/* * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ package javax.media.j3d; import javax.vecmath.Point3d; import javax.vecmath.Vector3d; /** * The QuadArray object draws the array of vertices as individual * quadrilaterals. Each group * of four vertices defines a quadrilateral to be drawn. */ class QuadArrayRetained extends GeometryArrayRetained { QuadArrayRetained() { this.geoType = GEO_TYPE_QUAD_SET; } @Override boolean intersect(PickShape pickShape, PickInfo pickInfo, int flags, Point3d iPnt, GeometryRetained geom, int geomIndex) { Point3d pnts[] = new Point3d[4]; double sdist[] = new double[1]; double minDist = Double.MAX_VALUE; double x = 0, y = 0, z = 0; int[] vtxIndexArr = new int[4]; int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ? initialVertexIndex : initialCoordIndex); pnts[0] = new Point3d(); pnts[1] = new Point3d(); pnts[2] = new Point3d(); pnts[3] = new Point3d(); switch (pickShape.getPickType()) { case PickShape.PICKRAY: PickRay pickRay= (PickRay) pickShape; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectRay(pnts, pickRay, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKSEGMENT: PickSegment pickSegment = (PickSegment) pickShape; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectSegment(pnts, pickSegment.start, pickSegment.end, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKBOUNDINGBOX: BoundingBox bbox = (BoundingBox) ((PickBounds) pickShape).bounds; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectBoundingBox(pnts, bbox, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKBOUNDINGSPHERE: BoundingSphere bsphere = (BoundingSphere) ((PickBounds) pickShape).bounds; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectBoundingSphere(pnts, bsphere, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKBOUNDINGPOLYTOPE: BoundingPolytope bpolytope = (BoundingPolytope) ((PickBounds) pickShape).bounds; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectBoundingPolytope(pnts, bpolytope, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKCYLINDER: PickCylinder pickCylinder= (PickCylinder) pickShape; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectCylinder(pnts, pickCylinder, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKCONE: PickCone pickCone= (PickCone) pickShape; while (i < validVertexCount) { for(int j=0; j<4; j++) { vtxIndexArr[j] = i; getVertexData(i++, pnts[j]); } if (intersectCone(pnts, pickCone, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } } break; case PickShape.PICKPOINT: // Should not happen since API already check for this throw new IllegalArgumentException(J3dI18N.getString("QuadArrayRetained0")); default: throw new RuntimeException("PickShape not supported for intersection "); } if (minDist < Double.MAX_VALUE) { iPnt.x = x; iPnt.y = y; iPnt.z = z; return true; } return false; } // intersect pnts[] with every quad in this object @Override boolean intersect(Point3d[] pnts) { Point3d[] points = new Point3d[4]; double dist[] = new double[1]; int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ? initialVertexIndex : initialCoordIndex); points[0] = new Point3d(); points[1] = new Point3d(); points[2] = new Point3d(); points[3] = new Point3d(); switch (pnts.length) { case 3: // Triangle while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectTriTri(points[0], points[1], points[2], pnts[0], pnts[1], pnts[2]) || intersectTriTri(points[0], points[2], points[3], pnts[0], pnts[1], pnts[2])) { return true; } } break; case 4: // Quad while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectTriTri(points[0], points[1], points[2], pnts[0], pnts[1], pnts[2]) || intersectTriTri(points[0], points[1], points[2], pnts[0], pnts[2], pnts[3]) || intersectTriTri(points[0], points[2], points[3], pnts[0], pnts[1], pnts[2]) || intersectTriTri(points[0], points[2], points[3], pnts[0], pnts[2], pnts[3])) { return true; } } break; case 2: // Line while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectSegment(points, pnts[0], pnts[1], dist, null)) { return true; } } break; case 1: // Point while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectTriPnt(points[0], points[1], points[2], pnts[0]) || intersectTriPnt(points[0], points[2], points[3], pnts[0])) { return true; } } break; } return false; } @Override boolean intersect(Transform3D thisToOtherVworld, GeometryRetained geom) { Point3d[] points = new Point3d[4]; int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ? initialVertexIndex : initialCoordIndex); points[0] = new Point3d(); points[1] = new Point3d(); points[2] = new Point3d(); points[3] = new Point3d(); while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); thisToOtherVworld.transform(points[0]); thisToOtherVworld.transform(points[1]); thisToOtherVworld.transform(points[2]); thisToOtherVworld.transform(points[3]); if (geom.intersect(points)) { return true; } } // for each quad return false; } // the bounds argument is already transformed @Override boolean intersect(Bounds targetBound) { Point3d[] points = new Point3d[4]; int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ? initialVertexIndex : initialCoordIndex); points[0] = new Point3d(); points[1] = new Point3d(); points[2] = new Point3d(); points[3] = new Point3d(); switch(targetBound.getPickType()) { case PickShape.PICKBOUNDINGBOX: BoundingBox box = (BoundingBox) targetBound; while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectBoundingBox(points, box, null, null)) { return true; } } break; case PickShape.PICKBOUNDINGSPHERE: BoundingSphere bsphere = (BoundingSphere) targetBound; while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectBoundingSphere(points, bsphere, null, null)) { return true; } } break; case PickShape.PICKBOUNDINGPOLYTOPE: BoundingPolytope bpolytope = (BoundingPolytope) targetBound; while (i < validVertexCount) { getVertexData(i++, points[0]); getVertexData(i++, points[1]); getVertexData(i++, points[2]); getVertexData(i++, points[3]); if (intersectBoundingPolytope(points, bpolytope, null, null)) { return true; } } break; default: throw new RuntimeException("Bounds not supported for intersection " + targetBound); } return false; } // From Graphics Gems IV (pg5) and Graphics Gems II, Pg170 // The centroid is the area-weighted sum of the centroids of // disjoint triangles that make up the polygon. @Override void computeCentroid() { int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ? initialVertexIndex : initialCoordIndex); Point3d pnt0 = new Point3d(); Point3d pnt1 = new Point3d(); Point3d pnt2 = new Point3d(); Point3d pnt3 = new Point3d(); Vector3d vec = new Vector3d(); Vector3d normal = new Vector3d(); Vector3d tmpvec = new Vector3d(); double area; double totalarea = 0; centroid.x = 0; centroid.y = 0; centroid.z = 0; while (i < validVertexCount) { getVertexData(i++, pnt0); getVertexData(i++, pnt1); getVertexData(i++, pnt2); getVertexData(i++, pnt3); // Determine the normal tmpvec.sub(pnt0, pnt1); vec.sub(pnt1, pnt2); // Do the cross product normal.cross(tmpvec, vec); normal.normalize(); // If a degenerate triangle, don't include if (Double.isNaN(normal.x+normal.y+normal.z)) continue; tmpvec.set(0,0,0); // compute the area of each triangle getCrossValue(pnt0, pnt1, tmpvec); getCrossValue(pnt1, pnt2, tmpvec); getCrossValue(pnt2, pnt0, tmpvec); area = normal.dot(tmpvec); totalarea += area; centroid.x += (pnt0.x+pnt1.x+pnt2.x) * area; centroid.y += (pnt0.y+pnt1.y+pnt2.y) * area; centroid.z += (pnt0.z+pnt1.z+pnt2.z) * area; // compute the area of each triangle tmpvec.set(0,0,0); getCrossValue(pnt0, pnt2, tmpvec); getCrossValue(pnt2, pnt3, tmpvec); getCrossValue(pnt3, pnt0, tmpvec); area = normal.dot(tmpvec); totalarea += area; centroid.x += (pnt3.x+pnt0.x+pnt2.x) * area; centroid.y += (pnt3.y+pnt0.y+pnt2.y) * area; centroid.z += (pnt3.z+pnt0.z+pnt2.z) * area; } if (totalarea != 0.0) { area = 1.0/(3.0 * totalarea); centroid.x *= area; centroid.y *= area; centroid.z *= area; } } @Override int getClassType() { return QUAD_TYPE; } }