diff options
author | Kevin Rushforth <[email protected]> | 2004-06-09 02:52:37 +0000 |
---|---|---|
committer | Kevin Rushforth <[email protected]> | 2004-06-09 02:52:37 +0000 |
commit | df69463d936326e3f44453e9b9987b96272ae5d9 (patch) | |
tree | c0aa5a160cd3a4e9bdbd201a0e6a2c35ce763e4f /src/javax/vecmath/Quat4d.java | |
parent | 8d04fe6c33678b770bbd5c7747ca21e565648222 (diff) |
Initial creation of vecmath sources in CVS repository
git-svn-id: https://svn.java.net/svn/vecmath~svn/trunk@5 dd45e54d-f42e-c781-df72-dca083a658b1
Diffstat (limited to 'src/javax/vecmath/Quat4d.java')
-rw-r--r-- | src/javax/vecmath/Quat4d.java | 662 |
1 files changed, 662 insertions, 0 deletions
diff --git a/src/javax/vecmath/Quat4d.java b/src/javax/vecmath/Quat4d.java new file mode 100644 index 0000000..c6232f6 --- /dev/null +++ b/src/javax/vecmath/Quat4d.java @@ -0,0 +1,662 @@ +/* + * $RCSfile$ + * + * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved. + * + * Use is subject to license terms. + * + * $Revision$ + * $Date$ + * $State$ + */ + +package javax.vecmath; + +import java.lang.Math; + +/** + * A 4-element quaternion represented by double precision floating + * point x,y,z,w coordinates. The quaternion is always normalized. + * + */ +public class Quat4d extends Tuple4d implements java.io.Serializable { + + // Combatible with 1.1 + static final long serialVersionUID = 7577479888820201099L; + + final static double EPS = 0.000001; + final static double EPS2 = 1.0e-30; + final static double PIO2 = 1.57079632679; + + /** + * Constructs and initializes a Quat4d from the specified xyzw coordinates. + * @param x the x coordinate + * @param y the y coordinate + * @param z the z coordinate + * @param w the w scalar component + */ + public Quat4d(double x, double y, double z, double w) + { + double mag; + mag = 1.0/Math.sqrt( x*x + y*y + z*z + w*w ); + this.x = x*mag; + this.y = y*mag; + this.z = z*mag; + this.w = w*mag; + + } + + /** + * Constructs and initializes a Quat4d from the array of length 4. + * @param q the array of length 4 containing xyzw in order + */ + public Quat4d(double[] q) + { + double mag; + mag = 1.0/Math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] ); + x = q[0]*mag; + y = q[1]*mag; + z = q[2]*mag; + w = q[3]*mag; + + } + + /** + * Constructs and initializes a Quat4d from the specified Quat4d. + * @param q1 the Quat4d containing the initialization x y z w data + */ + public Quat4d(Quat4d q1) + { + super(q1); + } + + /** + * Constructs and initializes a Quat4d from the specified Quat4f. + * @param q1 the Quat4f containing the initialization x y z w data + */ + public Quat4d(Quat4f q1) + { + super(q1); + } + + + /** + * Constructs and initializes a Quat4d from the specified Tuple4f. + * @param t1 the Tuple4f containing the initialization x y z w data + */ + public Quat4d(Tuple4f t1) + { + double mag; + mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w ); + x = t1.x*mag; + y = t1.y*mag; + z = t1.z*mag; + w = t1.w*mag; + + } + + + /** + * Constructs and initializes a Quat4d from the specified Tuple4d. + * @param t1 the Tuple4d containing the initialization x y z w data + */ + public Quat4d(Tuple4d t1) + { + double mag; + mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w ); + x = t1.x*mag; + y = t1.y*mag; + z = t1.z*mag; + w = t1.w*mag; + } + + + /** + * Constructs and initializes a Quat4d to (0,0,0,0). + */ + public Quat4d() + { + super(); + } + + + /** + * Sets the value of this quaternion to the conjugate of quaternion q1. + * @param q1 the source vector + */ + public final void conjugate(Quat4d q1) + { + this.x = -q1.x; + this.y = -q1.y; + this.z = -q1.z; + this.w = q1.w; + } + + + /** + * Negate the value of of each of this quaternion's x,y,z coordinates + * in place. + */ + public final void conjugate() + { + this.x = -this.x; + this.y = -this.y; + this.z = -this.z; + } + + + /** + * Sets the value of this quaternion to the quaternion product of + * quaternions q1 and q2 (this = q1 * q2). + * Note that this is safe for aliasing (e.g. this can be q1 or q2). + * @param q1 the first quaternion + * @param q2 the second quaternion + */ + public final void mul(Quat4d q1, Quat4d q2) + { + if (this != q1 && this != q2) { + this.w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z; + this.x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y; + this.y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x; + this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x; + } else { + double x, y, w; + + w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z; + x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y; + y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x; + this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x; + this.w = w; + this.x = x; + this.y = y; + } + } + + + /** + * Sets the value of this quaternion to the quaternion product of + * itself and q1 (this = this * q1). + * @param q1 the other quaternion + */ + public final void mul(Quat4d q1) + { + double x, y, w; + + w = this.w*q1.w - this.x*q1.x - this.y*q1.y - this.z*q1.z; + x = this.w*q1.x + q1.w*this.x + this.y*q1.z - this.z*q1.y; + y = this.w*q1.y + q1.w*this.y - this.x*q1.z + this.z*q1.x; + this.z = this.w*q1.z + q1.w*this.z + this.x*q1.y - this.y*q1.x; + this.w = w; + this.x = x; + this.y = y; + } + + + /** + * Multiplies quaternion q1 by the inverse of quaternion q2 and places + * the value into this quaternion. The value of both argument quaternions + * is preservered (this = q1 * q2^-1). + * @param q1 the first quaternion + * @param q2 the second quaternion + */ + public final void mulInverse(Quat4d q1, Quat4d q2) + { + Quat4d tempQuat = new Quat4d(q2); + + tempQuat.inverse(); + this.mul(q1, tempQuat); + } + + + + /** + * Multiplies this quaternion by the inverse of quaternion q1 and places + * the value into this quaternion. The value of the argument quaternion + * is preserved (this = this * q^-1). + * @param q1 the other quaternion + */ + public final void mulInverse(Quat4d q1) + { + Quat4d tempQuat = new Quat4d(q1); + + tempQuat.inverse(); + this.mul(tempQuat); + } + + + /** + * Sets the value of this quaternion to quaternion inverse of quaternion q1. + * @param q1 the quaternion to be inverted + */ + public final void inverse(Quat4d q1) + { + double norm; + + norm = 1.0/(q1.w*q1.w + q1.x*q1.x + q1.y*q1.y + q1.z*q1.z); + this.w = norm*q1.w; + this.x = -norm*q1.x; + this.y = -norm*q1.y; + this.z = -norm*q1.z; + } + + + /** + * Sets the value of this quaternion to the quaternion inverse of itself. + */ + public final void inverse() + { + double norm; + + norm = 1.0/(this.w*this.w + this.x*this.x + this.y*this.y + this.z*this.z); + this.w *= norm; + this.x *= -norm; + this.y *= -norm; + this.z *= -norm; + } + + + /** + * Sets the value of this quaternion to the normalized value + * of quaternion q1. + * @param q1 the quaternion to be normalized. + */ + public final void normalize(Quat4d q1) + { + double norm; + + norm = (q1.x*q1.x + q1.y*q1.y + q1.z*q1.z + q1.w*q1.w); + + if (norm > 0.0) { + norm = 1.0/Math.sqrt(norm); + this.x = norm*q1.x; + this.y = norm*q1.y; + this.z = norm*q1.z; + this.w = norm*q1.w; + } else { + this.x = 0.0; + this.y = 0.0; + this.z = 0.0; + this.w = 0.0; + } + } + + + /** + * Normalizes the value of this quaternion in place. + */ + public final void normalize() + { + double norm; + + norm = (this.x*this.x + this.y*this.y + this.z*this.z + this.w*this.w); + + if (norm > 0.0) { + norm = 1.0 / Math.sqrt(norm); + this.x *= norm; + this.y *= norm; + this.z *= norm; + this.w *= norm; + } else { + this.x = 0.0; + this.y = 0.0; + this.z = 0.0; + this.w = 0.0; + } + } + + + /** + * Sets the value of this quaternion to the rotational component of + * the passed matrix. + * @param m1 the matrix4f + */ + public final void set(Matrix4f m1) + { + double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33); + + if (ww >= 0) { + if (ww >= EPS2) { + this.w = Math.sqrt(ww); + ww = 0.25/this.w; + this.x = ((m1.m21 - m1.m12)*ww); + this.y = ((m1.m02 - m1.m20)*ww); + this.z = ((m1.m10 - m1.m01)*ww); + return; + } + } else { + this.w = 0; + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.w = 0; + ww = -0.5*(m1.m11 + m1.m22); + if (ww >= 0) { + if (ww >= EPS2) { + this.x = Math.sqrt(ww); + ww = 1.0/(2.0*this.x); + this.y = (m1.m10*ww); + this.z = (m1.m20*ww); + return; + } + } else { + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.x = 0; + ww = 0.5*(1.0 - m1.m22); + if (ww >= EPS2) { + this.y = Math.sqrt(ww); + this.z = (m1.m21)/(2.0*this.y); + return; + } + + this.y = 0; + this.z = 1; + } + + + /** + * Sets the value of this quaternion to the rotational component of + * the passed matrix. + * @param m1 the matrix4d + */ + public final void set(Matrix4d m1) + { + double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33); + + if (ww >= 0) { + if (ww >= EPS2) { + this.w = Math.sqrt(ww); + ww = 0.25/this.w; + this.x = (m1.m21 - m1.m12)*ww; + this.y = (m1.m02 - m1.m20)*ww; + this.z = (m1.m10 - m1.m01)*ww; + return; + } + } else { + this.w = 0; + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.w = 0; + ww = -0.5*(m1.m11 + m1.m22); + if (ww >= 0) { + if (ww >= EPS2){ + this.x = Math.sqrt(ww); + ww = 0.5/this.x; + this.y = m1.m10*ww; + this.z = m1.m20*ww; + return; + } + } else { + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.x = 0.0; + ww = 0.5*(1.0 - m1.m22); + if (ww >= EPS2) { + this.y = Math.sqrt(ww); + this.z = m1.m21/(2.0*this.y); + return; + } + + this.y = 0; + this.z = 1; + } + + + /** + * Sets the value of this quaternion to the rotational component of + * the passed matrix. + * @param m1 the matrix3f + */ + public final void set(Matrix3f m1) + { + double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0); + + if (ww >= 0) { + if (ww >= EPS2) { + this.w = Math.sqrt(ww); + ww = 0.25/this.w; + this.x = ((m1.m21 - m1.m12)*ww); + this.y = ((m1.m02 - m1.m20)*ww); + this.z = ((m1.m10 - m1.m01)*ww); + return; + } + } else { + this.w = 0; + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.w = 0; + ww = -0.5*(m1.m11 + m1.m22); + if (ww >= 0) { + if (ww >= EPS2) { + this.x = Math.sqrt(ww); + ww = 0.5/this.x; + this.y = (m1.m10*ww); + this.z = (m1.m20*ww); + return; + } + } else { + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.x = 0; + ww = 0.5*(1.0 - m1.m22); + if (ww >= EPS2) { + this.y = Math.sqrt(ww); + this.z = (m1.m21/(2.0*this.y)); + } + + this.y = 0; + this.z = 1; + } + + + /** + * Sets the value of this quaternion to the rotational component of + * the passed matrix. + * @param m1 the matrix3d + */ + public final void set(Matrix3d m1) + { + double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0); + + if (ww >= 0) { + if (ww >= EPS2) { + this.w = Math.sqrt(ww); + ww = 0.25/this.w; + this.x = (m1.m21 - m1.m12)*ww; + this.y = (m1.m02 - m1.m20)*ww; + this.z = (m1.m10 - m1.m01)*ww; + return; + } + } else { + this.w = 0; + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.w = 0; + ww = -0.5*(m1.m11 + m1.m22); + if (ww >= 0) { + if (ww >= EPS2) { + this.x = Math.sqrt(ww); + ww = 0.5/this.x; + this.y = m1.m10*ww; + this.z = m1.m20*ww; + return; + } + } else { + this.x = 0; + this.y = 0; + this.z = 1; + return; + } + + this.x = 0; + ww = 0.5*(1.0 - m1.m22); + if (ww >= EPS2) { + this.y = Math.sqrt(ww); + this.z = m1.m21/(2.0*this.y); + return; + } + + this.y = 0; + this.z = 1; + } + + + /** + * Sets the value of this quaternion to the equivalent rotation + * of the AxisAngle argument. + * @param a the AxisAngle to be emulated + */ + public final void set(AxisAngle4f a) + { + double mag,amag; + // Quat = cos(theta/2) + sin(theta/2)(roation_axis) + + amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z); + if( amag < EPS ) { + w = 0.0; + x = 0.0; + y = 0.0; + z = 0.0; + } else { + mag = Math.sin(a.angle/2.0); + amag = 1.0/amag; + w = Math.cos(a.angle/2.0); + x = a.x*amag*mag; + y = a.y*amag*mag; + z = a.z*amag*mag; + } + + } + + /** + * Sets the value of this quaternion to the equivalent rotation + * of the AxisAngle argument. + * @param a the AxisAngle to be emulated + */ + public final void set(AxisAngle4d a) + { + double mag,amag; + // Quat = cos(theta/2) + sin(theta/2)(roation_axis) + + amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z); + if( amag < EPS ) { + w = 0.0; + x = 0.0; + y = 0.0; + z = 0.0; + } else { + amag = 1.0/amag; + mag = Math.sin(a.angle/2.0); + w = Math.cos(a.angle/2.0); + x = a.x*amag*mag; + y = a.y*amag*mag; + z = a.z*amag*mag; + } + + } + + /** + * Performs a great circle interpolation between this quaternion + * and the quaternion parameter and places the result into this + * quaternion. + * @param q1 the other quaternion + * @param alpha the alpha interpolation parameter + */ + public final void interpolate(Quat4d q1, double alpha) { + // From "Advanced Animation and Rendering Techniques" + // by Watt and Watt pg. 364, function as implemented appeared to be + // incorrect. Fails to choose the same quaternion for the double + // covering. Resulting in change of direction for rotations. + // Fixed function to negate the first quaternion in the case that the + // dot product of q1 and this is negative. Second case was not needed. + double dot,s1,s2,om,sinom; + + dot = x*q1.x + y*q1.y + z*q1.z + w*q1.w; + + if ( dot < 0 ) { + // switch the quaterion values + q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w; + } + + if ( (1.0 - Math.abs(dot) ) > EPS ) { + om = Math.acos(dot); + sinom = Math.sin(om); + s1 = Math.sin((1.0-alpha)*om)/sinom; + s2 = Math.sin( alpha*om)/sinom; + } else{ + s1 = 1.0 - alpha; + s2 = alpha; + } + + w = s1*w + s2*q1.w; + x = s1*x + s2*q1.x; + y = s1*y + s2*q1.y; + z = s1*z + s2*q1.z; + } + +/** + * Performs a great circle interpolation between quaternion q1 + * and quaternion q2 and places the result into this quaternion. + * @param q1 the first quaternion + * @param q2 the second quaternion + * @param alpha the alpha interpolation parameter + */ + public final void interpolate(Quat4d q1, Quat4d q2, double alpha) { + // From "Advanced Animation and Rendering Techniques" + // by Watt and Watt pg. 364, function as implemented appeared to be + // incorrect. Fails to choose the same quaternion for the double + // covering. Resulting in change of direction for rotations. + // Fixed function to negate the first quaternion in the case that the + // dot product of q1 and this is negative. Second case was not needed. + double dot,s1,s2,om,sinom; + + dot = q2.x*q1.x + q2.y*q1.y + q2.z*q1.z + q2.w*q1.w; + + if ( dot < 0 ) { + // switch the quaterion values + q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w; + } + + if ( (1.0 - Math.abs(dot) ) > EPS ) { + om = Math.acos(dot); + sinom = Math.sin(om); + s1 = Math.sin((1.0-alpha)*om)/sinom; + s2 = Math.sin( alpha*om)/sinom; + } else{ + s1 = 1.0 - alpha; + s2 = alpha; + } + w = s1*q1.w + s2*q2.w; + x = s1*q1.x + s2*q2.x; + y = s1*q1.y + s2*q2.y; + z = s1*q1.z + s2*q2.z; + } + +} |