/*
* Copyright 1996-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package javax.media.j3d;
import javax.vecmath.Matrix3d;
import javax.vecmath.Point3d;
import javax.vecmath.Point4d;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector4d;
/**
* The abstract base class for bounds objects. Bounds objects define
* a convex, closed volume that is used for various intersection and
* culling operations.
*/
public abstract class Bounds extends Object implements Cloneable {
static final double EPSILON = .000001;
static final boolean debug = false;
static final int BOUNDING_BOX = 0x1;
static final int BOUNDING_SPHERE = 0x2;
static final int BOUNDING_POLYTOPE = 0x4;
boolean boundsIsEmpty = false;
boolean boundsIsInfinite = false;
int boundId = 0;
/**
* Constructs a new Bounds object.
*/
public Bounds() {
}
/**
* Makes a copy of a bounds object.
*/
@Override
public abstract Object clone();
/**
* Indicates whether the specified bounds
object is
* equal to this Bounds object. They are equal if both the
* specified bounds
object and this Bounds are
* instances of the same Bounds subclass and all of the data
* members of bounds
are equal to the corresponding
* data members in this Bounds.
* @param bounds the object with which the comparison is made.
* @return true if this Bounds object is equal to bounds
;
* otherwise false
*
* @since Java 3D 1.2
*/
@Override
public abstract boolean equals(Object bounds);
/**
* Returns a hash code for this Bounds object based on the
* data values in this object. Two different Bounds objects of
* the same type with identical data values (i.e., Bounds.equals
* returns true) will return the same hash code. Two Bounds
* objects with different data members may return the same hash code
* value, although this is not likely.
* @return a hash code for this Bounds object.
*
* @since Java 3D 1.2
*/
@Override
public abstract int hashCode();
/**
* Test for intersection with a ray.
* @param origin the starting point of the ray
* @param direction the direction of the ray
* @return true or false indicating if an intersection occured
*/
public abstract boolean intersect( Point3d origin, Vector3d direction );
/**
* Test for intersection with a point.
* @param point a point defining a position in 3-space
* @return true or false indicating if an intersection occured
*/
public abstract boolean intersect( Point3d point );
/**
* Test for intersection with a ray
* @param origin is a the starting point of the ray
* @param direction is the direction of the ray
* @param position is a point defining the location of the pick w= distance to pick
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Point3d origin, Vector3d direction, Point4d position );
/**
* Test for intersection with a point
* @param point is a point defining a position in 3-space
* @param position is a point defining the location of the pick w= distance to pick
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Point3d point, Point4d position);
/**
* Test for intersection with a segment
* @param start is a point defining the start of the line segment
* @param end is a point defining the end of the line segment
* @param position is a point defining the location of the pick w= distance to pick
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Point3d start, Point3d end, Point4d position );
/**
* Test for intersection with another bounds object
*
* Test for intersection with another bounds object
* @param boundsObject is another bounds object
* @return true or false indicating if an intersection occured
*/
abstract boolean intersect( Bounds boundsObject, Point4d position );
/**
* Test for intersection with another bounds object.
* @param boundsObject another bounds object
* @return true or false indicating if an intersection occurred
*/
public abstract boolean intersect( Bounds boundsObject );
/**
* Test for intersection with another bounds object.
* @param boundsObjects an array of bounding objects
* @return true or false indicating if an intersection occured
*/
public abstract boolean intersect( Bounds[] boundsObjects );
/**
* Finds closest bounding object that intersects this bounding object.
* @param boundsObjects an array of bounds objects
* @return closest bounding object
*/
public abstract Bounds closestIntersection( Bounds[] boundsObjects);
/**
* Returns the center of the bounds
* @return bounds center
*/
abstract Point3d getCenter();
/**
* Gets the centroid of this bounding region.
* @param center a Point to receive the centroid of the bounding region
*/
public abstract void getCenter(Point3d center);
/**
* Combines this bounding object with a bounding object so that the
* resulting bounding object encloses the original bounding object and the
* given bounds object.
* @param boundsObject another bounds object
*/
public abstract void combine( Bounds boundsObject );
/**
* Combines this bounding object with an array of bounding objects so that the
* resulting bounding object encloses the original bounding object and the
* given array of bounds object.
* @param boundsObjects an array of bounds objects
*/
public abstract void combine( Bounds[] boundsObjects);
/**
* Combines this bounding object with a point.
* @param point a 3d point in space
*/
public abstract void combine( Point3d point);
/**
* Combines this bounding object with an array of points.
* @param points an array of 3d points in space
*/
public abstract void combine( Point3d[] points);
/**
* Transforms this bounding object by the given matrix.
* @param trans the transformation matrix
*/
public abstract void transform(Transform3D trans);
/**
* Modifies the bounding object so that it bounds the volume
* generated by transforming the given bounding object.
* @param bounds the bounding object to be transformed
* @param trans the transformation matrix
*/
public abstract void transform( Bounds bounds, Transform3D trans);
/**
* Tests whether the bounds is empty. A bounds is
* empty if it is null (either by construction or as the result of
* a null intersection) or if its volume is negative. A bounds
* with a volume of zero is not empty.
* @return true if the bounds is empty; otherwise, it returns false
*/
public abstract boolean isEmpty();
/**
* Sets the value of this Bounds object.
* @param boundsObject another bounds object.
*/
public abstract void set( Bounds boundsObject);
abstract Bounds copy(Bounds region);
private void test_point(Vector4d[] planes, Point3d new_point) {
for (int i = 0; i < planes.length; i++){
double dist = (new_point.x*planes[i].x + new_point.y*planes[i].y +
new_point.z*planes[i].z + planes[i].w ) ;
if (dist > EPSILON ){
System.err.println("new point is outside of" +
" plane["+i+"] dist = " + dist);
}
}
}
/**
* computes the closest point from the given point to a set of planes
* (polytope)
* @param g the point
* @param planes array of bounding planes
* @param new_point point on planes closest g
*/
boolean closest_point( Point3d g, Vector4d[] planes, Point3d new_point ) {
double t,s,dist,w;
boolean converged, inside, firstPoint, firstInside;
int i,count;
double ab,ac,bc,ad,bd,cd,aa,bb,cc;
double b1,b2,b3,d1,d2,d3,y1,y2,y3;
double h11,h12,h13,h22,h23,h33;
double l12,l13,l23;
Point3d n = new Point3d();
Point3d p = new Point3d();
Vector3d delta = null;
// These are temporary until the solve code is working
/*
* The algorithm:
* We want to find the point "n", closest to "g", while still within
* the the polytope defined by "planes". We find the solution by
* minimizing the value for a "penalty function";
*
* f = distance(n,g)^2 + sum for each i: w(distance(n, planes[i]))
*
* Where "w" is a weighting which indicates how much more important
* it is to be close to the planes than it is to be close to "g".
*
* We minimize this function by taking it's derivitive, and then
* solving for the value of n when the derivitive equals 0.
*
* For the 1D case with a single plane (a,b,c,d), x = n.x and g = g.x,
* this looks like:
*
* f(x) = (x - g) ^ 2 + w(ax + d)^2
* f'(x) = 2x -2g + 2waax + 2wad
*
* (note aa = a^2) setting f'(x) = 0 gives:
*
* (1 + waa)x = g - wad
*
* Note that the solution is just outside the plane [a, d]. With the
* correct choice of w, this should be inside of the EPSILON tolerance
* outside the planes.
*
* Extending to 3D gives the matrix solution:
*
* | (1 + waa) wab wac |
* H = | wab (1 + wbb) wbc |
* | wac wbc (1 + wcc) |
*
* b = [g.x - wad, g.y - wbd, g.z - wcd]
*
* H * n = b
*
* n = b * H.inverse()
*
* The implementation speeds this process up by recognizing that
* H is symmetric, so that it can be decomposed into three matrices:
*
* H = L * D * L.transpose()
*
* 1.0 0.0 0.0 d1 0.0 0.0
* L = l12 1.0 0.0 D = 0.0 d2 0.0
* l13 l23 1.0 0.0 0.0 d3
*
* n can then be derived by back-substitution, where the original
* problem is decomposed as:
*
* H * n = b
* L * D * L.transpose() * n = b
* L * D * y = b; L.transpose() * n = y
*
* We can then multiply out the terms of L * D and solve for y, and
* then use y to solve for n.
*/
w=100.0 / EPSILON; // must be large enough to ensure that solution
// is within EPSILON of planes
count = 0;
p.set(g);
if (debug) {
System.err.println("closest_point():\nincoming g="+" "+g.x+" "+g.y+
" "+g.z);
}
converged = false;
firstPoint = true;
firstInside = false;
Vector4d pln;
while( !converged ) {
if (debug) {
System.err.println("start: p="+" "+p.x+" "+p.y+" "+p.z);
}
// test the current point against the planes, for each
// plane that is violated, add it's contribution to the
// penalty function
inside = true;
aa=0.0; bb=0.0; cc=0.0;
ab=0.0; ac=0.0; bc=0.0; ad=0.0; bd=0.0; cd=0.0;
for(i = 0; i < planes.length; i++){
pln = planes[i];
dist = (p.x*pln.x + p.y*pln.y +
p.z*pln.z + pln.w ) ;
// if point is outside or within EPSILON of the boundary, add
// the plane to the penalty matrix. We do this even if the
// point is already inside the polytope to prevent numerical
// instablity in cases where the point is just outside the
// boundary of several planes of the polytope
if (dist > -EPSILON ){
aa = aa + pln.x * pln.x;
bb = bb + pln.y * pln.y;
cc = cc + pln.z * pln.z;
ab = ab + pln.x * pln.y;
ac = ac + pln.x * pln.z;
bc = bc + pln.y * pln.z;
ad = ad + pln.x * pln.w;
bd = bd + pln.y * pln.w;
cd = cd + pln.z * pln.w;
}
// If the point is inside if dist is <= EPSILON
if (dist > EPSILON ){
inside = false;
if (debug) {
System.err.println("point outside plane["+i+"]=("+
pln.x+ ","+pln.y+",\n\t"+pln.z+
","+ pln.w+")\ndist = " + dist);
}
}
}
// see if we are done
if (inside) {
if (debug) {
System.err.println("p is inside");
}
if (firstPoint) {
firstInside = true;
}
new_point.set(p);
converged = true;
} else { // solve for a closer point
firstPoint = false;
// this is the upper right corner of H, which is all we
// need to do the decomposition since the matrix is symetric
h11 = 1.0 + aa * w;
h12 = ab * w;
h13 = ac * w;
h22 = 1.0 + bb * w;
h23 = bc * w;
h33 = 1.0 + cc * w;
if (debug) {
System.err.println(" hessin= ");
System.err.println(h11+" "+h12+" "+h13);
System.err.println(" "+h22+" "+h23);
System.err.println(" "+h33);
}
// these are the constant terms
b1 = g.x - w * ad;
b2 = g.y - w * bd;
b3 = g.z - w * cd;
if (debug) {
System.err.println(" b1,b2,b3 = "+b1+" "+b2+" " +b3);
}
// solve, d1, d2, d3 actually 1/dx, which is more useful
d1 = 1/h11;
l12 = d1 * h12;
l13 = d1 * h13;
s = h22-l12*h12;
d2 = 1/s;
t = h23-h12*l13;
l23 = d2 * t;
d3 = 1/(h33 - h13*l13 - t*l23);
if (debug) {
System.err.println(" l12,l13,l23 "+l12+" "+l13+" "+l23);
System.err.println(" d1,d2,d3 "+ d1+" "+d2+" "+d3);
}
// we have L and D, now solve for y
y1 = d1 * b1;
y2 = d2 * (b2 - h12*y1);
y3 = d3 * (b3 - h13*y1 - t*y2);
if (debug) {
System.err.println(" y1,y2,y3 = "+y1+" "+y2+" "+y3);
}
// we have y, solve for n
n.z = y3;
n.y = (y2 - l23*n.z);
n.x = (y1 - l13*n.z - l12*n.y);
if (debug) {
System.err.println("new point = " + n.x+" " + n.y+" " +
n.z);
test_point(planes, n);
if (delta == null) delta = new Vector3d();
delta.sub(n, p);
delta.normalize();
System.err.println("p->n direction: " + delta);
Matrix3d hMatrix = new Matrix3d();
// check using the the javax.vecmath routine
hMatrix.m00 = h11;
hMatrix.m01 = h12;
hMatrix.m02 = h13;
hMatrix.m10 = h12; // h21 = h12
hMatrix.m11 = h22;
hMatrix.m12 = h23;
hMatrix.m20 = h13; // h31 = h13
hMatrix.m21 = h23; // h32 = h22
hMatrix.m22 = h33;
hMatrix.invert();
Point3d check = new Point3d(b1, b2, b3);
hMatrix.transform(check);
System.err.println("check point = " + check.x+" " +
check.y+" " + check.z);
}
// see if we have converged yet
dist = (p.x-n.x)*(p.x-n.x) + (p.y-n.y)*(p.y-n.y) +
(p.z-n.z)*(p.z-n.z);
if (debug) {
System.err.println("p->n distance =" + dist );
}
if( dist < EPSILON) { // close enough
converged = true;
new_point.set(n);
} else {
p.set(n);
count++;
if(count > 4 ){ // watch for cycling between two minimums
new_point.set(n);
converged = true;
}
}
}
}
if (debug) {
System.err.println("returning pnt ("+new_point.x+" "+
new_point.y+" "+new_point.z+")");
if(firstInside) System.err.println("input point inside polytope ");
}
return firstInside;
}
boolean intersect_ptope_sphere( BoundingPolytope polyTope,
BoundingSphere sphere) {
Point3d p = new Point3d();
boolean inside;
if (debug) {
System.err.println("ptope_sphere intersect sphere ="+sphere);
}
inside = closest_point( sphere.center, polyTope.planes, p );
if (debug) {
System.err.println("ptope sphere intersect point ="+p);
}
if (!inside){
// if distance between polytope and sphere center is greater than
// radius then no intersection
if (p.distanceSquared( sphere.center) >
sphere.radius*sphere.radius){
if (debug) {
System.err.println("ptope_sphere returns false");
}
return false;
} else {
if (debug) {
System.err.println("ptope_sphere returns true");
}
return true;
}
} else {
if (debug) {
System.err.println("ptope_sphere returns true");
}
return true;
}
}
boolean intersect_ptope_abox( BoundingPolytope polyTope, BoundingBox box) {
Vector4d planes[] = new Vector4d[6];
if (debug) {
System.err.println("ptope_abox, box = " + box);
}
planes[0] = new Vector4d( -1.0, 0.0, 0.0, box.lower.x);
planes[1] = new Vector4d( 1.0, 0.0, 0.0,-box.upper.x);
planes[2] = new Vector4d( 0.0,-1.0, 0.0, box.lower.y);
planes[3] = new Vector4d( 0.0, 1.0, 0.0,-box.upper.y);
planes[4] = new Vector4d( 0.0, 0.0,-1.0, box.lower.z);
planes[5] = new Vector4d( 0.0, 0.0, 1.0,-box.upper.z);
BoundingPolytope pbox = new BoundingPolytope( planes);
boolean result = intersect_ptope_ptope( polyTope, pbox );
if (debug) {
System.err.println("ptope_abox returns " + result);
}
return(result);
}
boolean intersect_ptope_ptope( BoundingPolytope poly1,
BoundingPolytope poly2) {
boolean intersect;
Point3d p = new Point3d();
Point3d g = new Point3d();
Point3d gnew = new Point3d();
Point3d pnew = new Point3d();
intersect = false;
p.x = 0.0;
p.y = 0.0;
p.z = 0.0;
// start from an arbitrary point on poly1
closest_point( p, poly1.planes, g);
// get the closest points on each polytope
if (debug) {
System.err.println("ptope_ptope: first g = "+g);
}
intersect = closest_point( g, poly2.planes, p);
if (intersect) {
return true;
}
if (debug) {
System.err.println("first p = "+p+"\n");
}
intersect = closest_point( p, poly1.planes, gnew);
if (debug) {
System.err.println("gnew = "+gnew+" intersect="+intersect);
}
// loop until the closest points on the two polytopes are not changing
double prevDist = p.distanceSquared(g);
double dist;
while( !intersect ) {
dist = p.distanceSquared(gnew);
if (dist < prevDist) {
g.set(gnew);
intersect = closest_point( g, poly2.planes, pnew );
if (debug) {
System.err.println("pnew = "+pnew+" intersect="+intersect);
}
} else {
g.set(gnew);
break;
}
prevDist = dist;
dist = pnew.distanceSquared(g);
if (dist < prevDist) {
p.set(pnew);
if( !intersect ) {
intersect = closest_point( p, poly1.planes, gnew );
if (debug) {
System.err.println("gnew = "+gnew+" intersect="+
intersect);
}
}
} else {
p.set(pnew);
break;
}
prevDist = dist;
}
if (debug) {
System.err.println("gnew="+" "+gnew.x+" "+gnew.y+" "+gnew.z);
System.err.println("pnew="+" "+pnew.x+" "+pnew.y+" "+pnew.z);
}
return intersect;
}
synchronized void setWithLock(Bounds b) {
this.set(b);
}
synchronized void getWithLock(Bounds b) {
b.set(this);
}
// Return one of Pick Bounds type define in PickShape
abstract int getPickType();
}