for the specified function.</p>
<p><strong><span id="MaxOneElement">MaxOneElement</span></strong><br />
Syntax: <code>MaxOneElement [function name]</code><br />
(optional) Indicates that the specified C function/attribute which
returns a single element instead a ByteBuffer if signature or compatible
type actually returns a pointer like int* but isn't an array.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#gluegen-struct-settings">GlueGen_Mapping</a></p>
<p><strong><span id="NativeOutputDir">NativeOutputDir</span></strong><br />
Syntax: <code>NativeOutputDir [directory name]</code><br />
(optional) Specifies the root directory into which the emitted JNI code
will be produced. If unspecified, defaults to the current working
directory. See also <a
href="#HierarchicalNativeOutput">HierarchicalNativeOutput</a>.</p>
<p><strong><span id="NioDirectOnly">NioDirectOnly</span></strong><br />
Syntax: <code>NioDirectOnly [function name]</code><br />
(required when necessary) When passing a pointer down to a C API, it is
semantically undefined whether the underlying C code expects to treat
that pointer as a persistent pointer, living past the point of return of
the function call, or whether the pointer is used only during the
duration of the function call. For APIs taking C primitive pointers such
as <code>void*</code>, <code>float*</code>, etc., GlueGen will typically
generate up to two overloaded Java methods, one taking a
<code>Buffer</code> or <code>Buffer</code> subclass such as
<code>FloatBuffer</code>, and one taking a primitive array such as
<code>float[]</code>. (In the case of <code>void*</code> outgoing
arguments, GlueGen produces only one variant taking a Buffer.) Normally
the generated glue code accepts either a "direct" or non-"direct" buffer
(according to the New I/O APIs) as argument. However, if the semantics
of the C function are that it either expects to hold on to this pointer
past the point of the function call, or if it can block while holding on
to the pointer, the <code>NioDirectOnly</code> directive
<strong>must</strong> be specified for this C function in order for the
generated glue code to be correct. Failing to observe this requirement
may cause JVM hangs or crashes.</p>
<p><strong><span id="Opaque">Opaque</span></strong><br />
Syntax:
<code>Opaque [Java primitive data type] [C data type]</code><br />
(optional) Causes a particular C data type to be exposed in opaque form
as a Java primitive type. This is most useful for certain pointer types
for which it is not desired to generate full Java classes but instead
expose them to Java as e.g. <code>long</code>s. It is also useful for
forcing certain integral C data types to be exposed as e.g.
<code>long</code> to Java to ensure 64-bit cleanliness of the generated
glue code. See the <a href="#Chapter3">examples</a>. The C data type may
be a multiple-level pointer type; for example
<code>Opaque long void**</code>. Note that it is not currently supported
to make a given data type opaque for just a few functions; the Opaque
directive currently applies to all C functions in the headers being
parsed. This means that sweeping Opaque declarations like
<code>Opaque long void*</code> will likely have unforseen and
undesirable consequences.</p>
<p><strong><span id="Package">Package</span></strong><br />
Syntax: <code>Package [package name]</code> (no trailing
semicolon)<br />
(optional / required) Specifies the package into which the public
interface or class for the autogenerated glue code will be generated.
Required whenever the emission style is not ImplOnly. See also <a
href="#ImplPackage">ImplPackage</a>.</p>
<p><strong><span id="ParentClass">ParentClass</span></strong><br />
Syntax:
<code>ParentClass [Java class name] [class name to extend] </code><br />
(optional) Causes the specified autogenerated Java classe to declare
that it extends another one. This directive may only be applied to
autogenerated classes, not interface. For interfaces, use the <a
href="#Extends">Extends</a> directive.</p>
<p><strong><span id="RangeCheck">RangeCheck</span></strong><br />
Syntax:
<code>RangeCheck [C function name] [argument number] [expression]</code><br />
(optional) Causes a range check to be performed on the specified array
or Buffer argument of the specified autogenerated Java method. This
range check ensures, for example, that a certain number of elements are
remaining in the passed Buffer, knowing that the underlying C API will
access no more than that number of elements. For range checks that
should be expressed in terms of a number of bytes rather than a number
of elements, see the <a href="#RangeCheckBytes">RangeCheckBytes</a>
directive. As in the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> and other
directives, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions.</p>
<p><strong><span id="RangeCheckBytes">RangeCheckBytes</span></strong><br />
Syntax:
<code>RangeCheckBytes [C function name] [argument number] [expression]</code><br />
(optional) Same as the <a href="#RangeCheck">RangeCheck</a> directive,
but the specified expression is treated as a minimum number of bytes
remaining rather than a minimum number of elements remaining. This
directive may not be used with primitive arrays.</p>
<p><strong><span id="RenameJavaMethod">RenameJavaMethod</span></strong><br />
Syntax: <code>RenameJavaMethod [from name] [to name]</code><br />
(optional) Causes the specified C function to be emitted under a
different name in the Java binding. This is most useful in conjunction
with the <a href="#AccessControl">AccessControl</a> directive when the C
function being bound to Java is only one potential implementation of the
public API, or when a considerable amount of Java-side custom code is
desired to wrap the underlying C native method entry point.</p>
<p><strong><span id="RenameJavaType">RenameJavaType</span></strong><br />
Syntax: <code>RenameJavaType [from name] [to name]</code><br />
(optional) Causes the specified C struct to be exposed as a Java class
under a different name. This only applies to autogenerated classes
corresponding to C structs encountered during glue code generation; full
control is provided over the name of the top-level classes associated
with the set of C functions via the <a href="#JavaClass">JavaClass</a>
and <a href="#ImplJavaClass">ImplJavaClass</a> directives.</p>
<p><strong><span id="ReturnedArrayLength">ReturnedArrayLength</span></strong><br />
Syntax:
<code>ReturnedArrayLength [C function name] [expression]</code>
where <code>expression</code> is a legal Java expression with
MessageFormat specifiers such as "{0}". These specifiers will be
replaced in the generated glue code with the incoming argument names
where the first argument to the method is numbered 0. See the section on
<a href="#SecSubstitution">argument name substitution</a>.<br />
(optional) For a function returning a compound C pointer type such as an
<code>XVisualInfo*</code>, indicates that the returned pointer is to be
treated as an array and specifies the length of the returned array as a
function of the arguments passed to the function. Note that this
directive differs subtly from <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> and
ReturnValueLength. It is also sometimes most useful in conjunction with
the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
and TemporaryCVariableAssignment directives.</p>
<p><strong><span id="ReturnsString">ReturnsString</span></strong><br />
Syntax: <code>ReturnsString [function name]</code><br />
(optional) Indicates that the specified C function which returns a
<code>char*</code> or compatible type actually returns a null-terminated
C string which should be exposed as a java.lang.String. NOTE: currently
does not properly handle the case where this storage needs to be freed
by the end user. In these situations the data should be returned as a
direct ByteBuffer, the ByteBuffer converted to a String using custom
Java code, and the ByteBuffer freed manually using another function
bound to Java.</p>
<p><strong><span id="ReturnsStringOnly">ReturnsStringOnly</span></strong><br />
Syntax: <code>ReturnsStringOnly [function name]</code><br />
(optional) Like the <a href="#ReturnsString">ReturnsString</a>
instruction, but without the classic getters and setters with
ByteBuffer.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#gluegen-struct-settings">GlueGen_Mapping</a></p>
<p><strong><span id="ReturnValueCapacity">ReturnValueCapacity</span></strong><br />
Syntax:
<code>ReturnValueCapacity [C function name] [expression]</code><br />
(optional) Specifies the capacity of a java.nio <code>Buffer</code> or
subclass wrapping a C primitive pointer such as <code>char*</code> or
<code>float*</code> being returned from a C function. Typically
necessary in order to properly use such pointer return results from
Java. As in the <a href="#ReturnedArrayLength">ReturnedArrayLength</a>
directive, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions.</p>
<p><strong><span id="ReturnValueLength">ReturnValueLength</span></strong><br />
Syntax:
<code>ReturnValueLength [C function name] [expression]</code><br />
(optional) Specifies the length of a returned array of pointers,
typically to C structs, from a C function. This differs from the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive in the
pointer indirection to the array elements. The <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive handles
slicing up of a linear array of structs, while the ReturnValueLength
directive handles boxing of individual elements of the array (which are
pointers) in to the Java class which wraps that C struct type. See the
<a href="#Chapter3">examples</a> for a concrete example of usage. As in
the <a href="#ReturnedArrayLength">ReturnedArrayLength</a> directive, <a
href="#SecSubstitution">argument name substitution</a> is performed on
MessageFormat expressions.</p>
<p><strong><span id="RuntimeExceptionType">RuntimeExceptionType</span></strong><br />
Syntax: <code>RuntimeExceptionType [class name]</code><br />
(optional) Specifies the class name of the exception type which should
be thrown when run-time related exceptions occur in the generated glue
code, for example if a non-direct Buffer is passed to a method for which
<a href="#NioDirectOnly">NioDirectOnly</a> was specified. Defaults to
<code>RuntimeException</code>.</p>
<p><strong><span id="StructPackage">StructPackage</span></strong><br />
Syntax:
<code>StructPackage [C struct type name] [package name]</code>.
Package name contains no trailing semicolon.<br />
(optional) Indicates that the specified Java class corresponding to the
specified C struct should be placed in the specified package. By
default, these autogenerated Java classes corresponding to C structs are
placed in the main package (that defined by <a
href="#PackageName">PackageName</a>).</p>
<p><strong><span id="Style">Style</span></strong><br />
Syntax:
<code>Style [ AllStatic | InterfaceAndImpl |InterfaceOnly | ImplOnly ]</code><br />
(optional) Defines how the Java API for the parsed C headers is
structured. If AllStatic, one concrete Java class will be generated
containing static methods corresponding to the C entry points. If
InterfaceAndImpl, a public Java interface will be generated into the <a
href="#Package">Package</a> with non-static methods corresponding to the
C functions, and an "implementation" concrete Java class implementing
this interface will be generated into the <a
href="#ImplPackage">ImplPackage</a>. If InterfaceOnly, the
InterfaceAndImpl code generation style will be followed, but only the
interface will be generated. If ImplOnly, the InterfaceAndImpl code
generation style will be followed, but only the concrete implementing
class will be generated. The latter two options are useful when
generating a public API in which certain operations are unimplemented on
certain platforms; platform-specific implementation classes can be
generated which implement or leave unimplemented various parts of the
API.</p>
<p><strong><span id="TemporaryCVariableAssignment">TemporaryCVariableAssignment</span></strong><br />
Syntax:
<code>TemporaryCVariableAssignment [C function name][code...]</code><br />
(optional) Inserts a C variable assignment declared using the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
directive in to the body of a particular autogenerated native method.
The assignment is performed immediately after the call to the underlying
C function completes. This is typically used in conjunction with the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> or <a
href="#ReturnValueLength">ReturnValueLength</a> directives to capture
the size of a returned C buffer or array of pointers. See the <a
href="#Chapter3">examples</a> for a concrete example of usage of this
directive. Note that unlike, for example, the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive, no
substitution is performed on the supplied code, so the user must
typically have previously looked at the generated code and seen what
work needed to be done and variables needed to be examined at exactly
that line.</p>
<p><strong><span id="TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</span></strong><br />
Syntax:
<code>TemporaryCVariableDeclaration [C function name] [code...]</code><br />
(optional) Inserts a C variable declaration in to the body of a
particular autogenerated native method. This is typically used in
conjunction with the <a
href="#TemporaryCVariableAssignment">TemporaryCVariableAssignment</a>
and <a href="#ReturnValueCapacity">ReturnValueCapacity</a> or <a
href="#ReturnValueLength">ReturnValueLength</a> directives to capture
the size of a returned C buffer or array of pointers. See the <a
href="#Chapter3">examples</a> for a concrete example of usage of this
directive.</p>
<p><strong><span id="Unignore">Unignore</span></strong><br />
Syntax: <code>Unignore [regexp]</code><br />
(optional) Removes a previously-defined <a href="#Ignore">Ignore</a>
directive. This is useful when one configuration file includes another
and wishes to disable some of the Ignores previously specified.</p>
<p><strong><span id="Unimplemented">Unimplemented</span></strong><br />
Syntax: <code>Unimplemented [regexp]</code><br />
(optional) Causes the binding for the functions matching the passed
regexp to have bodies generated which throw the stated <a
href="#RuntimeExceptionType">RuntimeExceptionType</a> indicating that
this function is unimplemented. This is most useful when an API contains
certain functions that are not supported on all platforms and there are
multiple implementing classes being generated, one per platform.</p>
<h4
id="procaddressemitter-configuration"><span id="SecProcAddressEmitter">ProcAddressEmitter
Configuration</span></h4>
<p>The ProcAddressEmitter is a subclass of the core JavaEmitter which
knows how to call C functions through function pointers. In particular,
the ProcAddressEmitter detects certain constructs in C header files
which imply that the APIs are intended to be called through function
pointers, and generates the glue code appropriately to support that.</p>
<p>The ProcAddressEmitter detects pairs of functions and function
pointer typedefs in a set of header files. If it finds a matching pair,
it converts the glue code emission style for that API to look for the
function to call in an autogenerated table called a ProcAddressTable
rather than linking the autogenerated JNI code directly to the function.
It then changes the calling convention of the underlying native method
to pass the function pointer from Java down to C, where the
call-through-function-pointer is performed.</p>
<p>The ProcAddressEmitter discovers the function and function pointer
pairs by being informed of the mapping between their names by the user.
In the OpenGL and OpenAL libraries, there are fairly simple mappings
between the functions and function pointers. For example, in the OpenGL
<code>glext.h</code> header file, one may find the following pair:</p>
<pre><code> GLAPI void APIENTRY glFogCoordf (GLfloat);
...
typedef void (APIENTRYP PFNGLFOGCOORDFPROC) (GLfloat coord);</code></pre>
<p>Therefore the mapping rule between the function name and the function
pointer typedef for the OpenGL extension header file is "PFN +
Uppercase(funcname) + PROC". Similarly, in the OpenAL 1.1 header files,
one may find the following pair:</p>
<pre><code> AL_API void AL_APIENTRY alEnable( ALenum capability );
...
typedef void (AL_APIENTRY *LPALENABLE)( ALenum capability );</code></pre>
<p>Therefore the mapping rule between the function name and the function
pointer typedef for the OpenAL header files is "LP +
Uppercase(funcname)".</p>
<p>These are the two principal function pointer-based APIs toward which
the GlueGen tool has currently been applied. It may turn out to be that
this simple mapping heuristic is insufficient, in which case it will
need to be extended in a future version of the GlueGen tool.</p>
<p>Note that it is currently the case that in order for the
ProcAddressEmitter to notice that a given function should be called
through a function pointer, it must see both the function prototype as
well as the function pointer typedef. Some headers, in particular the
OpenAL headers, have their <code>#ifdefs</code> structured in such a way
that either the declaration or the typedef is visible, but not both
simultaneously. Because the <a href="#SecJCPP">JCPP</a> C preprocessor
GlueGen uses obeys <code>#ifdefs</code>, it is in a situation like this
that the headers would have to be modified to allow GlueGen to see both
declarations.</p>
<p>The following directives are specified in alphabetical order,
although this is not necessarily the best semantic order. The
ProcAddressEmitter also accepts all of the directives supported by the
JavaEmitter. The required directives are <a
href="#GetProcAddressTableExpr">GetProcAddressTableExpr</a> and <a
href="#ProcAddressNameExpr">ProcAddressNameExpr</a>.</p>
<p><strong><span id="EmitProcAddressTable">EmitProcAddressTable</span></strong><br />
Syntax: <code>EmitProcAddressTable [true | false]</code><br />
(optional) Indicates whether to emit the ProcAddressTable during glue
code generation. Defaults to false.</p>
<p><strong><span id="ForceProcAddressGen">ForceProcAddressGen</span></strong><br />
Syntax: <code>ForceProcAddressGen [function name]</code><br />
(optional) Indicates that a ProcAddressTable entry should be produced
for the specified function even though it does not have an associated
function pointer typedef in the header. This directive does not
currently cause the autogenerated Java and C code to change to
call-through-function-pointer style, which should probably be considered
a bug. (FIXME)</p>
<p><strong><span id="GetProcAddressTableExpr">GetProcAddressTableExpr</span></strong><br />
Syntax: <code>GetProcAddressTableExpr [expression]</code><br />
(required) Defines the Java code snippet used by the generated glue code
to fetch the ProcAddressTable containing the function pointers for the
current API. It is up to the user to decide where to store the
ProcAddressTable. Common places for it include in an instance field of
the implementing class, in an associated object with which there is a
one-to-one mapping, or in a static field of another class accessed by a
static method. In the JOGL project, for example, each GLImpl instance
has an associated GLContext in an instance field called "_context", so
the associated directive is
<code>GetProcAddressTableExpr _context.getGLProcAddressTable()</code>.
In the JOAL project, the ProcAddressTables are currently held in a
separate class accessed via static methods, so one of the associated
directives is
<code>GetProcAddressTableExpr ALProcAddressLookup.getALCProcAddressTable()</code>.</p>
<p><strong><span id="ProcAddressNameExpr">ProcAddressNameExpr</span></strong><br />
Syntax: <code>ProcAddressNameExpr [expression]</code><br />
(required) Defines the mapping from function name to function pointer
typedef to be able to properly identify this function as needing
call-through-function-pointer semantics. The supplied expression uses a
set of simple commands to describe certain operations on the function
name:</p>
<ul>
<li><code>$UpperCase(arg)</code> converts the argument to uppercase.
"UpperCase" is case-insensitive.</li>
<li><code>$LowerCase(arg)</code> converts the argument to lowercase.
"LowerCase" is case-insensitive.</li>
<li><code>{0}</code> represents the name of the function.</li>
<li>Any other string represents a constant string.</li>
<li>Concatenation is implicit.</li>
</ul>
<p>The corresponding ProcAddressNameExpr for the OpenGL extension
functions as described at the start of this section is
<code>PFN $UPPERCASE({0}) PROC</code>.
The ProcAddressNameExpr for the OpenAL functions as described at the
start of this section is
<code>LP $UPPERCASE({0})</code>.</p>
<p><strong><span id="ProcAddressTableClassName">ProcAddressTableClassName</span></strong><br />
Syntax: <code>ProcAddressTableClassName [class name]</code><br />
(optional) Specifies the class name into which the table containing the
function pointers will be emitted. Defaults to "ProcAddressTable".</p>
<p><strong><span id="ProcAddressTablePackage">ProcAddressTablePackage</span></strong><br />
Syntax:
<code>ProcAddressTablePackage [package name] (no trailing semicolon)</code><br />
(optional) Specifies the package into which to produce the
ProcAddressTable for the current set of APIs. Defaults to the
implementation package specified by the <a
href="#ImplPackage">ImplPackage</a> directive.</p>
<p><strong><span id="SkipProcAddressGen">SkipProcAddressGen</span></strong><br />
Syntax: <code>SkipProcAddressGen [function name]</code><br />
(optional) Indicates that the default behavior of
call-through-function-pointer should be skipped for this function
despite the fact that it has an associated function pointer typedef in
the header.</p>
<h2
id="chapter-3---configuration-file-examples"><span id="Chapter3">Chapter
3 - Configuration File Examples</span></h2>
<h3 id="simplest-possible-example"><span id="SecSimplest">Simplest
possible example</span></h3>
<p>Files:</p>
<ul>
<li><a href="example1/function.c">function.c</a></li>
<li><a href="example1/function.h">function.h</a></li>
<li><a href="example1/function.cfg">function.cfg</a></li>
<li><a href="example1/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows the simplest possible usage of GlueGen; a single
routine taking as arguments and returning only primitive types. The
signature of the C function we are interested in binding is</p>
<pre><code> int one_plus(int a);</code></pre>
<p>To bind this function to Java, we only need a configuration file with
very basic settings, indicating the style of glue code emission, the
package and class into which the glue code will be generated, and the
output directories for the Java and native code. The contents of the
configuration file are as follows:</p>
<pre><code> Package testfunction
Style AllStatic
JavaClass TestFunction
JavaOutputDir gensrc/java
NativeOutputDir gensrc/native</code></pre>
<p>GlueGen can then be invoked with approximately the following command
line:</p>
<pre><code> java -cp gluegen.jar:antlr.jar com.jogamp.gluegen.GlueGen \
-I. -Ecom.jogamp.gluegen.JavaEmitter -Cfunction.cfg function.h</code></pre>
<p>The resulting Java and native code needs to be compiled, and the
application needs to load the native library for the Java binding before
attempting to invoke the native method by calling
<code>System.load()</code> or <code>System.loadLibrary()</code>.</p>
<h3 id="arrays-and-buffers"><span id="SecArrays">Arrays and
buffers</span></h3>
<p>Files:</p>
<ul>
<li><a href="example2/function.c">function.c</a></li>
<li><a href="example2/function.h">function.h</a></li>
<li><a href="example2/function.cfg">function.cfg</a></li>
<li><a href="example2/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how C primitive arrays are bound to Java. The
header file contains three functions to bind:</p>
<pre><code> float process_data(float* data, int n);
void set_global_data(float* data);
float process_global_data(int n);</code></pre>
<p>The semantics of <code>process_data</code> are that it takes in a
pointer to a set of primitive <code>float</code> values and the number
of elements in the array and performs some operation on them, returning
a floating-point value as the result. Afterward the passed data is no
longer referenced.</p>
<p><code>set_global_data</code>, on the other hand, takes a pointer to
the data and stores it persistently in the C code.
<code>process_global_data</code> then accepts as argument the number of
elements to process from the previously-set global data, performs this
processing and returns a result. The global data may be accessed again
afterward. As an example, these kinds of semantics are used in certain
places in the OpenGL API.</p>
<p>From a Java binding standpoint, <code>process_data</code> may accept
data stored either inside the Java heap (in the form of a
<code>float[]</code> or non-direct <code>FloatBuffer</code>) or outside
the Java heap (in the form of a direct <code>FloatBuffer</code>),
because it does not access the data after the function call has
completed and therefore would not be affected if garbage collection
moved the data after the function call was complete. However,
<code>set_global_data</code> can cause the passed data to be accessed
after the function call is complete, if <code>process_global_data</code>
is called. Therefore the data passed to <code>set_global_data</code> may
not reside in the Java garbage-collected heap, but must reside outside
the heap in the form of a direct <code>FloatBuffer</code>.</p>
<p>It is straightforward to take into account these differences in
semantics in the configuration file using the <a
href="#NioDirectOnly">NioDirectOnly</a> directive:</p>
<pre><code> # The semantics of set_global_data imply that
# only direct Buffers are legal
NioDirectOnly set_global_data</code></pre>
<p>Note the differences in the generated Java-side overloadings for the
two functions:</p>
<pre><code> public static void process_data(java.nio.FloatBuffer data, int n) {...}
public static void process_data(float[] data, int data_offset, int n) {...}
public static void set_global_data(java.nio.FloatBuffer data) {...}</code></pre>
<p>No overloading is produced for <code>set_global_data</code> taking a
<code>float[]</code>, as it can not handle data residing in the Java
heap. Further, the generated glue code will verify that any
<code>FloatBuffer</code> passed to this routine is direct, throwing a
<code>RuntimeException</code> if not. The type of the exception thrown
in this and other cases may be changed with the <a
href="#RuntimeExceptionType">RuntimeExceptionType</a> directive.</p>
<h3 id="string-handling"><span id="SecString">String
handling</span></h3>
<p>Files:</p>
<ul>
<li><a href="example3/function.h">function.h</a></li>
<li><a href="example3/function.cfg">function.cfg</a></li>
<li><a href="example3/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how to pass and return C strings. The functions
involved are a bit contrived, as nobody would ever need to bind the C
library's string handling routines to Java, but they do illustrate
situations in which Java strings might need to be passed to C and C
strings returned to Java. As an example, both styles of function are
present in the OpenGL and OpenAL APIs.</p>
<p>The included source code exposes two functions to Java:</p>
<pre><code> size_t strlen(const char* str);
char* strstr(const char* str1, const char* str2);</code></pre>
<p>Note that we might just as easily parse the C standard library's
<code>string.h</code> header file to pick up these function
declarations. However for the purposes of this example it is easier to
extract just the functions we need.</p>
<p>Note that the <a href="example3/function.h">function.h</a> header
file contains a typedef for <code>size_t</code>. This is needed because
GlueGen does not inherently know about this data type. An equivalent
data type for the purposes of this example is <code>int</code>, so we
choose to tell GlueGen to use that data type in place of
<code>size_t</code> while generating glue code.</p>
<p>The following directive in the configuration file tells GlueGen that
<code>strlen</code> takes a string as argument 0 (the first
argument):</p>
<pre><code> ArgumentIsString strlen 0</code></pre>
<p>The following directive tells GlueGen that <code>strstr</code> takes
two strings as its arguments:</p>
<pre><code> ArgumentIsString strstr 0 1</code></pre>
<p>Finally, the following directive tells GlueGen that
<code>strstr</code> returns a string instead of an array of bytes:</p>
<pre><code> ReturnsString strstr</code></pre>
<p>We also use the <a href="#CustomCCode">CustomCCode</a> directive to
cause the <code>string.h</code> header file to be #included in the
generated glue code:</p>
<pre><code> CustomCCode /* Include string.h header */
CustomCCode #include <string.h></code></pre>
<p>Now the bindings of these two functions to Java look as expected:</p>
<pre><code> public static native int strlen(java.lang.String str);
public static native java.lang.String strstr(java.lang.String str1, java.lang.String str2);</code></pre>
<p>Note that the <a href="#ReturnsString">ReturnsString</a> directive
does not currently correctly handle the case where the
<code>char*</code> returned from C needs to be explicitly freed. As an
example, a binding of the C function <code>strdup</code> using a
ReturnsString directive would cause a C heap memory leak.</p>
<h3 id="memory-allocation"><span id="SecMemory">Memory
allocation</span></h3>
<p>Files:</p>
<ul>
<li><a href="example4/function.c">function.c</a></li>
<li><a href="example4/function.h">function.h</a></li>
<li><a href="example4/function.cfg">function.cfg</a></li>
<li><a href="example4/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how memory allocation is handled when binding C to
Java. It gives the example of a custom memory allocator being bound to
Java; this is a construct that at least at one point was present in
OpenGL in the NV_vertex_array_range extension.</p>
<p>The two functions we are exposing to Java are as follows:</p>
<pre><code> void* custom_allocate(int num_bytes);
void custom_free(void* data);</code></pre>
<p>The Java-side return type of <code>custom_allocate</code> will
necessarily be a <code>ByteBuffer</code>, as that is the only useful way
of interacting with arbitrary memory produced by C. The question is how
to inform the glue code generator of the size of the returned sequence
of memory. The semantics of <code>custom_allocate</code> are obvious to
the programmer; the incoming <code>num_bytes</code> argument specifies
the amount of returned memory. We tell GlueGen this fact using the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> directive:</p>
<pre><code> # The length of the returned ByteBuffer from custom_allocate is
# specified as the argument
ReturnValueCapacity custom_allocate {0}</code></pre>
<p>Note that we name incoming argument 0 with the MessageFormat
specifier "{0}" rather than the explicit name of the parameter
("num_bytes") for generality, in case the header file is changed
later.</p>
<p>Because <code>custom_free</code> will only ever receive Buffers
produced by custom_allocate, we use the <a
href="#NioDirectOnly">NioDirectOnly</a> directive to prevent accidental
usage with the wrong kind of Buffer:</p>
<pre><code> # custom_free will only ever receive a direct Buffer
NioDirectOnly custom_free</code></pre>
<p>The generated Java APIs for these functions are as follows:</p>
<pre><code> public static java.nio.ByteBuffer custom_allocate(int num_bytes) {...}
public static void custom_free(java.nio.Buffer data) {...}</code></pre>
<h3 id="ingoing-and-outgoing-structs"><span id="SecStructs">Ingoing and
outgoing structs</span></h3>
<p>Files:</p>
<ul>
<li><a href="example5/function.c">function.c</a></li>
<li><a href="example5/function.h">function.h</a></li>
<li><a href="example5/function.cfg">function.cfg</a></li>
<li><a href="example5/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how GlueGen provides access to C structs and
supports both passing them to and returning them from C functions. The
header file defines a sample data structure that might describe the bit
depth of a given screen:</p>
<pre><code> typedef struct {
int redBits;
int greenBits;
int blueBits;
} ScreenInfo;</code></pre>
<p>Two functions are defined which take and return this data type:</p>
<pre><code> ScreenInfo* default_screen_depth();
void set_screen_depth(ScreenInfo* info);</code></pre>
<p>The semantics of <code>default_screen_depth()</code> are that it
returns a pointer to some static storage which does not need to be
freed, which describes the default screen depth.
<code>set_screen_depth()</code> is a hypothetical function which would
take a newly-allocated <code>ScreenInfo</code> and cause the primary
display to switch to the specified bit depth.</p>
<p>The only additional information we need to tell GlueGen, beyond that
in the header file, is how much storage is returned from
<code>default_screen_depth()</code>. Note the semantic ambiguity, where
it might return a pointer to a single <code>ScreenInfo</code> or a
pointer to an array of <code>ScreenInfo</code>s. We tell GlueGen that
the return value is a single value with the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> directive, similarly
to the <a href="#SecMemory">memory allocation</a> example above:</p>
<pre><code> # Tell GlueGen that default_screen_depth() returns a pointer to a
# single ScreenInfo
ReturnValueCapacity default_screen_depth sizeof(ScreenInfo)</code></pre>
<p>Note that if <code>default_screen_depth</code> had returned
newly-allocated storage, it would be up to the user to expose a
<code>free()</code> function to Java and call it when necessary.</p>
<p>GlueGen automatically generates a Java-side <code>ScreenInfo</code>
class which supports not only access to any such objects returned from
C, but also allocation of new <code>ScreenInfo</code> structs which can
be passed (persistently) down to C. The Java API for the ScreenInfo
class looks like this:</p>
<pre><code> public abstract class ScreenInfo {
public static ScreenInfo create();
public abstract ScreenInfo redBits(int val);
public abstract int redBits();
...
}</code></pre>
<p>The <code>create()</code> method allocates a new ScreenInfo struct
which may be passed, even persistently, out to C. Its C-heap storage
will be automatically reclaimed when the Java-side ScreenInfo object is
no longer reachable, as it is backed by a direct New I/O
<code>ByteBuffer</code>. The fields of the struct are exposed as methods
which supply both getters and setters.</p>
<h3 id="returned-arrays-of-structs"><span id="SecStructArrays">Returned
arrays of structs</span></h3>
<p>Files:</p>
<ul>
<li><a href="example6/function.h">function.h</a></li>
<li><a href="example6/function.cfg">function.cfg</a></li>
<li><a href="example6/gen.sh">gen.sh</a></li>
</ul>
<p>This example, taken from JOGL's X11 binding, illustrates how to
return an array of structs from C to Java. The
<code>XGetVisualInfo</code> function from the X library has the
following signature:</p>
<pre><code> XVisualInfo *XGetVisualInfo(
Display* display,
long vinfo_mask,
XVisualInfo* vinfo_template,
int* nitems_return
);</code></pre>
<p>Note that the <code>XVisualInfo</code> data structure itself contains
many elements, including a pointer to the current visual. We use the
following trick in the header file to cause GlueGen to treat the
<code>Display*</code> in the above signature as well as the
<code>Visual*</code> in the <code>XVisualInfo</code> as opaque
pointers:</p>
<pre><code> typedef struct {} Display;
typedef struct {} Visual;
typedef unsigned long VisualID;
typedef struct {
Visual *visual;
VisualID visualid;
int screen;
int depth;
int c_class; /* C++ */
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;
} XVisualInfo;</code></pre>
<p><code>XGetVisualInfo</code> returns all of the available pixel
formats in the form of <code>XVisualInfo</code>s which match a given
template. <code>display</code> is the current connection to the X
server. <code>vinfo_mask</code> indicates which fields from the template
to match against. <code>vinfo_template</code> is a partially filled-in
<code>XVisualInfo</code> specifying the characteristics to match.
<code>nitems_return</code> is a pointer to an integer indicating how
many <code>XVisualInfo</code>s were returned. The return value, rather
than being a pointer to a single <code>XVisualInfo</code>, is a pointer
to the start of an array of <code>XVisualInfo</code> data
structures.</p>
<p>There are two basic steps to being able to return this array properly
to Java using GlueGen. The first is creating a direct ByteBuffer of the
appropriate size in the autogenerated JNI code. The second is slicing up
this ByteBuffer appropriately in order to return an
<code>XVisualInfo[]</code> at the Java level.</p>
<p>In the autogenerated JNI code, after the call to
<code>XGetVisualInfo</code> is made, the outgoing
<code>nitems_return</code> value points to the number of elements in the
returned array, which indicates the size of the direct ByteBuffer which
would need to wrap these elements. However, if we look at the
implementation of one of the generated glue code variants for this
method (specifically, the one taking an <code>int[]</code> as the third
argument), we can see a problem in trying to access this value in the C
code:</p>
<pre><code> JNIEXPORT jobject JNICALL
Java_testfunction_TestFunction_XGetVisualInfo1__Ljava_nio_ByteBuffer_2JLjava_nio_ByteBuffer_2Ljava_lang_Object_2I(
JNIEnv *env, jclass _unused, jobject arg0, jlong arg1, jobject arg2, jobject arg3, jint arg3_byte_offset) {
...
int * _ptr3 = NULL;
...
if (arg3 != NULL) {
_ptr3 = (int *) (((char*) (*env)->GetPrimitiveArrayCritical(env, arg3, NULL)) + arg3_byte_offset);
}
_res = XGetVisualInfo((Display *) _ptr0, (long) arg1, (XVisualInfo *) _ptr2, (int *) _ptr3);
if (arg3 != NULL) {
(*env)->ReleasePrimitiveArrayCritical(env, arg3, _ptr3, 0);
}
if (_res == NULL) return NULL;
return (*env)->NewDirectByteBuffer(env, _res, ??? What to put here ???);
}</code></pre>
<p>Note that at the point of the statement "What to put here?" the
pointer to the storage of the <code>int[]</code>, <code>_ptr3</code>,
has already been released via
<code>ReleasePrimitiveArrayCritical</code>. This means that it may not
be referenced at the point needed in the code.</p>
<p>To solve this problem we use the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
and <a
href="#TemporaryCVariableAssignment">TemporaryCVariableAssignment</a>
directives. We want to declare a persistent integer variable down in the
C code and assign the returned array length to that variable before the
primitive array is released. While in order to do this we unfortunately
need to know something about the structure of the autogenerated JNI
code, at least we don't have to hand-edit it afterward. We add the
following directives to the configuration file:</p>
<pre><code> # Get returned array's capacity from XGetVisualInfo to be correct
TemporaryCVariableDeclaration XGetVisualInfo int count;
TemporaryCVariableAssignment XGetVisualInfo count = _ptr3[0];</code></pre>
<p>Now in the autogenerated JNI code the variable "count" will contain
the number of elements in the returned array. We can then reference this
variable in a <a href="#ReturnValueCapacity">ReturnValueCapacity</a>
directive:</p>
<pre><code> ReturnValueCapacity XGetVisualInfo count * sizeof(XVisualInfo)</code></pre>
<p>At this point the <code>XGetVisualInfo</code> binding will return a
Java-side <code>XVisualInfo</code> object whose backing ByteBuffer is
the correct size. We now have to inform GlueGen that the underlying
ByteBuffer represents not a single <code>XGetVisualInfo</code> struct,
but an array of them, using the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive. This
conversion is performed on the Java side of the autogenerated code.
Here, the first element of either the passed <code>IntBuffer</code> or
<code>int[]</code> contains the number of elements in the returned
array. (Alternatively, we could examine the length of the ByteBuffer
returned from C to Java and divide by <code>XVisualInfo.size()</code>.)
Because there are two overloadings produced by GlueGen for this method,
if we reference the <code>nitems_return</code> argument in a <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive, we need
to handle not only the differing data types properly
(<code>IntBuffer</code> vs. <code>int[]</code>), but also the fact that
both the integer array and its offset value are substituted for any
reference to the fourth argument.</p>
<p>To solve this problem, we define a pair of private helper functions
whose purpose is to handle this overloading.</p>
<pre><code> CustomJavaCode TestFunction private static int getFirstElement(IntBuffer buf) {
CustomJavaCode TestFunction return buf.get(buf.position());
CustomJavaCode TestFunction }
CustomJavaCode TestFunction private static int getFirstElement(int[] arr,
CustomJavaCode TestFunction int offset) {
CustomJavaCode TestFunction return arr[offset];
CustomJavaCode TestFunction }</code></pre>
<p>Now we can simply write for the returned array length:</p>
<pre><code> ReturnedArrayLength XGetVisualInfo getFirstElement({3})</code></pre>
<p>That's all that is necessary. GlueGen will then produce the following
Java-side overloadings for this function:</p>
<pre><code> public static XVisualInfo[] XGetVisualInfo(Display arg0,
long arg1,
XVisualInfo arg2,
java.nio.IntBuffer arg3);
public static XVisualInfo[] XGetVisualInfo(Display arg0,
long arg1,
XVisualInfo arg2,
int[] arg3, int arg3_offset);</code></pre>
<p>As it happens, we don't really need the Display and Visual data
structures to be produced; they can be treated as <code>long</code>s on
the Java side. Therefore we can add the following directives to the
configuration file:</p>
<pre><code> # We don't need the Display and Visual data structures to be
# explicitly exposed
Opaque long Display *
Opaque long Visual *
# Ignore the empty Display and Visual data structures (though made
# opaque, the references from XVisualInfo and elsewhere are still
# traversed)
Ignore Display
Ignore Visual</code></pre>
<p>The final generated Java API is the following:</p>
<pre><code> public static XVisualInfo[] XGetVisualInfo(long arg0,
long arg1,
XVisualInfo arg2,
java.nio.IntBuffer arg3);
public static XVisualInfo[] XGetVisualInfo(long arg0,
long arg1,
XVisualInfo arg2,
int[] arg3, int arg3_offset);</code></pre>
<h3
id="returned-arrays-of-pointers"><span id="SecPointerArrays">Returned
arrays of pointers</span></h3>
<p>Files:</p>
<ul>
<li><a href="example7/function.h">function.h</a></li>
<li><a href="example7/function.cfg">function.cfg</a></li>
<li><a href="example7/gen.sh">gen.sh</a></li>
</ul>
<p>As with the <a href="#SecStructArrays">example above</a>, this
example is taken from JOGL's X11 binding. Here we show how to expose to
Java a C routine returning an array of pointers to a data structure.</p>
<p>The declaration of the function we are binding is as follows:</p>
<pre><code> typedef struct __GLXFBConfigRec *GLXFBConfig;
GLXFBConfig *glXChooseFBConfig( Display *dpy, int screen,
const int *attribList, int *nitems );</code></pre>
<p>This function is used during allocation of a hardware-accelerated
off-screen surface ("pbuffer") on X11 platforms; its exact meaning is
not important. The semantics of the arguments and return value are as
follows. As in the <a href="#SecStructArrays">previous example</a>, it
accepts a connection to the current X display as one argument. The
screen of this display is the second argument. The
<code>attribList</code> is a zero-terminated list of integer attributes;
because it is zero-terminated, the length of this list is not passed to
the function. As in the previous example, the <code>nitems</code>
argument points to an integer into which the number of returned
<code>GLXFBConfig</code> objects is placed. The return value is an array
of <code>GLXFBConfig</code> objects.</p>
<p>Because the <code>GLXFBConfig</code> data type is typedefed as a
pointer to an opaque (undefined) struct, the construct
<code>GLXFBConfig*</code> is implicitly a "pointer-to-pointer" type.
GlueGen automatically assumes this is convertible to a Java-side array
of accessors to structs. The only configuration necessary is to tell
GlueGen the length of this array.</p>
<p>As in the previous example, we use the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
and <a
href="#TemporaryCVariableAssignment">TemporaryCVariableAssignment</a>
directives to capture the length of the returned array:</p>
<p>TemporaryCVariableDeclaration glXChooseFBConfig int count;
TemporaryCVariableAssignment glXChooseFBConfig count = _ptr3[0];</p>
<p>The structure of the generated glue code for the return value is
subtly different than in the previous example. The question in this case
is not whether the return value is a pointer to a single object vs. a
pointer to an array of objects; it is what the length of the returned
array is, since we already know that the return type is
pointer-to-pointer and is therefore an array. We use the <a
href="#ReturnValueLength">ReturnValueLength</a> directive for this
case:</p>
<pre><code> ReturnValueLength glXChooseFBConfig count</code></pre>
<p>We add similar Opaque directives to the previous example to yield the
resulting Java bindings for this function:</p>
<pre><code> public static GLXFBConfig[] glXChooseFBConfig(long dpy,
int screen,
java.nio.IntBuffer attribList,
java.nio.IntBuffer nitems);
public static GLXFBConfig[] glXChooseFBConfig(long dpy,
int screen,
int[] attribList, int attribList_offset,
int[] nitems, int nitems_offset);</code></pre>
<p>Note that because the GLXFBConfig data type is returned as an element
of an array, we can not use the Opaque directive to erase this data type
to <code>long</code> as we did with the <code>Display</code> data
type.</p>
</body>
</html>
|