summaryrefslogtreecommitdiffstats
path: root/src/javax/vecmath/Quat4d.java
diff options
context:
space:
mode:
authorKevin Rushforth <[email protected]>2004-06-09 02:52:37 +0000
committerKevin Rushforth <[email protected]>2004-06-09 02:52:37 +0000
commitdf69463d936326e3f44453e9b9987b96272ae5d9 (patch)
treec0aa5a160cd3a4e9bdbd201a0e6a2c35ce763e4f /src/javax/vecmath/Quat4d.java
parent8d04fe6c33678b770bbd5c7747ca21e565648222 (diff)
Initial creation of vecmath sources in CVS repository
git-svn-id: https://svn.java.net/svn/vecmath~svn/trunk@5 dd45e54d-f42e-c781-df72-dca083a658b1
Diffstat (limited to 'src/javax/vecmath/Quat4d.java')
-rw-r--r--src/javax/vecmath/Quat4d.java662
1 files changed, 662 insertions, 0 deletions
diff --git a/src/javax/vecmath/Quat4d.java b/src/javax/vecmath/Quat4d.java
new file mode 100644
index 0000000..c6232f6
--- /dev/null
+++ b/src/javax/vecmath/Quat4d.java
@@ -0,0 +1,662 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4-element quaternion represented by double precision floating
+ * point x,y,z,w coordinates. The quaternion is always normalized.
+ *
+ */
+public class Quat4d extends Tuple4d implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 7577479888820201099L;
+
+ final static double EPS = 0.000001;
+ final static double EPS2 = 1.0e-30;
+ final static double PIO2 = 1.57079632679;
+
+ /**
+ * Constructs and initializes a Quat4d from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w scalar component
+ */
+ public Quat4d(double x, double y, double z, double w)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( x*x + y*y + z*z + w*w );
+ this.x = x*mag;
+ this.y = y*mag;
+ this.z = z*mag;
+ this.w = w*mag;
+
+ }
+
+ /**
+ * Constructs and initializes a Quat4d from the array of length 4.
+ * @param q the array of length 4 containing xyzw in order
+ */
+ public Quat4d(double[] q)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] );
+ x = q[0]*mag;
+ y = q[1]*mag;
+ z = q[2]*mag;
+ w = q[3]*mag;
+
+ }
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Quat4d.
+ * @param q1 the Quat4d containing the initialization x y z w data
+ */
+ public Quat4d(Quat4d q1)
+ {
+ super(q1);
+ }
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Quat4f.
+ * @param q1 the Quat4f containing the initialization x y z w data
+ */
+ public Quat4d(Quat4f q1)
+ {
+ super(q1);
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Quat4d(Tuple4f t1)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
+ x = t1.x*mag;
+ y = t1.y*mag;
+ z = t1.z*mag;
+ w = t1.w*mag;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Quat4d(Tuple4d t1)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
+ x = t1.x*mag;
+ y = t1.y*mag;
+ z = t1.z*mag;
+ w = t1.w*mag;
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4d to (0,0,0,0).
+ */
+ public Quat4d()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the conjugate of quaternion q1.
+ * @param q1 the source vector
+ */
+ public final void conjugate(Quat4d q1)
+ {
+ this.x = -q1.x;
+ this.y = -q1.y;
+ this.z = -q1.z;
+ this.w = q1.w;
+ }
+
+
+ /**
+ * Negate the value of of each of this quaternion's x,y,z coordinates
+ * in place.
+ */
+ public final void conjugate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * quaternions q1 and q2 (this = q1 * q2).
+ * Note that this is safe for aliasing (e.g. this can be q1 or q2).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mul(Quat4d q1, Quat4d q2)
+ {
+ if (this != q1 && this != q2) {
+ this.w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ this.x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ this.y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ } else {
+ double x, y, w;
+
+ w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * itself and q1 (this = this * q1).
+ * @param q1 the other quaternion
+ */
+ public final void mul(Quat4d q1)
+ {
+ double x, y, w;
+
+ w = this.w*q1.w - this.x*q1.x - this.y*q1.y - this.z*q1.z;
+ x = this.w*q1.x + q1.w*this.x + this.y*q1.z - this.z*q1.y;
+ y = this.w*q1.y + q1.w*this.y - this.x*q1.z + this.z*q1.x;
+ this.z = this.w*q1.z + q1.w*this.z + this.x*q1.y - this.y*q1.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Multiplies quaternion q1 by the inverse of quaternion q2 and places
+ * the value into this quaternion. The value of both argument quaternions
+ * is preservered (this = q1 * q2^-1).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mulInverse(Quat4d q1, Quat4d q2)
+ {
+ Quat4d tempQuat = new Quat4d(q2);
+
+ tempQuat.inverse();
+ this.mul(q1, tempQuat);
+ }
+
+
+
+ /**
+ * Multiplies this quaternion by the inverse of quaternion q1 and places
+ * the value into this quaternion. The value of the argument quaternion
+ * is preserved (this = this * q^-1).
+ * @param q1 the other quaternion
+ */
+ public final void mulInverse(Quat4d q1)
+ {
+ Quat4d tempQuat = new Quat4d(q1);
+
+ tempQuat.inverse();
+ this.mul(tempQuat);
+ }
+
+
+ /**
+ * Sets the value of this quaternion to quaternion inverse of quaternion q1.
+ * @param q1 the quaternion to be inverted
+ */
+ public final void inverse(Quat4d q1)
+ {
+ double norm;
+
+ norm = 1.0/(q1.w*q1.w + q1.x*q1.x + q1.y*q1.y + q1.z*q1.z);
+ this.w = norm*q1.w;
+ this.x = -norm*q1.x;
+ this.y = -norm*q1.y;
+ this.z = -norm*q1.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion inverse of itself.
+ */
+ public final void inverse()
+ {
+ double norm;
+
+ norm = 1.0/(this.w*this.w + this.x*this.x + this.y*this.y + this.z*this.z);
+ this.w *= norm;
+ this.x *= -norm;
+ this.y *= -norm;
+ this.z *= -norm;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the normalized value
+ * of quaternion q1.
+ * @param q1 the quaternion to be normalized.
+ */
+ public final void normalize(Quat4d q1)
+ {
+ double norm;
+
+ norm = (q1.x*q1.x + q1.y*q1.y + q1.z*q1.z + q1.w*q1.w);
+
+ if (norm > 0.0) {
+ norm = 1.0/Math.sqrt(norm);
+ this.x = norm*q1.x;
+ this.y = norm*q1.y;
+ this.z = norm*q1.z;
+ this.w = norm*q1.w;
+ } else {
+ this.x = 0.0;
+ this.y = 0.0;
+ this.z = 0.0;
+ this.w = 0.0;
+ }
+ }
+
+
+ /**
+ * Normalizes the value of this quaternion in place.
+ */
+ public final void normalize()
+ {
+ double norm;
+
+ norm = (this.x*this.x + this.y*this.y + this.z*this.z + this.w*this.w);
+
+ if (norm > 0.0) {
+ norm = 1.0 / Math.sqrt(norm);
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ this.w *= norm;
+ } else {
+ this.x = 0.0;
+ this.y = 0.0;
+ this.z = 0.0;
+ this.w = 0.0;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = ((m1.m21 - m1.m12)*ww);
+ this.y = ((m1.m02 - m1.m20)*ww);
+ this.z = ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = Math.sqrt(ww);
+ ww = 1.0/(2.0*this.x);
+ this.y = (m1.m10*ww);
+ this.z = (m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = (m1.m21)/(2.0*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix4d
+ */
+ public final void set(Matrix4d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2){
+ this.x = Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0.0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = m1.m21/(2.0*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix3f
+ */
+ public final void set(Matrix3f m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = ((m1.m21 - m1.m12)*ww);
+ this.y = ((m1.m02 - m1.m20)*ww);
+ this.z = ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = (m1.m10*ww);
+ this.z = (m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = (m1.m21/(2.0*this.y));
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = m1.m21/(2.0*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4f a)
+ {
+ double mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+
+ amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
+ if( amag < EPS ) {
+ w = 0.0;
+ x = 0.0;
+ y = 0.0;
+ z = 0.0;
+ } else {
+ mag = Math.sin(a.angle/2.0);
+ amag = 1.0/amag;
+ w = Math.cos(a.angle/2.0);
+ x = a.x*amag*mag;
+ y = a.y*amag*mag;
+ z = a.z*amag*mag;
+ }
+
+ }
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4d a)
+ {
+ double mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+
+ amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
+ if( amag < EPS ) {
+ w = 0.0;
+ x = 0.0;
+ y = 0.0;
+ z = 0.0;
+ } else {
+ amag = 1.0/amag;
+ mag = Math.sin(a.angle/2.0);
+ w = Math.cos(a.angle/2.0);
+ x = a.x*amag*mag;
+ y = a.y*amag*mag;
+ z = a.z*amag*mag;
+ }
+
+ }
+
+ /**
+ * Performs a great circle interpolation between this quaternion
+ * and the quaternion parameter and places the result into this
+ * quaternion.
+ * @param q1 the other quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4d q1, double alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+ double dot,s1,s2,om,sinom;
+
+ dot = x*q1.x + y*q1.y + z*q1.z + w*q1.w;
+
+ if ( dot < 0 ) {
+ // switch the quaterion values
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ }
+
+ if ( (1.0 - Math.abs(dot) ) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+
+ w = s1*w + s2*q1.w;
+ x = s1*x + s2*q1.x;
+ y = s1*y + s2*q1.y;
+ z = s1*z + s2*q1.z;
+ }
+
+/**
+ * Performs a great circle interpolation between quaternion q1
+ * and quaternion q2 and places the result into this quaternion.
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4d q1, Quat4d q2, double alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+ double dot,s1,s2,om,sinom;
+
+ dot = q2.x*q1.x + q2.y*q1.y + q2.z*q1.z + q2.w*q1.w;
+
+ if ( dot < 0 ) {
+ // switch the quaterion values
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ }
+
+ if ( (1.0 - Math.abs(dot) ) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+ w = s1*q1.w + s2*q2.w;
+ x = s1*q1.x + s2*q2.x;
+ y = s1*q1.y + s2*q2.y;
+ z = s1*q1.z + s2*q2.z;
+ }
+
+}