/* * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ package javax.media.j3d; import javax.vecmath.Point3d; import javax.vecmath.Vector3d; /** * The TriangleFanArray object draws an array of vertices as a set of * connected triangle fans. An array of per-strip * vertex counts specifies where the separate strips (fans) appear * in the vertex array. For every strip in the set, * each vertex, beginning with the third vertex in the array, * defines a triangle to be drawn using the current vertex, * the previous vertex and the first vertex. This can be thought of * as a collection of convex polygons. */ class TriangleFanArrayRetained extends GeometryStripArrayRetained { TriangleFanArrayRetained() { this.geoType = GEO_TYPE_TRI_FAN_SET; } @Override boolean intersect(PickShape pickShape, PickInfo pickInfo, int flags, Point3d iPnt, GeometryRetained geom, int geomIndex) { Point3d pnts[] = new Point3d[3]; double sdist[] = new double[1]; double minDist = Double.MAX_VALUE; double x = 0, y = 0, z = 0; int i = 0; int j, end; pnts[0] = new Point3d(); pnts[1] = new Point3d(); pnts[2] = new Point3d(); int[] vtxIndexArr = new int[3]; switch (pickShape.getPickType()) { case PickShape.PICKRAY: PickRay pickRay= (PickRay) pickShape; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectRay(pnts, pickRay, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKSEGMENT: PickSegment pickSegment = (PickSegment) pickShape; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectSegment(pnts, pickSegment.start, pickSegment.end, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKBOUNDINGBOX: BoundingBox bbox = (BoundingBox) ((PickBounds) pickShape).bounds; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectBoundingBox(pnts, bbox, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKBOUNDINGSPHERE: BoundingSphere bsphere = (BoundingSphere) ((PickBounds) pickShape).bounds; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectBoundingSphere(pnts, bsphere, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKBOUNDINGPOLYTOPE: BoundingPolytope bpolytope = (BoundingPolytope) ((PickBounds) pickShape).bounds; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectBoundingPolytope(pnts, bpolytope, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKCYLINDER: PickCylinder pickCylinder= (PickCylinder) pickShape; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectCylinder(pnts, pickCylinder, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKCONE: PickCone pickCone= (PickCone) pickShape; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; for(int k=0; k<2; k++) { vtxIndexArr[k] = j; getVertexData(j++, pnts[k]); } while (j < end) { vtxIndexArr[2] = j; getVertexData(j++, pnts[2]); if (intersectCone(pnts, pickCone, sdist, iPnt)) { if (flags == 0) { return true; } if (sdist[0] < minDist) { minDist = sdist[0]; x = iPnt.x; y = iPnt.y; z = iPnt.z; if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } if((flags & PickInfo.ALL_GEOM_INFO) != 0) { storeInterestData(pickInfo, flags, geom, geomIndex, vtxIndexArr, iPnt, sdist[0]); } } pnts[1].set(pnts[2]); vtxIndexArr[1] = vtxIndexArr[2]; } } break; case PickShape.PICKPOINT: // Should not happen since API already check for this throw new IllegalArgumentException(J3dI18N.getString("TriangleFanArrayRetained0")); default: throw new RuntimeException ("PickShape not supported for intersection"); } if (minDist < Double.MAX_VALUE) { iPnt.x = x; iPnt.y = y; iPnt.z = z; return true; } return false; } // intersect pnts[] with every triangle in this object @Override boolean intersect(Point3d[] pnts) { int j, end; Point3d[] points = new Point3d[3]; double dist[] = new double[1]; int i = 0; points[0] = new Point3d(); points[1] = new Point3d(); points[2] = new Point3d(); switch (pnts.length) { case 3: // Triangle while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, points[0]); getVertexData(j++, points[1]); while (j < end) { getVertexData(j++, points[2]); if (intersectTriTri(points[0], points[1], points[2], pnts[0], pnts[1], pnts[2])) { return true; } points[1].set(points[2]); } } break; case 4: // Quad while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, points[0]); getVertexData(j++, points[1]); while (j < end) { getVertexData(j++, points[2]); if (intersectTriTri(points[0], points[1], points[2], pnts[0], pnts[1], pnts[2]) || intersectTriTri(points[0], points[1], points[2], pnts[0], pnts[2], pnts[3])) { return true; } points[1].set(points[2]); } } break; case 2: // Line while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, points[0]); getVertexData(j++, points[1]); while (j < end) { getVertexData(j++, points[2]); if (intersectSegment(points, pnts[0], pnts[1], dist, null)) { return true; } points[1].set(points[2]); } } break; case 1: // Point while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, points[0]); getVertexData(j++, points[1]); while (j < end) { getVertexData(j++, points[2]); if (intersectTriPnt(points[0], points[1], points[2], pnts[0])) { return true; } points[1].set(points[2]); } } break; } return false; } @Override boolean intersect(Transform3D thisToOtherVworld, GeometryRetained geom) { int i = 0, j, end; Point3d[] pnts = new Point3d[3]; pnts[0] = new Point3d(); pnts[1] = new Point3d(); pnts[2] = new Point3d(); while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, pnts[0]); getVertexData(j++, pnts[1]); thisToOtherVworld.transform(pnts[0]); thisToOtherVworld.transform(pnts[1]); while (j < end) { getVertexData(j++, pnts[2]); thisToOtherVworld.transform(pnts[2]); if (geom.intersect(pnts)) { return true; } pnts[1].set(pnts[2]); } } return false; } // the bounds argument is already transformed @Override boolean intersect(Bounds targetBound) { int i = 0; int j, end; Point3d[] pnts = new Point3d[3]; pnts[0] = new Point3d(); pnts[1] = new Point3d(); pnts[2] = new Point3d(); switch(targetBound.getPickType()) { case PickShape.PICKBOUNDINGBOX: BoundingBox box = (BoundingBox) targetBound; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; getVertexData(j++, pnts[0]); getVertexData(j++, pnts[1]); end = j + stripVertexCounts[i++]; while ( j < end) { getVertexData(j++, pnts[2]); if (intersectBoundingBox(pnts, box, null, null)) { return true; } pnts[1].set(pnts[2]); } } break; case PickShape.PICKBOUNDINGSPHERE: BoundingSphere bsphere = (BoundingSphere) targetBound; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, pnts[0]); getVertexData(j++, pnts[1]); while ( j < end) { getVertexData(j++, pnts[2]); if (intersectBoundingSphere(pnts, bsphere, null, null)) { return true; } pnts[1].set(pnts[2]); } } break; case PickShape.PICKBOUNDINGPOLYTOPE: BoundingPolytope bpolytope = (BoundingPolytope) targetBound; while (i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, pnts[0]); getVertexData(j++, pnts[1]); while ( j < end) { getVertexData(j++, pnts[2]); if (intersectBoundingPolytope(pnts, bpolytope, null, null)) { return true; } pnts[1].set(pnts[2]); } } break; default: throw new RuntimeException("Bounds not supported for intersection " + targetBound); } return false; } // From Graphics Gems IV (pg5) and Graphics Gems II, Pg170 @Override void computeCentroid() { Vector3d vec = new Vector3d(); Vector3d normal = new Vector3d(); Vector3d tmpvec = new Vector3d(); Point3d pnt0 = new Point3d(); Point3d pnt1 = new Point3d(); Point3d pnt2 = new Point3d(); double area, totalarea = 0; int end, replaceIndex, j, i = 0; centroid.x = 0; centroid.y = 0; centroid.z = 0; while( i < stripVertexCounts.length) { j = stripStartVertexIndices[i]; end = j + stripVertexCounts[i++]; getVertexData(j++, pnt0); getVertexData(j++, pnt1); replaceIndex = 2; while (j < end) { area = 0; if (replaceIndex == 2) { getVertexData(j++, pnt2); replaceIndex = 1; } else { getVertexData(j++, pnt1); replaceIndex = 2; } // Determine the normal vec.sub(pnt0, pnt1); tmpvec.sub(pnt1, pnt2); // Do the cross product normal.cross(vec, tmpvec); normal.normalize(); // If a degenerate triangle, don't include if (Double.isNaN(normal.x + normal.y + normal.z)) continue; tmpvec.set(0,0,0); // compute the area getCrossValue(pnt0, pnt1, tmpvec); getCrossValue(pnt1, pnt2, tmpvec); getCrossValue(pnt2, pnt0, tmpvec); area = normal.dot(tmpvec); totalarea += area; centroid.x += (pnt0.x + pnt1.x + pnt2.x) * area; centroid.y += (pnt0.y + pnt1.y + pnt2.y) * area; centroid.z += (pnt0.z + pnt1.z + pnt2.z) * area; } } if (totalarea != 0.0) { area = 1.0/(3.0 * totalarea); centroid.x *= area; centroid.y *= area; centroid.z *= area; } } @Override int getClassType() { return TRIANGLE_TYPE; } }