diff options
Diffstat (limited to 'doc-files/ViewModel.html')
-rw-r--r-- | doc-files/ViewModel.html | 1064 |
1 files changed, 1064 insertions, 0 deletions
diff --git a/doc-files/ViewModel.html b/doc-files/ViewModel.html new file mode 100644 index 0000000..3cc9ece --- /dev/null +++ b/doc-files/ViewModel.html @@ -0,0 +1,1064 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> +<html> +<head> + <meta content="text/html; charset=ISO-8859-1" + http-equiv="content-type"> + <title>Java 3D API - View Model</title> +</head> +<body> +<h2>View Model</h2> +<p>Java 3D introduces a new view model that takes Java's +vision of "write once, run anywhere" and generalizes it to include +display devices and six-degrees-of-freedom input peripherals such as +head trackers. This "write once, view everywhere" nature of the new +view model means that an application or applet written using the Java +3D view model can render images to a broad range of display devices, +including standard computer displays, multiple-projection display +rooms, and head-mounted displays, without modification of the scene +graph. It also means that the same application, once again without +modification, can render stereoscopic views and can take advantage of +the input from a head tracker to control the rendered view. +</p> +<p>Java 3D's view model achieves this versatility by cleanly +separating +the virtual and the physical world. This model distinguishes between +how an application positions, orients, and scales a ViewPlatform object +(a viewpoint) within the virtual world and how the Java 3D +renderer +constructs the final view from that viewpoint's position and +orientation. The application controls the ViewPlatform's position and +orientation; the renderer computes what view to render using this +position and orientation, a description of the end-user's physical +environment, and the user's position and orientation within the +physical environment. +</p> +<p>This document first explains why Java 3D chose a different view +model +and some of the philosophy behind that choice. It next describes how +that model operates in the simple case of a standard computer screen +without head tracking—the most common case. Finally, it presents +advanced material that was originally published in Appendix C of the +API specification guide. +</p> +<p> +</p> +<h2>Why a New Model?</h2> +<p>Camera-based view models, as found in low-level APIs, give +developers +control over all rendering parameters. This makes sense when dealing +with custom applications, less sense when dealing with systems that +wish to have broader applicability: systems such as viewers or browsers +that load and display whole worlds as a single unit or systems where +the end users view, navigate, display, and even interact with the +virtual world. +</p> +<p>Camera-based view models emulate a camera in the virtual world, not +a +human in a virtual world. Developers must continuously reposition a +camera to emulate "a human in the virtual world." +</p> +<p>The Java 3D view model incorporates head tracking directly, if +present, +with no additional effort from the developer, thus providing end users +with the illusion that they actually exist inside a virtual world. +</p> +<p>The Java 3D view model, when operating in a non-head-tracked +environment and rendering to a single, standard display, acts very much +like a traditional camera-based view model, with the added +functionality of being able to generate stereo views transparently. +</p> +<p> +</p> +<h3>The Physical Environment +Influences the View</h3> +<p>Letting the application control all viewing parameters is not +reasonable in systems in which the physical environment dictates some +of the view parameters. +</p> +<p>One example of this is a head-mounted display (HMD), where the +optics +of the head-mounted display directly determine the field of view that +the application should use. Different HMDs have different optics, +making it unreasonable for application developers to hard-wire such +parameters or to allow end users to vary that parameter at will. +</p> +<p>Another example is a system that automatically computes view +parameters +as a function of the user's current head position. The specification of +a world and a predefined flight path through that world may not exactly +specify an end-user's view. HMD users would expect to look and thus see +to their left or right even when following a fixed path through the +environment-imagine an amusement park ride with vehicles that follow +fixed paths to present content to their visitors, but visitors can +continue to move their heads while on those rides. +</p> +<p>Depending on the physical details of the end-user's environment, the +values of the viewing parameters, particularly the viewing and +projection matrices, will vary widely. The factors that influence the +viewing and projection matrices include the size of the physical +display, how the display is mounted (on the user's head or on a table), +whether the computer knows the user's head location in three space, the +head mount's actual field of view, the display's pixels per inch, and +other such parameters. For more information, see "<a + href="#View_Model_Details">View Model Details</a>." +</p> +<p> +</p> +<h2>Separation of Physical and +Virtual</h2> +<p>The Java 3D view model separates the virtual environment, where +the +application programmer has placed objects in relation to one another, +from the physical environment, where the user exists, sees computer +displays, and manipulates input devices. +</p> +<p>Java 3D also defines a fundamental correspondence between the +user's +physical world and the virtual world of the graphic application. This +physical-to-virtual-world correspondence defines a single common space, +a space where an action taken by an end user affects objects within the +virtual world and where any activity by objects in the virtual world +affects the end user's view. +</p> +<p> +</p> +<h3>The Virtual World</h3> +<p>The virtual world is a common space in which virtual objects exist. +The +virtual world coordinate system exists relative to a high-resolution +Locale-each Locale object defines the origin of virtual world +coordinates for all of the objects attached to that Locale. The Locale +that contains the currently active ViewPlatform object defines the +virtual world coordinates that are used for rendering. Java3D +eventually transforms all coordinates associated with scene graph +elements into this common virtual world space. +</p> +<h3>The Physical World</h3> +<p>The physical world is just that-the real, physical world. This is +the +space in which the physical user exists and within which he or she +moves his or her head and hands. This is the space in which any +physical trackers define their local coordinates and in which several +calibration coordinate systems are described. +</p> +<p>The physical world is a space, not a common coordinate system +between +different execution instances of Java 3D. So while two different +computers at two different physical locations on the globe may be +running at the same time, there is no mechanism directly within +Java 3D +to relate their local physical world coordinate systems with each +other. Because of calibration issues, the local tracker (if any) +defines the local physical world coordinate system known to a +particular instance of Java 3D. +</p> +<p> +</p> +<h2>The Objects That Define the +View</h2> +<p>Java 3D distributes its view model parameters across several +objects, +specifically, the View object and its associated component objects, the +PhysicalBody object, the PhysicalEnvironment object, the Canvas3D +object, and the Screen3D object. <a href="#Figure_1">Figure +1</a> shows graphically the central role of the View object and the +subsidiary role of its component objects. +</p> +<p><a name="Figure_1"></a><img style="width: 500px; height: 355px;" + alt="View Object + Other Components" + title="View Object + Other Components" src="ViewModel1.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 1</i> – View Object, Its Component +Objects, and Their +Interconnection</b></font> +</ul> +<p> +The view-related objects shown in <a href="#Figure_1">Figure +1</a> +and their roles are as follows. For each of these objects, the portion +of the API that relates to modifying the virtual world and the portion +of the API that is relevant to non-head-tracked standard display +configurations are derived in this chapter. The remainder of the +details are described in "<a href="#View_Model_Details">View Model +Details</a>." +</p> +<ul> + <li><a href="../ViewPlatform.html"><em>ViewPlatform</em></a>: A leaf +node that locates a view within a +scene graph. The ViewPlatform's parents specify its location, +orientation, and scale within the virtual universe. See "<a + href="#ViewPlatform_Place">ViewPlatform: A Place in the Virtual World</a>," +for more +information. </li> +</ul> +<ul> + <li><a href="../View.html"><em>View</em></a>: The main view object. +It contains many pieces of +view state.</li> +</ul> +<ul> + <li><a href="../Canvas3D.html"><em>Canvas3D</em></a>: The 3D version +of the Abstract Windowing +Toolkit +(AWT) Canvas object. It represents a window in which Java 3D will +draw +images. It contains a reference to a Screen3D object and information +describing the Canvas3D's size, shape, and location within the Screen3D +object.</li> +</ul> +<ul> + <li><a href="../Screen3D.html"><em>Screen3D</em></a>: An object that +contains information describing +the display screen's physical properties. Java 3D places +display-screen +information in a separate object to prevent the duplication of screen +information within every Canvas3D object that shares a common screen.</li> +</ul> +<ul> + <li><a href="../PhysicalBody.html">PhysicalBody</a>: An object that +contains calibration information +describing the user's physical body.</li> +</ul> +<ul> + <li><a href="../PhysicalEnvironment.html">PhysicalEnvironment</a>: An +object that contains calibration +information describing the physical world, mainly information that +describes the environment's six-degrees-of freedom tracking hardware, +if present.</li> +</ul> +<p>Together, these objects describe the geometry of viewing rather than +explicitly providing a viewing or projection matrix. The Java 3D +renderer uses this information to construct the appropriate viewing and +projection matrices. The geometric focus of these view objects provides +more flexibility in generating views-a flexibility needed to support +alternative display configurations. +</p> +<h2><a name="ViewPlatform_Place"></a>ViewPlatform: A Place in the +Virtual World</h2> +<p>A ViewPlatform leaf node defines a coordinate system, and thus a +reference frame with its associated origin or reference point, within +the virtual world. The ViewPlatform serves as a point of attachment for +View objects and as a base for determining a renderer's view. +</p> +<p><a href="#Figure_2">Figure +2</a> +shows a portion of a scene graph containing a ViewPlatform node. The +nodes directly above a ViewPlatform determine where that ViewPlatform +is located and how it is oriented within the virtual world. By +modifying the Transform3D object associated with a TransformGroup node +anywhere directly above a ViewPlatform, an application or behavior can +move that ViewPlatform anywhere within the virtual world. A simple +application might define one TransformGroup node directly above a +ViewPlatform, as shown in <a href="#Figure_2">Figure +2</a>. +</p> +<p>A VirtualUniverse may have many different ViewPlatforms, but a +particular View object can attach itself only to a single ViewPlatform. +Thus, each rendering onto a Canvas3D is done from the point of view of +a single ViewPlatform. +</p> +<p><a name="Figure_2"></a><img style="width: 500px; height: 359px;" + alt="View Platform Branch Graph" title="View Platform Branch Graph" + src="ViewModel2.gif"> +</p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 2</i> – A Portion of a Scene Graph +Containing a ViewPlatform Object</b></font> +</ul> +<p> +</p> +<h3>Moving through the Virtual +World</h3> +<p>An application navigates within the virtual world by modifying a +ViewPlatform's parent TransformGroup. Examples of applications that +modify a ViewPlatform's location and orientation include browsers, +object viewers that provide navigational controls, applications that do +architectural walkthroughs, and even search-and-destroy games. +</p> +<p>Controlling the ViewPlatform object can produce very interesting and +useful results. Our first simple scene graph (see <a + href="intro.html#Figure_1">"Introduction," Figure 1</a>) +defines a scene graph for a simple application that draws an object in +the center of a window and rotates that object about its center point. +In that figure, the Behavior object modifies the TransformGroup +directly above the Shape3D node. +</p> +<p>An alternative application scene graph, shown in <a href="#Figure_3">Figure +3</a>, +leaves the central object alone and moves the ViewPlatform around the +world. If the shape node contains a model of the earth, this +application could generate a view similar to that seen by astronauts as +they orbit the earth. +</p> +<p>Had we populated this world with more objects, this scene graph +would allow navigation through the world via the Behavior node. +</p> +<p><a name="Figure_3"></a><img style="width: 500px; height: 289px;" + alt="Simple Scene Graph with View Control" + title="Simple Scene Graph with View Control" src="ViewModel3.gif"> +</p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 3</i> – A Simple Scene Graph with View +Control</b></font> +</ul> +<p> +Applications and behaviors manipulate a <a + href="../TransformGroup.html">TransformGroup</a> through its +access methods. These methods allow an application to retrieve and +set the Group node's Transform3D object. Transform3D Node methods +include <code>getTransform</code> and <code>setTransform</code>. +</p> +<p> +</p> +<h3>Dropping in on a Favorite +Place</h3> +<p>A scene graph may contain multiple <a href="../ViewPlatform.html">ViewPlatform</a> +objects. If a user detaches a <a href="../View.html">View</a> object +from a ViewPlatform and then +reattaches that View to a different ViewPlatform, the image on the +display will now be rendered from the point of view of the new +ViewPlatform.</p> +<h3>Associating Geometry with a +ViewPlatform</h3> +<p>Java 3D does not have any built-in semantics for displaying a +visible +manifestation of a ViewPlatform within the virtual world (an <em>avatar</em>). +However, a developer can construct and manipulate an avatar using +standard Java 3D constructs. +</p> +<p>A developer can construct a small scene graph consisting of a +TransformGroup node, a behavior leaf node, and a shape node and insert +it directly under the BranchGroup node associated with the ViewPlatform +object. The shape node would contain a geometric model of the avatar's +head. The behavior node would change the TransformGroup's transform +periodically to the value stored in a View object's <code>UserHeadToVworld</code><strong> +</strong>parameter (see "<a href="#View_Model_Details">View Model +Details</a>"). +The avatar's virtual head, represented by the shape node, will now move +around in lock-step with the ViewPlatform's TransformGroup<em> and </em>any +relative position and orientation changes of the user's actual physical +head (if a system has a head tracker). +</p> +<p> +</p> +<h2><a name="Generating_View"></a>Generating a View</h2> +<p>Java 3D generates viewing matrices in one of a few different +ways, +depending on whether the end user has a head-mounted or a room-mounted +display environment and whether head tracking is enabled. This section +describes the computation for a non-head-tracked, room-mounted +display-a standard computer display. Other environments are described +in "<a href="#View_Model_Details">View Model Details</a>." +</p> +<p>In the absence of head tracking, the ViewPlatform's origin specifies +the virtual eye's location and orientation within the virtual world. +However, the eye location provides only part of the information needed +to render an image. The renderer also needs a projection matrix. In the +default mode, Java 3D uses the projection policy, the specified +field-of-view information, and the front and back clipping distances to +construct a viewing frustum. +</p> +<p> +</p> +<h3>Composing Model and Viewing +Transformations</h3> +<p><a href="#Figure_4">Figure +4</a> +shows a simple scene graph. To draw the object labeled "S," +Java 3D +internally constructs the appropriate model, view platform, eye, and +projection matrices. Conceptually, the model transformation for a +particular object is computed by concatenating all the matrices in a +direct path between the object and the VirtualUniverse. The view matrix +is then computed-again, conceptually-by concatenating all the matrices +between the VirtualUniverse object and the ViewPlatform attached to the +current View object. The eye and projection matrices are constructed +from the View object and its associated component objects. +</p> +<p><a name="Figure_4"></a><img style="width: 500px; height: 332px;" + alt="Object and ViewPlatform Transform" + title="Object and ViewPlatform Transform" src="ViewModel4.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 4</i> – Object and ViewPlatform +Transformations</b></font> +</ul> +<p>In our scene graph, what we would normally consider the +model transformation would consist of the following three +transformations: <strong>LT</strong>1<strong>T</strong>2. By +multiplying <strong>LT</strong>1<strong>T</strong>2 +by a vertex in the shape object, we would transform that vertex into +the virtual universe's coordinate system. What we would normally +consider the view platform transformation would be (<strong>LT</strong>v1)-1 +or <strong>T</strong>v1<sup>-1</sup><strong>L</strong>-1. +This presents a problem since coordinates in the virtual universe are +256-bit fixed-point values, which cannot be used to represent +transformed points efficiently. +</p> +<p>Fortunately, however, there is a solution to this problem. Composing +the model and view platform transformations gives us +</p> +<dl> + <dt><br> + </dt> + <dd> <strong>T</strong>v1<sup>-1</sup><strong>L</strong>-1<strong>LT</strong>1<strong>T</strong>2 += <strong>T</strong>v1<sup>-1</sup><strong>IT</strong>1<strong>T</strong>2 += <strong>T</strong>v1<sup>-1</sup><strong>T</strong>1<strong>T</strong>2, + </dd> +</dl> +<p>the matrix that takes vertices in an object's local coordinate +system +and places them in the ViewPlatform's coordinate system. Note that the +high-resolution Locale transformations cancel each other out, which +removes the need to actually transform points into high-resolution +VirtualUniverse coordinates. The general formula of the matrix that +transforms object coordinates to ViewPlatform coordinates is <strong>T</strong>vn<sup>-1</sup>...<strong>T</strong>v2<sup>-1</sup><strong>T</strong>v1<sup>-1</sup><strong>T</strong>1<strong>T</strong>2...<strong>T</strong>m. +</p> +<p>As mentioned earlier, the View object contains the remainder of the +view information, specifically, the eye matrix, <strong>E</strong>, +that takes points in the View-Platform's local coordinate system and +translates them into the user's eye coordinate system, and the +projection matrix, <strong>P</strong>, that projects objects in the +eye's coordinate system into clipping coordinates. The final +concatenation of matrices for rendering our shape object "S" on the +specified Canvas3D is <strong>PET</strong>v1<sup>-1</sup><strong>T</strong>1<strong>T</strong>2. +In general this is <strong>PET</strong>vn<sup>-1</sup>...<strong>T</strong>v2<sup>-1</sup><strong>T</strong>v1<sup>-1</sup><strong>T</strong>1<strong>T</strong>2...<strong>T</strong>m. +</p> +<p>The details of how Java 3D constructs the matrices <strong>E</strong> +and <strong>P</strong> in different end-user configurations are +described in "<a href="#View_Model_Details">View Model Details</a>." +</p> +<p> +</p> +<h3>Multiple Locales</h3> +<p>Java 3D supports multiple high-resolution Locales. In some +cases, +these +Locales are close enough to each other that they can "see" each other, +meaning that objects can be rendered even though they are not in the +same Locale as the ViewPlatform object that is attached to the View. +Java 3D automatically handles this case without the application +having +to do anything. As in the previous example, where the ViewPlatform and +the object being rendered are attached to the same Locale, Java 3D +internally constructs the appropriate matrices for cases in which the +ViewPlatform and the object being rendered are <em>not</em> attached +to the same Locale. +</p> +<p>Let's take two Locales, L1 and L2, with the View attached to a +ViewPlatform in L1. According to our general formula, the modeling +transformation-the transformation that takes points in object +coordinates and transforms them into VirtualUniverse coordinates-is <strong>LT</strong>1<strong>T</strong>2...<strong>T</strong>m. +In our specific example, a point in Locale L2 would be transformed into +VirtualUniverse coordinates by <strong>L</strong>2<strong>T</strong>1<strong>T</strong>2...<strong>T</strong>m. +The view platform transformation would be (<strong>L</strong>1<strong>T</strong>v1<strong>T</strong>v1...<strong>T</strong>vn)-1 +or <strong>T</strong>vn<sup>-1</sup>...<strong>T</strong>v2<sup>-1</sup><strong>T</strong>v1<sup>-1</sup><strong>L</strong>1<sup>-1</sup>. +Composing these two matrices gives us +</p> +<dl> + <dt><br> + </dt> + <dd> <strong>T</strong>vn<sup>-1</sup>...<strong>T</strong>v2<sup>-1</sup><strong>T</strong>v1<sup>-1</sup><strong>L</strong>1<sup>-1</sup><strong>L</strong>2<strong>T</strong>1<strong>T</strong>2...<strong>T</strong>m. + </dd> +</dl> +<p>Thus, to render objects in another Locale, it is sufficient to +compute <strong>L</strong>1<sup>-1</sup><strong>L</strong>2 +and use that as the starting matrix when composing the model +transformations. Given that a Locale is represented by a single +high-resolution coordinate position, the transformation <strong>L</strong>1<sup>-1</sup><strong>L</strong>2 +is a simple translation by <strong>L</strong>2 - <strong>L</strong>1. +Again, it is not actually necessary to transform points into +high-resolution VirtualUniverse coordinates. +</p> +<p>In general, Locales that are close enough that the difference in +their +high-resolution coordinates can be represented in double precision by a +noninfinite value are close enough to be rendered. In practice, more +sophisticated culling techniques can be used to render only those +Locales that really are "close enough." +</p> +<p> +</p> +<h2>A Minimal Environment</h2> +<p>An application must create a minimal set of Java 3D objects +before +Java +3D can render to a display device. In addition to a Canvas3D object, +the application must create a View object, with its associated +PhysicalBody and PhysicalEnvironment objects, and the following scene +graph elements: +</p> +<ul> + <li>A VirtualUniverse object</li> +</ul> +<ul> + <li>A high-resolution Locale object</li> +</ul> +<ul> + <li>A BranchGroup node object</li> +</ul> +<ul> + <li>A TransformGroup node object with associated transform</li> +</ul> +<ul> + <li>A ViewPlatform leaf node object that defines the position and +orientation within the virtual universe for generating views</li> +</ul> +<hr> +<h2><a name="View_Model_Details"></a>View Model Details</h2> +<p>An application programmer writing a 3D +graphics program that will deploy on a variety of platforms must +anticipate the likely end-user environments and must carefully +construct the view transformations to match those characteristics using +a low-level API. This appendix addresses many of the issues an +application must face and describes the sophisticated features that +Java 3D's advanced view model provides. +</p> +<p> +</p> +<h2>An Overview of the +Java 3D +View Model</h2> +Both camera-based and Java 3D-based view models allow a programmer +to +specify the shape of a view frustum and, under program control, to +place, move, and reorient that frustum within the virtual environment. +However, how they do this varies enormously. Unlike the camera-based +system, the Java 3D view model allows slaving the view frustum's +position and orientation to that of a six-degrees-of-freedom tracking +device. By slaving the frustum to the tracker, Java 3D can +automatically modify the view frustum so that the generated images +match the end-user's viewpoint exactly. +<p>Java 3D must handle two rather different head-tracking +situations. +In one case, we rigidly attach a tracker's <em>base</em>, +and thus its coordinate frame, to the display environment. This +corresponds to placing a tracker base in a fixed position and +orientation relative to a projection screen within a room, to a +computer display on a desk, or to the walls of a multiple-wall +projection display. In the second head-tracking situation, we rigidly +attach a tracker's <em>sensor</em>, not its base, to the display +device. This corresponds to rigidly attaching one of that tracker's +sensors to a head-mounted display and placing the tracker base +somewhere within the physical environment. +</p> +<p> +</p> +<h2>Physical Environments and +Their Effects</h2> +Imagine an application where the end user sits on a magic carpet. The +application flies the user through the virtual environment by +controlling the carpet's location and orientation within the virtual +world. At first glance, it might seem that the application also +controls what the end user will see-and it does, but only +superficially. +<p>The following two examples show how end-user environments can +significantly affect how an application must construct viewing +transformations. +</p> +<p> +</p> +<h3>A Head-Mounted Example</h3> +Imagine that the end user sees the magic carpet and the virtual world +with a head-mounted display and head tracker. As the application flies +the carpet through the virtual world, the user may turn to look to the +left, to the right, or even toward the rear of the carpet. Because the +head tracker keeps the renderer informed of the user's gaze direction, +it might not need to draw the scene directly in front of the magic +carpet. The view that the renderer draws on the head-mount's display +must match what the end user would see if the experience had occurred +in the real world. +<h3>A Room-Mounted Example</h3> +Imagine a slightly different scenario where the end user sits in a +darkened room in front of a large projection screen. The application +still controls the carpet's flight path; however, the position and +orientation of the user's head barely influences the image drawn on the +projection screen. If a user looks left or right, then he or she sees +only the darkened room. The screen does not move. It's as if the screen +represents the magic carpet's "front window" and the darkened room +represents the "dark interior" of the carpet. +<p>By adding a left and right screen, we give the magic carpet rider a +more complete view of the virtual world surrounding the carpet. Now our +end user sees the view to the left or right of the magic carpet by +turning left or right. +</p> +<p> +</p> +<h3>Impact of Head Position and +Orientation on the Camera</h3> +In the head-mounted example, the user's head position and orientation +significantly affects a camera model's camera position and orientation +but hardly has any effect on the projection matrix. In the room-mounted +example, the user's head position and orientation contributes little to +a camera model's camera position and orientation; however, it does +affect the projection matrix. +<p>From a camera-based perspective, the application developer must +construct the camera's position and orientation by combining the +virtual-world component (the position and orientation of the magic +carpet) and the physical-world component (the user's instantaneous head +position and orientation). +</p> +<p>Java 3D's view model incorporates the appropriate abstractions +to +compensate automatically for such variability in end-user hardware +environments. +</p> +<p> +</p> +<h2>The Coordinate Systems</h2> +The basic view model consists of eight or nine coordinate systems, +depending on whether the end-user environment consists of a +room-mounted display or a head-mounted display. First, we define the +coordinate systems used in a room-mounted display environment. Next, we +define the added coordinate system introduced when using a head-mounted +display system. +<h3>Room-Mounted Coordinate +Systems</h3> +The room-mounted coordinate system is divided into the virtual +coordinate system and the physical coordinate system. <a + href="#Figure_5">Figure +5</a> +shows these coordinate systems graphically. The coordinate systems +within the grayed area exist in the virtual world; those outside exist +in the physical world. Note that the coexistence coordinate system +exists in both worlds. +<h4>The Virtual Coordinate +Systems</h4> +<h5> The Virtual World Coordinate System</h5> +The virtual world coordinate system encapsulates +the unified coordinate system for all scene graph objects in the +virtual environment. For a given View, the virtual world coordinate +system is defined by the Locale object that contains the ViewPlatform +object attached to the View. It is a right-handed coordinate system +with +<em>x</em> to the right, +<em>y</em> up, and +<em>z</em> toward +the viewer. +<h5> The ViewPlatform Coordinate System</h5> +The ViewPlatform coordinate system is the local coordinate system of +the ViewPlatform leaf node to which the View is attached. +<p><a name="Figure_5"></a><img style="width: 500px; height: 181px;" + alt="Display Rigidly Attached to Tracker Base" + title="Display Rigidly Attached to Tracker Base" src="ViewModel5.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 5</i> – Display Rigidly Attached to the +Tracker Base</b></font> +</ul> +<p> +</p> +<h5> The Coexistence Coordinate System</h5> +A primary implicit goal of any view model is to map a specified local +portion of the physical world onto a specified portion of the virtual +world. Once established, one can legitimately ask where the user's head +or hand is located within the virtual world or where a virtual object +is located in the local physical world. In this way the physical user +can interact with objects inhabiting the virtual world, and vice versa. +To establish this mapping, Java 3D defines a special coordinate +system, +called coexistence coordinates, that is defined to exist in both the +physical world and the virtual world. +<p>The coexistence coordinate system exists half in the virtual world +and +half in the physical world. The two transforms that go from the +coexistence coordinate system to the virtual world coordinate system +and back again contain all the information needed to expand or shrink +the virtual world relative to the physical world. It also contains the +information needed to position and orient the virtual world relative to +the physical world. +</p> +<p>Modifying the transform that maps the coexistence coordinate system +into the virtual world coordinate system changes what the end user can +see. The Java 3D application programmer moves the end user within +the +virtual world by modifying this transform. +</p> +<p> +</p> +<h4>The Physical Coordinate +Systems</h4> +<h5> The Head Coordinate System</h5> +The head coordinate system allows an application to import its user's +head geometry. The coordinate system provides a simple consistent +coordinate frame for specifying such factors as the location of the +eyes and ears. +<h5> The Image Plate Coordinate System</h5> +The image plate coordinate system corresponds with the physical +coordinate system of the image generator. The image plate is defined as +having its origin at the lower left-hand corner of the display area and +as lying in the display area's <em>XY</em> +plane. Note that image plate is a different coordinate system than +either left image plate or right image plate. These last two coordinate +systems are defined in head-mounted environments only. +<h5> The Head Tracker Coordinate System</h5> +The head tracker coordinate system corresponds to the +six-degrees-of-freedom tracker's sensor attached to the user's head. +The head tracker's coordinate system describes the user's instantaneous +head position. +<h5> The Tracker Base Coordinate System</h5> +The tracker base coordinate system corresponds to the emitter +associated with absolute position/orientation trackers. For those +trackers that generate relative position/orientation information, this +coordinate system is that tracker's initial position and orientation. +In general, this coordinate system is rigidly attached to the physical +world. +<h3>Head-Mounted Coordinate +Systems</h3> +Head-mounted coordinate systems divide the same virtual coordinate +systems and the physical coordinate systems. <a href="#Figure_6">Figure +6</a> +shows these coordinate systems graphically. As with the room-mounted +coordinate systems, the coordinate systems within the grayed area exist +in the virtual world; those outside exist in the physical world. Once +again, the coexistence coordinate system exists in both worlds. The +arrangement of the coordinate system differs from those for a +room-mounted display environment. The head-mounted version of +Java 3D's +coordinate system differs in another way. It includes two image plate +coordinate systems, one for each of an end-user's eyes. +<h5> The Left Image Plate and Right Image Plate Coordinate Systems</h5> +The left image plate and right image plate +coordinate systems correspond with the physical coordinate system of +the image generator associated with the left and right eye, +respectively. The image plate is defined as having its origin at the +lower left-hand corner of the display area and lying in the display +area's <em>XY</em> plane. Note that the left image plate's <em>XY</em> +plane does not necessarily lie parallel to the right image plate's <em>XY</em> +plane. Note that the left image plate and the right image plate are +different coordinate systems than the room-mounted display +environment's image plate coordinate system. +<p><a name="Figure_6"></a><img style="width: 499px; height: 162px;" + alt="Display Rigidly Attached to Head Tracker" + title="Display Rigidly Attached to Head Tracker" src="ViewModel6.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 6</i> – Display Rigidly Attached to the +Head Tracker (Sensor)</b></font> +</ul> +<p> +</p> +<h2>The Screen3D Object</h2> +A Screen3D object represents one independent display device. The most +common environment for a Java 3D application is a desktop computer +with +or without a head tracker. <a href="#Figure_7">Figure +7</a> shows a scene graph fragment for a display environment designed +for such an end-user environment. <a href="#Figure_8">Figure +8</a> shows a display environment that matches the scene graph +fragment in <a href="#Figure_7">Figure +7</a>. +<p><a name="Figure_7"></a><img style="width: 499px; height: 185px;" + alt="Environment with Single Screen3D Object" + title="Environment with Single Screen3D Object" src="ViewModel7.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 7</i> – A Portion of a Scene Graph +Containing a Single Screen3D +Object</b></font> +</ul> +<p> +<a name="Figure_8"></a><img style="width: 500px; height: 237px;" + alt="Single-Screen Display Environment" + title="Single-Screen Display Environment" src="ViewModel8.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 8</i> – A Single-Screen Display +Environment</b></font> +</ul> +<p> +A multiple-projection wall display presents a more exotic environment. +Such environments have multiple screens, typically three or more. <a + href="#Figure_9">Figure +9</a> shows a scene graph fragment representing such a system, and <a + href="#Figure_10">Figure +10</a> shows the corresponding display environment. +</p> +<p><a name="Figure_9"></a><img style="width: 500px; height: 196px;" + alt="Environment with Three Screen3D Object" + title="Environment with Three Screen3D Object" src="ViewModel9.gif"> +</p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 9</i> – A Portion of a Scene Graph +Containing Three Screen3D +Objects</b></font> +</ul> +<p> +<a name="Figure_10"></a><img style="width: 700px; height: 241px;" + alt="Three-Screen Display Environment" + title="Three-Screen Display Environment" src="ViewModel10.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 10</i> – A Three-Screen Display +Environment</b></font> +</ul> +<p> +A multiple-screen environment requires more care during the +initialization and calibration phase. Java 3D must know how the +Screen3Ds are placed with respect to one another, the tracking device, +and the physical portion of the coexistence coordinate system. +</p> +<p> +</p> +<h2>Viewing in Head-Tracked Environments</h2> +<p>The "<a href="#Generating_View">Generating a View</a>" section +describes how Java 3D generates a view for a standard flat-screen +display with no head tracking. In this section, we describe how +Java 3D +generates a view in a room-mounted, head-tracked display +environment-either a computer monitor with shutter glasses and head +tracking or a multiple-wall display with head-tracked shutter glasses. +Finally, we describe how Java 3D generates view matrices in a +head-mounted and head-tracked display environment. +</p> +<h3>A Room-Mounted Display with +Head Tracking</h3> +When head tracking combines with a room-mounted +display environment (for example, a standard flat-screen display), the +ViewPlatform's origin and orientation serve as a base for constructing +the view matrices. Additionally, Java 3D uses the end-user's head +position and orientation to compute where an end-user's eyes are +located in physical space. Each eye's position serves to offset the +corresponding virtual eye's position relative to the ViewPlatform's +origin. Each eye's position also serves to specify that eye's frustum +since the eye's position relative to a Screen3D uniquely specifies that +eye's view frustum. Note that Java 3D will access the PhysicalBody +object to obtain information describing the user's interpupilary +distance and tracking hardware, values it needs to compute the +end-user's eye positions from the head position information. +<h3>A Head-Mounted Display with +Head Tracking</h3> +In a head-mounted environment, the ViewPlatform's origin and +orientation also serves as a base for constructing view matrices. And, +as in the head-tracked, room-mounted environment, Java 3D also +uses the +end-user's head position and orientation to modify the ViewPlatform's +position and orientation further. In a head-tracked, head-mounted +display environment, an end-user's eyes do not move relative to their +respective display screens, rather, the display screens move relative +to the virtual environment. A rotation of the head by an end user can +radically affect the final view's orientation. In this situation, Java +3D combines the position and orientation from the ViewPlatform with the +position and orientation from the head tracker to form the view matrix. +The view frustum, however, does not change since the user's eyes do not +move relative to their respective display screen, so Java 3D can +compute the projection matrix once and cache the result. +<p>If any of the parameters of a View object are updated, this will +effect +a change in the implicit viewing transform (and thus image) of any +Canvas3D that references that View object. +</p> +<p> +</p> +<h2>Compatibility Mode</h2> +<p>A camera-based view model allows application programmers to think +about +the images displayed on the computer screen as if a virtual camera took +those images. Such a view model allows application programmers to +position and orient a virtual camera within a virtual scene, to +manipulate some parameters of the virtual camera's lens (specify its +field of view), and to specify the locations of the near and far +clipping planes. +</p> +<p>Java 3D allows applications to enable compatibility mode for +room-mounted, non-head-tracked display environments or to disable +compatibility mode using the following methods. Camera-based viewing +functions are available only in compatibility mode. The <code>setCompatibilityModeEnable</code> +method turns compatibility mode on or off. Compatibility mode is +disabled by default. +</p> +<hr noshade="noshade"> +<p><b>Note:</b> Use of these view-compatibility +functions will disable some of Java 3D's view model features and +limit +the portability of Java 3D programs. These methods are primarily +intended to help jump-start porting of existing applications. +</p> +<hr noshade="noshade"> +<h3>Overview of the +Camera-Based View Model</h3> +The traditional camera-based view model, shown in <a href="#Figure_11">Figure +11</a>, +places a virtual camera inside a geometrically specified world. The +camera "captures" the view from its current location, orientation, and +perspective. The visualization system then draws that view on the +user's display device. The application controls the view by moving the +virtual camera to a new location, by changing its orientation, by +changing its field of view, or by controlling some other camera +parameter. +<p>The various parameters that users control in a +camera-based view model specify the shape of a viewing volume (known as +a frustum because of its truncated pyramidal shape) and locate that +frustum within the virtual environment. The rendering pipeline uses the +frustum to decide which objects to draw on the display screen. The +rendering pipeline does not draw objects outside the view frustum, and +it clips (partially draws) objects that intersect the frustum's +boundaries. +</p> +<p>Though a view frustum's specification may have many items in common +with those of a physical camera, such as placement, orientation, and +lens settings, some frustum parameters have no physical analog. Most +noticeably, a frustum has two parameters not found on a physical +camera: the near and far clipping planes. +</p> +<p><a name="Figure_11"></a><img style="width: 500px; height: 202px;" + alt="Camera-Based View Model" title="Camera-Based View Model" + src="ViewModel11.gif"> +</p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 11</i> – The Camera-Based View Model</b></font> +</ul> +<p> +The location of the near and far clipping planes allows the application +programmer to specify which objects Java 3D should not draw. +Objects +too far away from the current eyepoint usually do not result in +interesting images. Those too close to the eyepoint might obscure the +interesting objects. By carefully specifying near and far clipping +planes, an application programmer can control which objects the +renderer will not be drawing. +</p> +<p>From the perspective of the display device, the virtual camera's +image +plane corresponds to the display screen. The camera's placement, +orientation, and field of view determine the shape of the view frustum. +</p> +<p> +</p> +<h3>Using the Camera-Based View +Model</h3> +<p>The camera-based view model allows Java 3D to bridge the gap +between +existing 3D code and Java 3D's view model. By using the +camera-based +view model methods, a programmer retains the familiarity of the older +view model but gains some of the flexibility afforded by Java 3D's +new +view model. +</p> +<p>The traditional camera-based view model is supported in Java 3D +by +helping methods in the Transform3D object. These methods were +explicitly designed to resemble as closely as possible the view +functions of older packages and thus should be familiar to most 3D +programmers. The resulting Transform3D objects can be used to set +compatibility-mode transforms in the View object. +</p> +<p> +</p> +<h4>Creating a Viewing Matrix</h4> +<p>The Transform3D object provides a <code>lookAt</code> utility +method +to create a +viewing matrix. This method specifies the position and orientation of +a viewing transform. It works similarly to the equivalent function in +OpenGL. The inverse of this transform can be used to control the +ViewPlatform object within the scene graph. Alternatively, this +transform can be passed directly to the View's <code>VpcToEc</code> +transform via the compatibility-mode viewing functions. The <code>setVpcToEc</code><code></code> +method is used to set the viewing matrix when in compatibility mode. +</p> +<h4>Creating a Projection +Matrix</h4> +<p>The Transform3D object provides three methods for +creating a projection matrix: <code>frustum</code>, <code>perspective</code>, +and <code>ortho</code>. All three map points from eye coordinates +(EC) to clipping coordinates (CC). Eye coordinates are defined such +that (0, 0, 0) is at the eye and the projection plane is at <em>z</em> += -1.<br> +</p> +<p>The <code>frustum</code> method +establishes a perspective projection with the eye at the apex of a +symmetric view frustum. The transform maps points from eye coordinates +to clipping coordinates. The clipping coordinates generated by the +resulting transform are in a right-handed coordinate system (as are all +other coordinate systems in Java 3D). +</p> +<p>The arguments define the frustum and its associated perspective +projection: <code>(left</code>, <code>bottom</code>, <code>-near)</code> +and <code>(right</code>, <code>top</code>, <code>-near)</code> +specify the point on the near clipping plane that maps onto the +lower-left and upper-right corners of the window, respectively. The <code>-far</code> +parameter specifies the far clipping plane. See <a href="#Figure_12">Figure +12</a>. +</p> +<p>The <code>perspective</code> method establishes a perspective +projection with the eye at the apex of a symmetric view frustum, +centered about the <em>Z</em>-axis, +with a fixed field of view. The resulting perspective projection +transform mimics a standard camera-based view model. The transform maps +points from eye coordinates to clipping coordinates. The clipping +coordinates generated by the resulting transform are in a right-handed +coordinate system. +</p> +<p>The arguments define the frustum and its associated perspective +projection: <code>-near</code> and <code>-far</code> specify the near +and far clipping planes; <code>fovx</code> specifies the field of view +in the <em>X</em> dimension, in radians; and <code>aspect</code> +specifies the aspect ratio of the window. See <a href="#Figure_13">Figure +13</a>. +</p> +<p><a name="Figure_12"></a><img style="width: 500px; height: 209px;" + alt="Perspective Viewing Frustum" title="Perspective Viewing Frustum" + src="ViewModel12.gif"> +</p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 12</i> – A Perspective Viewing Frustum</b></font> +</ul> +<p> +<a name="Figure_13"></a><img style="width: 500px; height: 212px;" + alt="Perspective View Model Arguments" + title="Perspective View Model Arguments" src="ViewModel13.gif"></p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 13</i> – Perspective View Model Arguments</b></font> +</ul> +<p> +The <code>ortho</code> method +establishes a parallel projection. The orthographic projection +transform mimics a standard camera-based video model. The transform +maps points from eye coordinates to clipping coordinates. The clipping +coordinates generated by the resulting transform are in a right-handed +coordinate system. +</p> +<p>The arguments define a rectangular box used for projection: <code>(left</code>, +<code>bottom</code>, <code>-near)</code> and <code>(right</code>, <code>top</code>, +<code>-near)</code> +specify the point on the near clipping plane that maps onto the +lower-left and upper-right corners of the window, respectively. The <code>-far</code> +parameter specifies the far clipping plane. See <a href="#Figure_14">Figure +14</a>. +</p> +<p><a name="Figure_14"></a><img style="width: 500px; height: 220px;" + alt="Orthographic View Model" title="Orthographic View Model" + src="ViewModel14.gif"> +</p> +<p> +</p> +<ul> + <font size="-1"><b><i>Figure 14</i> – Orthographic View Model</b></font> +</ul> +<p> +</p> +<p>The <code>setLeftProjection</code> +and <code>setRightProjection</code> methods are used to set the +projection matrices for the left eye and right eye, respectively, when +in compatibility mode.</p> +</body> +</html> |