summaryrefslogtreecommitdiffstats
path: root/src/javax/vecmath
diff options
context:
space:
mode:
authorKevin Rushforth <[email protected]>2004-06-09 02:52:37 +0000
committerKevin Rushforth <[email protected]>2004-06-09 02:52:37 +0000
commitdf69463d936326e3f44453e9b9987b96272ae5d9 (patch)
treec0aa5a160cd3a4e9bdbd201a0e6a2c35ce763e4f /src/javax/vecmath
parent8d04fe6c33678b770bbd5c7747ca21e565648222 (diff)
Initial creation of vecmath sources in CVS repository
git-svn-id: https://svn.java.net/svn/vecmath~svn/trunk@5 dd45e54d-f42e-c781-df72-dca083a658b1
Diffstat (limited to 'src/javax/vecmath')
-rw-r--r--src/javax/vecmath/AxisAngle4d.java536
-rw-r--r--src/javax/vecmath/AxisAngle4f.java532
-rw-r--r--src/javax/vecmath/Color3b.java135
-rw-r--r--src/javax/vecmath/Color3f.java139
-rw-r--r--src/javax/vecmath/Color4b.java141
-rw-r--r--src/javax/vecmath/Color4f.java144
-rw-r--r--src/javax/vecmath/ExceptionStrings.properties86
-rw-r--r--src/javax/vecmath/GMatrix.java2989
-rw-r--r--src/javax/vecmath/GVector.java914
-rw-r--r--src/javax/vecmath/Matrix3d.java3106
-rw-r--r--src/javax/vecmath/Matrix3f.java2096
-rw-r--r--src/javax/vecmath/Matrix4d.java3585
-rw-r--r--src/javax/vecmath/Matrix4f.java3245
-rw-r--r--src/javax/vecmath/MismatchedSizeException.java38
-rw-r--r--src/javax/vecmath/Point2d.java144
-rw-r--r--src/javax/vecmath/Point2f.java145
-rw-r--r--src/javax/vecmath/Point3d.java175
-rw-r--r--src/javax/vecmath/Point3f.java178
-rw-r--r--src/javax/vecmath/Point3i.java66
-rw-r--r--src/javax/vecmath/Point4d.java210
-rw-r--r--src/javax/vecmath/Point4f.java212
-rw-r--r--src/javax/vecmath/Point4i.java67
-rw-r--r--src/javax/vecmath/Quat4d.java662
-rw-r--r--src/javax/vecmath/Quat4f.java674
-rw-r--r--src/javax/vecmath/SingularMatrixException.java35
-rw-r--r--src/javax/vecmath/TexCoord2f.java77
-rw-r--r--src/javax/vecmath/TexCoord3f.java88
-rw-r--r--src/javax/vecmath/TexCoord4f.java90
-rw-r--r--src/javax/vecmath/Tuple2d.java537
-rw-r--r--src/javax/vecmath/Tuple2f.java541
-rw-r--r--src/javax/vecmath/Tuple3b.java229
-rw-r--r--src/javax/vecmath/Tuple3d.java667
-rw-r--r--src/javax/vecmath/Tuple3f.java621
-rw-r--r--src/javax/vecmath/Tuple3i.java502
-rw-r--r--src/javax/vecmath/Tuple4b.java246
-rw-r--r--src/javax/vecmath/Tuple4d.java751
-rw-r--r--src/javax/vecmath/Tuple4f.java682
-rw-r--r--src/javax/vecmath/Tuple4i.java567
-rw-r--r--src/javax/vecmath/VecMathI18N.java31
-rw-r--r--src/javax/vecmath/Vector2d.java168
-rw-r--r--src/javax/vecmath/Vector2f.java168
-rw-r--r--src/javax/vecmath/Vector3d.java191
-rw-r--r--src/javax/vecmath/Vector3f.java186
-rw-r--r--src/javax/vecmath/Vector4d.java205
-rw-r--r--src/javax/vecmath/Vector4f.java209
45 files changed, 27010 insertions, 0 deletions
diff --git a/src/javax/vecmath/AxisAngle4d.java b/src/javax/vecmath/AxisAngle4d.java
new file mode 100644
index 0000000..d856081
--- /dev/null
+++ b/src/javax/vecmath/AxisAngle4d.java
@@ -0,0 +1,536 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A four-element axis angle represented by double-precision floating point
+ * x,y,z,angle components. An axis angle is a rotation of angle (radians)
+ * about the vector (x,y,z).
+ *
+ */
+public class AxisAngle4d implements java.io.Serializable, Cloneable {
+
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 3644296204459140589L;
+
+ /**
+ * The x coordinate.
+ */
+ public double x;
+
+ /**
+ * The y coordinate.
+ */
+ public double y;
+
+ /**
+ * The z coordinate.
+ */
+ public double z;
+
+ /**
+ * The angle of rotation in radians.
+ */
+ public double angle;
+
+ final static double EPS = 0.000001;
+
+ /**
+ * Constructs and initializes an AxisAngle4d from the specified
+ * x, y, z, and angle.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param angle the angle of rotation in radians
+ */
+ public AxisAngle4d(double x, double y, double z, double angle)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4d from the components
+ * contained in the array.
+ * @param a the array of length 4 containing x,y,z,angle in order
+ */
+ public AxisAngle4d(double[] a)
+ {
+ this.x = a[0];
+ this.y = a[1];
+ this.z = a[2];
+ this.angle = a[3];
+ }
+ /**
+ * Constructs and initializes an AxisAngle4d from the specified AxisAngle4d.
+ * @param a1 the AxisAngle4d containing the initialization x y z angle data
+ */
+ public AxisAngle4d(AxisAngle4d a1)
+ {
+ this.x = a1.x;
+ this.y = a1.y;
+ this.z = a1.z;
+ this.angle = a1.angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4d from the specified
+ * AxisAngle4f.
+ * @param a1 the AxisAngle4f containing the initialization x y z angle data
+ */
+ public AxisAngle4d(AxisAngle4f a1)
+ {
+ this.x = a1.x;
+ this.y = a1.y;
+ this.z = a1.z;
+ this.angle = a1.angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4d from the specified
+ * axis and angle.
+ * @param axis the axis
+ * @param angle the angle of rotation in radian
+ *
+ * @since Java 3D 1.2
+ */
+ public AxisAngle4d(Vector3d axis, double angle) {
+ this.x = axis.x;
+ this.y = axis.y;
+ this.z = axis.z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4d to (0,0,1,0).
+ */
+ public AxisAngle4d()
+ {
+ this.x = 0.0;
+ this.y = 0.0;
+ this.z = 1.0;
+ this.angle = 0.0;
+ }
+
+
+ /**
+ * Sets the value of this axis angle to the specified x,y,z,angle.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param angle the angle of rotation in radians
+ */
+ public final void set(double x, double y, double z, double angle)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Sets the value of this axis angle to the specified x,y,z,angle.
+ * @param a the array of length 4 containing x,y,z,angle in order
+ */
+ public final void set(double[] a)
+ {
+ this.x = a[0];
+ this.y = a[1];
+ this.z = a[2];
+ this.angle = a[3];
+ }
+
+
+ /**
+ * Sets the value of this axis angle to the value of axis angle a1.
+ * @param a1 the axis angle to be copied
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ this.x = a1.x;
+ this.y = a1.y;
+ this.z = a1.z;
+ this.angle = a1.angle;
+ }
+
+
+ /**
+ * Sets the value of this axis angle to the value of axis angle a1.
+ * @param a1 the axis angle to be copied
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ this.x = a1.x;
+ this.y = a1.y;
+ this.z = a1.z;
+ this.angle = a1.angle;
+ }
+
+
+ /**
+ * Sets the value of this AxisAngle4d to the specified
+ * axis and angle.
+ * @param axis the axis
+ * @param angle the angle of rotation in radians
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Vector3d axis, double angle) {
+ this.x = axis.x;
+ this.y = axis.y;
+ this.z = axis.z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Gets the value of this axis angle and places it into the array a of
+ * length four in x,y,z,angle order.
+ * @param a the array of length four
+ */
+ public final void get(double[] a)
+ {
+ a[0] = this.x;
+ a[1] = this.y;
+ a[2] = this.z;
+ a[3] = this.angle;
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4d is set to an angle of 0 about an axis of (0,1,0).
+ *
+ * @param m1 the matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ Matrix3d m3d = new Matrix3d();
+
+ m1.get(m3d);
+
+ x = (float)(m3d.m21 - m3d.m12);
+ y = (float)(m3d.m02 - m3d.m20);
+ z = (float)(m3d.m10 - m3d.m01);
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS ) {
+ mag = Math.sqrt(mag);
+ double sin = 0.5*mag;
+ double cos = 0.5*(m3d.m00 + m3d.m11 + m3d.m22 - 1.0);
+
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = x*invMag;
+ y = y*invMag;
+ z = z*invMag;
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4d is set to an angle of 0 about an axis of (0,1,0).
+ *
+ * @param m1 the matrix4d
+ */
+ public final void set(Matrix4d m1)
+ {
+ Matrix3d m3d = new Matrix3d();
+
+ m1.get(m3d);
+
+ x = (float)(m3d.m21 - m3d.m12);
+ y = (float)(m3d.m02 - m3d.m20);
+ z = (float)(m3d.m10 - m3d.m01);
+
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS ) {
+ mag = Math.sqrt(mag);
+
+ double sin = 0.5*mag;
+ double cos = 0.5*(m3d.m00 + m3d.m11 + m3d.m22 - 1.0);
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = x*invMag;
+ y = y*invMag;
+ z = z*invMag;
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4d is set to an angle of 0 about an axis of (0,1,0).
+ * @param m1 the matrix3f
+ */
+ public final void set(Matrix3f m1)
+ {
+ x = (float)(m1.m21 - m1.m12);
+ y = (float)(m1.m02 - m1.m20);
+ z = (float)(m1.m10 - m1.m01);
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS ) {
+ mag = Math.sqrt(mag);
+
+ double sin = 0.5*mag;
+ double cos = 0.5*(m1.m00 + m1.m11 + m1.m22 - 1.0);
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = x*invMag;
+ y = y*invMag;
+ z = z*invMag;
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4d is set to an angle of 0 about an axis of (0,1,0).
+ * @param m1 the matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+ x = (float)(m1.m21 - m1.m12);
+ y = (float)(m1.m02 - m1.m20);
+ z = (float)(m1.m10 - m1.m01);
+
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS ) {
+ mag = Math.sqrt(mag);
+
+ double sin = 0.5*mag;
+ double cos = 0.5*(m1.m00 + m1.m11 + m1.m22 - 1.0);
+
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = x*invMag;
+ y = y*invMag;
+ z = z*invMag;
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+
+ }
+
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational equivalent
+ * of the passed quaternion.
+ * If the specified quaternion has no rotational component, the value
+ * of this AxisAngle4d is set to an angle of 0 about an axis of (0,1,0).
+ * @param q1 the Quat4f
+ */
+ public final void set(Quat4f q1)
+ {
+ double mag = q1.x*q1.x + q1.y*q1.y + q1.z*q1.z;
+
+ if( mag > EPS ) {
+ mag = Math.sqrt(mag);
+ double invMag = 1.0/mag;
+
+ x = q1.x*invMag;
+ y = q1.y*invMag;
+ z = q1.z*invMag;
+ angle = 2.0*Math.atan2(mag, q1.w);
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational equivalent
+ * of the passed quaternion.
+ * If the specified quaternion has no rotational component, the value
+ * of this AxisAngle4d is set to an angle of 0 about an axis of (0,1,0).
+ * @param q1 the Quat4d
+ */
+ public final void set(Quat4d q1)
+ {
+ double mag = q1.x*q1.x + q1.y*q1.y + q1.z*q1.z;
+
+ if ( mag > EPS ) {
+ mag = Math.sqrt(mag);
+ double invMag = 1.0/mag;
+
+ x = q1.x*invMag;
+ y = q1.y*invMag;
+ z = q1.z*invMag;
+ angle = 2.0*Math.atan2(mag, q1.w);
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0f;
+ }
+ }
+
+
+ /**
+ * Returns a string that contains the values of this AxisAngle4d.
+ * The form is (x,y,z,angle).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.angle + ")";
+ }
+
+
+ /**
+ * Returns true if all of the data members of AxisAngle4d a1 are
+ * equal to the corresponding data members in this AxisAngle4d.
+ * @param a1 the axis-angle with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(AxisAngle4d a1)
+ {
+ try {
+ return(this.x == a1.x && this.y == a1.y && this.z == a1.z
+ && this.angle == a1.angle);
+ }
+ catch (NullPointerException e2) {return false;}
+
+ }
+ /**
+ * Returns true if the Object o1 is of type AxisAngle4d and all of the
+ * data members of o1 are equal to the corresponding data members in
+ * this AxisAngle4d.
+ * @param o1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object o1)
+ {
+ try {
+ AxisAngle4d a2 = (AxisAngle4d) o1;
+ return(this.x == a2.x && this.y == a2.y && this.z == a2.z
+ && this.angle == a2.angle);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+
+ }
+
+
+ /**
+ * Returns true if the L-infinite distance between this axis-angle
+ * and axis-angle a1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(angle1-angle2)].
+ * @param a1 the axis-angle to be compared to this axis-angle
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(AxisAngle4d a1, double epsilon)
+ {
+ double diff;
+
+ diff = x - a1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - a1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = z - a1.z;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = angle - a1.angle;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different AxisAngle4d objects with identical data values
+ * (i.e., AxisAngle4d.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + Double.doubleToLongBits(x);
+ bits = 31L * bits + Double.doubleToLongBits(y);
+ bits = 31L * bits + Double.doubleToLongBits(z);
+ bits = 31L * bits + Double.doubleToLongBits(angle);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/AxisAngle4f.java b/src/javax/vecmath/AxisAngle4f.java
new file mode 100644
index 0000000..7de19f9
--- /dev/null
+++ b/src/javax/vecmath/AxisAngle4f.java
@@ -0,0 +1,532 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A four-element axis angle represented by single-precision floating point
+ * x,y,z,angle components. An axis angle is a rotation of angle (radians)
+ * about the vector (x,y,z).
+ *
+ */
+public class AxisAngle4f implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = -163246355858070601L;
+
+ /**
+ * The x coordinate.
+ */
+ public float x;
+
+ /**
+ * The y coordinate.
+ */
+ public float y;
+
+ /**
+ * The z coordinate.
+ */
+ public float z;
+
+ /**
+ * The angle of rotation in radians.
+ */
+ public float angle;
+
+ final static double EPS = 0.000001;
+
+ /**
+ * Constructs and initializes a AxisAngle4f from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param angle the angle of rotation in radians
+ */
+ public AxisAngle4f(float x, float y, float z, float angle)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4f from the array of length 4.
+ * @param a the array of length 4 containing x,y,z,angle in order
+ */
+ public AxisAngle4f(float[] a)
+ {
+ this.x = a[0];
+ this.y = a[1];
+ this.z = a[2];
+ this.angle = a[3];
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4f from the specified
+ * AxisAngle4f.
+ * @param a1 the AxisAngle4f containing the initialization x y z angle data
+ */
+ public AxisAngle4f(AxisAngle4f a1)
+ {
+ this.x = a1.x;
+ this.y = a1.y;
+ this.z = a1.z;
+ this.angle = a1.angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4f from the specified AxisAngle4d.
+ * @param a1 the AxisAngle4d containing the initialization x y z angle data
+ */
+ public AxisAngle4f(AxisAngle4d a1)
+ {
+ this.x = (float) a1.x;
+ this.y = (float) a1.y;
+ this.z = (float) a1.z;
+ this.angle = (float) a1.angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4f from the specified
+ * axis and angle.
+ * @param axis the axis
+ * @param angle the angle of rotation in radians
+ *
+ * @since Java 3D 1.2
+ */
+ public AxisAngle4f(Vector3f axis, float angle) {
+ this.x = axis.x;
+ this.y = axis.y;
+ this.z = axis.z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Constructs and initializes an AxisAngle4f to (0,0,1,0).
+ */
+ public AxisAngle4f()
+ {
+ this.x = 0.0f;
+ this.y = 0.0f;
+ this.z = 1.0f;
+ this.angle = 0.0f;
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the specified x,y,z,angle.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param angle the angle of rotation in radians
+ */
+ public final void set(float x, float y, float z, float angle)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the specified values in the
+ * array of length 4.
+ * @param a the array of length 4 containing x,y,z,angle in order
+ */
+ public final void set(float[] a)
+ {
+ this.x = a[0];
+ this.y = a[1];
+ this.z = a[2];
+ this.angle = a[3];
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the value of axis-angle a1.
+ * @param a1 the axis-angle to be copied
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ this.x = a1.x;
+ this.y = a1.y;
+ this.z = a1.z;
+ this.angle = a1.angle;
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the value of axis-angle a1.
+ * @param a1 the axis-angle to be copied
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ this.x = (float) a1.x;
+ this.y = (float) a1.y;
+ this.z = (float) a1.z;
+ this.angle = (float) a1.angle;
+ }
+
+
+ /**
+ * Sets the value of this AxisAngle4f to the specified
+ * axis and angle.
+ * @param axis the axis
+ * @param angle the angle of rotation in radians
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Vector3f axis, float angle) {
+ this.x = axis.x;
+ this.y = axis.y;
+ this.z = axis.z;
+ this.angle = angle;
+ }
+
+
+ /**
+ * Copies the value of this axis-angle into the array a.
+ * @param a the array
+ */
+ public final void get(float[] a)
+ {
+ a[0] = this.x;
+ a[1] = this.y;
+ a[2] = this.z;
+ a[3] = this.angle;
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational equivalent
+ * of the passed quaternion.
+ * If the specified quaternion has no rotational component, the value
+ * of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
+ * @param q1 the Quat4f
+ */
+ public final void set(Quat4f q1)
+ {
+ double mag = q1.x*q1.x + q1.y*q1.y + q1.z*q1.z;
+
+ if ( mag > EPS ) {
+ mag = Math.sqrt(mag);
+ double invMag = 1.0/mag;
+
+ x = (float)(q1.x*invMag);
+ y = (float)(q1.y*invMag);
+ z = (float)(q1.z*invMag);
+ angle = (float)(2.0*Math.atan2(mag, q1.w));
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational equivalent
+ * of the passed quaternion.
+ * If the specified quaternion has no rotational component, the value
+ * of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
+ * @param q1 the Quat4d
+ */
+ public final void set(Quat4d q1)
+ {
+ double mag = q1.x*q1.x + q1.y*q1.y + q1.z*q1.z;
+
+ if (mag > EPS) {
+ mag = Math.sqrt(mag);
+ double invMag = 1.0/mag;
+
+ x = (float)(q1.x*invMag);
+ y = (float)(q1.y*invMag);
+ z = (float)(q1.z*invMag);
+ angle = (float)(2.0*Math.atan2(mag, q1.w));
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
+ * @param m1 the matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ Matrix3f m3f = new Matrix3f();
+
+ m1.get(m3f);
+
+ x = m3f.m21 - m3f.m12;
+ y = m3f.m02 - m3f.m20;
+ z = m3f.m10 - m3f.m01;
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS) {
+ mag = Math.sqrt(mag);
+ double sin = 0.5*mag;
+ double cos = 0.5*(m3f.m00 + m3f.m11 + m3f.m22 - 1.0);
+
+ angle = (float)Math.atan2(sin, cos);
+ double invMag = 1.0/mag;
+ x = (float)(x*invMag);
+ y = (float)(y*invMag);
+ z = (float)(z*invMag);
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+
+
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
+ * @param m1 the matrix4d
+ */
+ public final void set(Matrix4d m1)
+ {
+ Matrix3d m3d = new Matrix3d();
+
+ m1.get(m3d);
+
+
+ x = (float)(m3d.m21 - m3d.m12);
+ y = (float)(m3d.m02 - m3d.m20);
+ z = (float)(m3d.m10 - m3d.m01);
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS) {
+ mag = Math.sqrt(mag);
+ double sin = 0.5*mag;
+ double cos = 0.5*(m3d.m00 + m3d.m11 + m3d.m22 - 1.0);
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = (float)(x*invMag);
+ y = (float)(y*invMag);
+ z = (float)(z*invMag);
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
+ * @param m1 the matrix3f
+ */
+ public final void set(Matrix3f m1)
+ {
+ x = (float)(m1.m21 - m1.m12);
+ y = (float)(m1.m02 - m1.m20);
+ z = (float)(m1.m10 - m1.m01);
+ double mag = x*x + y*y + z*z;
+ if (mag > EPS) {
+ mag = Math.sqrt(mag);
+ double sin = 0.5*mag;
+ double cos = 0.5*(m1.m00 + m1.m11 + m1.m22 - 1.0);
+
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = (float)(x*invMag);
+ y = (float)(y*invMag);
+ z = (float)(z*invMag);
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+
+ }
+
+
+ /**
+ * Sets the value of this axis-angle to the rotational component of
+ * the passed matrix.
+ * If the specified matrix has no rotational component, the value
+ * of this AxisAngle4f is set to an angle of 0 about an axis of (0,1,0).
+ * @param m1 the matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+
+ x = (float)(m1.m21 - m1.m12);
+ y = (float)(m1.m02 - m1.m20);
+ z = (float)(m1.m10 - m1.m01);
+ double mag = x*x + y*y + z*z;
+
+ if (mag > EPS) {
+ mag = Math.sqrt(mag);
+ double sin = 0.5*mag;
+ double cos = 0.5*(m1.m00 + m1.m11 + m1.m22 - 1.0);
+
+ angle = (float)Math.atan2(sin, cos);
+
+ double invMag = 1.0/mag;
+ x = (float)(x*invMag);
+ y = (float)(y*invMag);
+ z = (float)(z*invMag);
+ } else {
+ x = 0.0f;
+ y = 1.0f;
+ z = 0.0f;
+ angle = 0.0f;
+ }
+ }
+
+
+ /**
+ * Returns a string that contains the values of this AxisAngle4f.
+ * The form is (x,y,z,angle).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.angle + ")";
+ }
+
+
+ /**
+ * Returns true if all of the data members of AxisAngle4f a1 are
+ * equal to the corresponding data members in this AxisAngle4f.
+ * @param a1 the axis-angle with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(AxisAngle4f a1)
+ {
+ try {
+ return(this.x == a1.x && this.y == a1.y && this.z == a1.z
+ && this.angle == a1.angle);
+ }
+ catch (NullPointerException e2) {return false;}
+
+ }
+
+ /**
+ * Returns true if the Object o1 is of type AxisAngle4f and all of the
+ * data members of o1 are equal to the corresponding data members in
+ * this AxisAngle4f.
+ * @param o1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object o1)
+ {
+ try {
+ AxisAngle4f a2 = (AxisAngle4f) o1;
+ return(this.x == a2.x && this.y == a2.y && this.z == a2.z
+ && this.angle == a2.angle);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this axis-angle
+ * and axis-angle a1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(angle1-angle2)].
+ * @param a1 the axis-angle to be compared to this axis-angle
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(AxisAngle4f a1, float epsilon)
+ {
+ float diff;
+
+ diff = x - a1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - a1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = z - a1.z;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = angle - a1.angle;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different AxisAngle4f objects with identical data values
+ * (i.e., AxisAngle4f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)Float.floatToIntBits(x);
+ bits = 31L * bits + (long)Float.floatToIntBits(y);
+ bits = 31L * bits + (long)Float.floatToIntBits(z);
+ bits = 31L * bits + (long)Float.floatToIntBits(angle);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Color3b.java b/src/javax/vecmath/Color3b.java
new file mode 100644
index 0000000..4ad55d0
--- /dev/null
+++ b/src/javax/vecmath/Color3b.java
@@ -0,0 +1,135 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.awt.Color;
+
+
+/**
+ * A three-byte color value represented by byte x, y, and z values. The
+ * x, y, and z values represent the red, green, and blue values,
+ * respectively.
+ * <p>
+ * Note that Java defines a byte as a signed integer in the range
+ * [-128, 127]. However, colors are more typically represented by values
+ * in the range [0, 255]. Java 3D recognizes this and for color
+ * treats the bytes as if the range were [0, 255]---in other words, as
+ * if the bytes were unsigned.
+ * <p>
+ * Java 3D assumes that a linear (gamma-corrected) visual is used for
+ * all colors.
+ *
+ */
+public class Color3b extends Tuple3b implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 6632576088353444794L;
+
+ /**
+ * Constructs and initializes a Color3b from the specified three values.
+ * @param c1 the red color value
+ * @param c2 the green color value
+ * @param c3 the blue color value
+ */
+ public Color3b(byte c1, byte c2, byte c3) {
+ super(c1,c2,c3);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3b from input array of length 3.
+ * @param c the array of length 3 containing the r,g,b data in order
+ */
+ public Color3b(byte[] c) {
+ super(c);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3b from the specified Color3b.
+ * @param c1 the Color3b containing the initialization r,g,b data
+ */
+ public Color3b(Color3b c1) {
+ super(c1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3b from the specified Tuple3b.
+ * @param t1 the Tuple3b containing the initialization r,g,b data
+ */
+ public Color3b(Tuple3b t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3b from the specified AWT
+ * Color object. The alpha value of the AWT color is ignored.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color with which to initialize this
+ * Color3b object
+ *
+ * @since Java 3D 1.2
+ */
+ public Color3b(Color color) {
+ super((byte)color.getRed(),
+ (byte)color.getGreen(),
+ (byte)color.getBlue());
+ }
+
+
+ /**
+ * Constructs and initializes a Color3b to (0,0,0).
+ */
+ public Color3b() {
+ super();
+ }
+
+
+ /**
+ * Sets the r,g,b values of this Color3b object to those of the
+ * specified AWT Color object.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color to copy into this Color3b object
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Color color) {
+ x = (byte)color.getRed();
+ y = (byte)color.getGreen();
+ z = (byte)color.getBlue();
+ }
+
+
+ /**
+ * Returns a new AWT color object initialized with the r,g,b
+ * values of this Color3b object.
+ *
+ * @return a new AWT Color object
+ *
+ * @since Java 3D 1.2
+ */
+ public final Color get() {
+ int r = (int)x & 0xff;
+ int g = (int)y & 0xff;
+ int b = (int)z & 0xff;
+
+ return new Color(r, g, b);
+ }
+
+}
diff --git a/src/javax/vecmath/Color3f.java b/src/javax/vecmath/Color3f.java
new file mode 100644
index 0000000..f7ea10b
--- /dev/null
+++ b/src/javax/vecmath/Color3f.java
@@ -0,0 +1,139 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.awt.Color;
+
+
+/**
+ * A three-element color value represented by single precision floating
+ * point x,y,z values. The x,y,z values represent the red, green, and
+ * blue color values, respectively. Color components should be in the
+ * range of [0.0, 1.0].
+ * <p>
+ * Java 3D assumes that a linear (gamma-corrected) visual is used for
+ * all colors.
+ *
+ */
+public class Color3f extends Tuple3f implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = -1861792981817493659L;
+
+ /**
+ * Constructs and initializes a Color3f from the three xyz values.
+ * @param x the red color value
+ * @param y the green color value
+ * @param z the blue color value
+ */
+ public Color3f(float x, float y, float z) {
+ super(x,y,z);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3f from the array of length 3.
+ * @param v the array of length 3 containing xyz in order
+ */
+ public Color3f(float[] v) {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3f from the specified Color3f.
+ * @param v1 the Color3f containing the initialization x y z data
+ */
+ public Color3f(Color3f v1) {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3f from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Color3f(Tuple3f t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3f from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Color3f(Tuple3d t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3f from the specified AWT
+ * Color object. The alpha value of the AWT color is ignored.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color with which to initialize this
+ * Color3f object
+ *
+ * @since Java 3D 1.2
+ */
+ public Color3f(Color color) {
+ super((float)color.getRed() / 255.0f,
+ (float)color.getGreen() / 255.0f,
+ (float)color.getBlue() / 255.0f);
+ }
+
+
+ /**
+ * Constructs and initializes a Color3f to (0.0, 0.0, 0.0).
+ */
+ public Color3f() {
+ super();
+ }
+
+
+ /**
+ * Sets the r,g,b values of this Color3f object to those of the
+ * specified AWT Color object.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color to copy into this Color3f object
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Color color) {
+ x = (float)color.getRed() / 255.0f;
+ y = (float)color.getGreen() / 255.0f;
+ z = (float)color.getBlue() / 255.0f;
+ }
+
+
+ /**
+ * Returns a new AWT color object initialized with the r,g,b
+ * values of this Color3f object.
+ *
+ * @return a new AWT Color object
+ *
+ * @since Java 3D 1.2
+ */
+ public final Color get() {
+ int r = Math.round(x * 255.0f);
+ int g = Math.round(y * 255.0f);
+ int b = Math.round(z * 255.0f);
+
+ return new Color(r, g, b);
+ }
+
+}
diff --git a/src/javax/vecmath/Color4b.java b/src/javax/vecmath/Color4b.java
new file mode 100644
index 0000000..929821a
--- /dev/null
+++ b/src/javax/vecmath/Color4b.java
@@ -0,0 +1,141 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.awt.Color;
+
+
+/**
+ * A four-byte color value represented by byte x, y, z, and w values.
+ * The x, y, z, and w values represent the red, green, blue, and alpha
+ * values, respectively.
+ * <p>
+ * Note that Java defines a byte as a signed integer in the range
+ * [-128, 127]. However, colors are more typically represented by values
+ * in the range [0, 255]. Java 3D recognizes this and for color
+ * treats the bytes as if the range were [0, 255]---in other words, as
+ * if the bytes were unsigned.
+ * <p>
+ * Java 3D assumes that a linear (gamma-corrected) visual is used for
+ * all colors.
+ *
+ */
+public class Color4b extends Tuple4b implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = -105080578052502155L;
+
+ /**
+ * Constructs and initializes a Color4b from the four specified values.
+ * @param b1 the red color value
+ * @param b2 the green color value
+ * @param b3 the blue color value
+ * @param b4 the alpha value
+ */
+ public Color4b(byte b1, byte b2, byte b3, byte b4) {
+ super(b1,b2,b3,b4);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4b from the array of length 4.
+ * @param c the array of length 4 containing r, g, b, and alpha in order
+ */
+ public Color4b(byte[] c) {
+ super(c);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4b from the specified Color4b.
+ * @param c1 the Color4b containing the initialization r,g,b,a
+ * data
+ */
+ public Color4b(Color4b c1) {
+ super(c1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4b from the specified Tuple4b.
+ * @param t1 the Tuple4b containing the initialization r,g,b,a
+ * data
+ */
+ public Color4b(Tuple4b t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4b from the specified AWT
+ * Color object.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color with which to initialize this
+ * Color4b object
+ *
+ * @since Java 3D 1.2
+ */
+ public Color4b(Color color) {
+ super((byte)color.getRed(),
+ (byte)color.getGreen(),
+ (byte)color.getBlue(),
+ (byte)color.getAlpha());
+ }
+
+
+ /**
+ * Constructs and initializes a Color4b to (0,0,0,0).
+ */
+ public Color4b() {
+ super();
+ }
+
+
+ /**
+ * Sets the r,g,b,a values of this Color4b object to those of the
+ * specified AWT Color object.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color to copy into this Color4b object
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Color color) {
+ x = (byte)color.getRed();
+ y = (byte)color.getGreen();
+ z = (byte)color.getBlue();
+ w = (byte)color.getAlpha();
+ }
+
+
+ /**
+ * Returns a new AWT color object initialized with the r,g,b,a
+ * values of this Color4b object.
+ *
+ * @return a new AWT Color object
+ *
+ * @since Java 3D 1.2
+ */
+ public final Color get() {
+ int r = (int)x & 0xff;
+ int g = (int)y & 0xff;
+ int b = (int)z & 0xff;
+ int a = (int)w & 0xff;
+
+ return new Color(r, g, b, a);
+ }
+
+}
diff --git a/src/javax/vecmath/Color4f.java b/src/javax/vecmath/Color4f.java
new file mode 100644
index 0000000..265086f
--- /dev/null
+++ b/src/javax/vecmath/Color4f.java
@@ -0,0 +1,144 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.awt.Color;
+
+
+/**
+ * A four-element color represented by single precision floating point
+ * x, y, z, and w values. The x, y, z, and w values represent the red,
+ * blue, green, and alpha color values, respectively. Color and alpha
+ * components should be in the range [0.0, 1.0].
+ * <p>
+ * Java 3D assumes that a linear (gamma-corrected) visual is used for
+ * all colors.
+ *
+ */
+public class Color4f extends Tuple4f implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 8577680141580006740L;
+
+ /**
+ * Constructs and initializes a Color4f from the specified xyzw
+ * coordinates.
+ * @param x the red color value
+ * @param y the green color value
+ * @param z the blue color value
+ * @param w the alpha value
+ */
+ public Color4f(float x, float y, float z, float w) {
+ super(x,y,z,w);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4f from the array of length 4.
+ * @param c the array of length 4 containing r,g,b,a in order
+ */
+ public Color4f(float[] c) {
+ super(c);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4f from the specified Color4f.
+ * @param c1 the Color4f containing the initialization r,g,b,a data
+ */
+ public Color4f(Color4f c1) {
+ super(c1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization r,g,b,a data
+ */
+ public Color4f(Tuple4f t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization r,g,b,a data
+ */
+ public Color4f(Tuple4d t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4f from the specified AWT
+ * Color object.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color with which to initialize this
+ * Color4f object
+ *
+ * @since Java 3D 1.2
+ */
+ public Color4f(Color color) {
+ super((float)color.getRed() / 255.0f,
+ (float)color.getGreen() / 255.0f,
+ (float)color.getBlue() / 255.0f,
+ (float)color.getAlpha() / 255.0f);
+ }
+
+
+ /**
+ * Constructs and initializes a Color4f to (0.0, 0.0, 0.0, 0.0).
+ */
+ public Color4f() {
+ super();
+ }
+
+
+ /**
+ * Sets the r,g,b,a values of this Color4f object to those of the
+ * specified AWT Color object.
+ * No conversion is done on the color to compensate for
+ * gamma correction.
+ *
+ * @param color the AWT color to copy into this Color4f object
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Color color) {
+ x = (float)color.getRed() / 255.0f;
+ y = (float)color.getGreen() / 255.0f;
+ z = (float)color.getBlue() / 255.0f;
+ w = (float)color.getAlpha() / 255.0f;
+ }
+
+
+ /**
+ * Returns a new AWT color object initialized with the r,g,b,a
+ * values of this Color4f object.
+ *
+ * @return a new AWT Color object
+ *
+ * @since Java 3D 1.2
+ */
+ public final Color get() {
+ int r = Math.round(x * 255.0f);
+ int g = Math.round(y * 255.0f);
+ int b = Math.round(z * 255.0f);
+ int a = Math.round(w * 255.0f);
+
+ return new Color(r, g, b, a);
+ }
+
+}
diff --git a/src/javax/vecmath/ExceptionStrings.properties b/src/javax/vecmath/ExceptionStrings.properties
new file mode 100644
index 0000000..ca56746
--- /dev/null
+++ b/src/javax/vecmath/ExceptionStrings.properties
@@ -0,0 +1,86 @@
+Matrix3d0=Matrix3d setElement
+Matrix3d1=Matrix3d getElement
+Matrix3d2=Matrix3d getRow
+Matrix3d4=Matrix3d getColumn
+Matrix3d6=Matrix3d setRow
+Matrix3d9=Matrix3d setColumn
+Matrix3d12=cannot invert matrix
+Matrix3d13=Logic error: imax < 0
+Matrix3f0=Matrix3f setElement
+Matrix3f1=Matrix3d getRow
+Matrix3f3=Matrix3d getColumn
+Matrix3f5=Matrix3f getElement
+Matrix3f6=Matrix3f setRow
+Matrix3f9=Matrix3f setColumn
+Matrix3f12=cannot invert matrix
+Matrix3f13=Logic error: imax < 0
+Matrix4d0=Matrix4d setElement
+Matrix4d1=Matrix4d getElement
+Matrix4d2=Matrix4d getRow
+Matrix4d3=Matrix4d getColumn
+Matrix4d4=Matrix4d setRow
+Matrix4d7=Matrix4d setColumn
+Matrix4d10=cannot invert matrix
+Matrix4d11=Logic error: imax < 0
+Matrix4f0=Matrix4f setElement
+Matrix4f1=Matrix4f getElement
+Matrix4f2=Matrix4f getRow
+Matrix4f4=Matrix4f getColumn
+Matrix4f6=Matrix4f setRow
+Matrix4f9=Matrix4f setColumn
+Matrix4f12=cannot invert matrix
+Matrix4f13=Logic error: imax < 0
+GMatrix0=GMatrix.mul:array dimension mismatch
+GMatrix1=GMatrix.mul(GMatrix, GMatrix) dimension mismatch
+GMatrix2=GMatrix.mul(GVector, GVector): matrix does not have enough rows
+GMatrix3=GMatrix.mul(GVector, GVector): matrix does not have enough columns
+GMatrix4=GMatrix.add(GMatrix): row dimension mismatch
+GMatrix5=GMatrix.add(GMatrix): column dimension mismatch
+GMatrix6=GMatrix.add(GMatrix, GMatrix): row dimension mismatch
+GMatrix7=GMatrix.add(GMatrix, GMatrix): column dimension mismatch
+GMatrix8=GMatrix.add(GMatrix): input matrices dimensions do not match this matrix dimensions
+GMatrix9=GMatrix.sub(GMatrix): row dimension mismatch
+GMatrix10=GMatrix.sub(GMatrix, GMatrix): row dimension mismatch
+GMatrix11=GMatrix.sub(GMatrix, GMatrix): column dimension mismatch
+GMatrix12=GMatrix.sub(GMatrix, GMatrix): input matrix dimensions do not match dimensions for this matrix
+GMatrix13=GMatrix.negate(GMatrix, GMatrix): input matrix dimensions do not match dimensions for this matrix
+GMatrix14=GMatrix.mulTransposeBoth matrix dimension mismatch
+GMatrix15=GMatrix.mulTransposeRight matrix dimension mismatch
+GMatrix16=GMatrix.mulTransposeLeft matrix dimension mismatch
+GMatrix17=GMatrix.transpose(GMatrix) mismatch in matrix dimensions
+GMatrix18=GMatrix.SVD: dimension mismatch with V matrix
+GMatrix19=cannot perform LU decomposition on a non square matrix
+GMatrix20=row permutation must be same dimension as matrix
+GMatrix21=cannot invert matrix
+GMatrix22=cannot invert non square matrix
+GMatrix24=Logic error: imax < 0
+GMatrix25=GMatrix.SVD: dimension mismatch with U matrix
+GMatrix26=GMatrix.SVD: dimension mismatch with W matrix
+GMatrix27=LU must have same dimensions as this matrix
+GMatrix28=GMatrix.sub(GMatrix): column dimension mismatch
+GVector0=GVector.normalize( GVector) input vector and this vector lengths not matched
+GVector1=GVector.scale(double, GVector) input vector and this vector lengths not matched
+GVector2=GVector.scaleAdd(GVector, GVector) input vector dimensions not matched
+GVector3=GVector.scaleAdd(GVector, GVector) input vectors and this vector dimensions not matched
+GVector4=GVector.add(GVector) input vectors and this vector dimensions not matched
+GVector5=GVector.add(GVector, GVector) input vector dimensions not matched
+GVector6=GVector.add(GVector, GVector) input vectors and this vector dimensions not matched
+GVector7=GVector.sub(GVector) input vector and this vector dimensions not matched
+GVector8=GVector.sub(GVector, GVector) input vector dimensions not matched
+GVector9=GVector.sub(GMatrix, GVector) input vectors and this vector dimensions not matched
+GVector10=GVector.mul(GMatrix, GVector) matrix and vector dimensions not matched
+GVector11=GVector.mul(GMatrix, GVector) matrix this vector dimensions not matched
+GVector12=GVector.mul(GVector, GMatrix) matrix and vector dimensions not matched
+GVector13=GVector.mul(GVector, GMatrix) matrix this vector dimensions not matched
+GVector14=GVector.dot(GVector) input vector and this vector have different sizes
+GVector15=matrix dimensions are not compatible
+GVector16=b vector does not match matrix dimension
+GVector17=GVector.interpolate(GVector, GVector, float) input vectors have different lengths
+GVector18=GVector.interpolate(GVector, GVector, float) input vectors and this vector have different lengths
+GVector19=GVector.interpolate(GVector, float) input vector and this vector have different lengths
+GVector20=GVector.interpolate(GVector, GVector, double) input vectors have different lengths
+GVector21=GVector.interpolate(GVector, GVector, double) input vectors and this vector have different lengths
+GVector22=GVector.interpolate(GVector, double) input vectors and this vector have different lengths
+GVector23=matrix dimensions are not compatible
+GVector24=permutation vector does not match matrix dimension
+GVector25=LUDBackSolve non square matrix
diff --git a/src/javax/vecmath/GMatrix.java b/src/javax/vecmath/GMatrix.java
new file mode 100644
index 0000000..5ccdbb4
--- /dev/null
+++ b/src/javax/vecmath/GMatrix.java
@@ -0,0 +1,2989 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A double precision, general, dynamically-resizable,
+ * two-dimensional matrix class. Row and column numbering begins with
+ * zero. The representation is row major.
+ */
+
+public class GMatrix implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 2777097312029690941L;
+ private static final boolean debug = false;
+
+ int nRow;
+ int nCol;
+
+ // double dereference is slow
+ double[][] values;
+
+ private static final double EPS = 1.0E-10;
+
+ /**
+ * Constructs an nRow by NCol identity matrix.
+ * Note that because row and column numbering begins with
+ * zero, nRow and nCol will be one larger than the maximum
+ * possible matrix index values.
+ * @param nRow number of rows in this matrix.
+ * @param nCol number of columns in this matrix.
+ */
+ public GMatrix(int nRow, int nCol)
+ {
+ values = new double[nRow][nCol];
+ this.nRow = nRow;
+ this.nCol = nCol;
+
+ int i, j;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+
+ int l;
+ if (nRow < nCol)
+ l = nRow;
+ else
+ l = nCol;
+
+ for (i = 0; i < l; i++) {
+ values[i][i] = 1.0;
+ }
+ }
+
+ /**
+ * Constructs an nRow by nCol matrix initialized to the values
+ * in the matrix array. The array values are copied in one row at
+ * a time in row major fashion. The array should be at least
+ * nRow*nCol in length.
+ * Note that because row and column numbering begins with
+ * zero, nRow and nCol will be one larger than the maximum
+ * possible matrix index values.
+ * @param nRow number of rows in this matrix.
+ * @param nCol number of columns in this matrix.
+ * @param matrix a 1D array that specifies a matrix in row major fashion
+ */
+ public GMatrix(int nRow, int nCol, double[] matrix)
+ {
+ values = new double[nRow][nCol];
+ this.nRow = nRow;
+ this.nCol = nCol;
+
+ int i, j;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = matrix[i*nCol+j];
+ }
+ }
+ }
+
+ /**
+ * Constructs a new GMatrix and copies the initial values
+ * from the parameter matrix.
+ * @param matrix the source of the initial values of the new GMatrix
+ */
+ public GMatrix(GMatrix matrix)
+ {
+ nRow = matrix.nRow;
+ nCol = matrix.nCol;
+ values = new double[nRow][nCol];
+
+ int i, j;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = matrix.values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying itself
+ * with matrix m1 (this = this * m1).
+ * @param m1 the other matrix
+ */
+ public final void mul(GMatrix m1)
+ {
+ int i, j, k;
+
+ if (nCol != m1.nRow || nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix0"));
+
+ double [][] tmp = new double[nRow][nCol];
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ tmp[i][j] = 0.0;
+ for (k = 0; k < nCol; k++) {
+ tmp[i][j] += values[i][k]*m1.values[k][j];
+ }
+ }
+ }
+
+ values = tmp;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying
+ * the two argument matrices together (this = m1 * m2).
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void mul(GMatrix m1, GMatrix m2)
+ {
+ int i, j, k;
+
+ if (m1.nCol != m2.nRow || nRow != m1.nRow || nCol != m2.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix1"));
+
+ double[][] tmp = new double[nRow][nCol];
+
+ for (i = 0; i < m1.nRow; i++) {
+ for (j = 0; j < m2.nCol; j++) {
+ tmp[i][j] = 0.0;
+ for (k = 0; k < m1.nCol; k++) {
+ tmp[i][j] += m1.values[i][k]*m2.values[k][j];
+ }
+ }
+ }
+
+ values = tmp;
+ }
+
+ /**
+ * Computes the outer product of the two vectors; multiplies the
+ * the first vector by the transpose of the second vector and places
+ * the matrix result into this matrix. This matrix must be
+ * be as big or bigger than getSize(v1)xgetSize(v2).
+ * @param v1 the first vector, treated as a row vector
+ * @param v2 the second vector, treated as a column vector
+ */
+ public final void mul(GVector v1, GVector v2)
+ {
+ int i, j;
+
+ if (nRow < v1.getSize())
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix2"));
+
+ if (nCol < v2.getSize())
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix3"));
+
+ for (i = 0; i < v1.getSize(); i++ ) {
+ for (j = 0; j < v2.getSize(); j++ ) {
+ values[i][j] = v1.values[i]*v2.values[j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to sum of itself and matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void add(GMatrix m1)
+ {
+ int i, j;
+
+ if (nRow != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix4"));
+
+ if (nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix5"));
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = values[i][j] + m1.values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void add(GMatrix m1, GMatrix m2)
+ {
+ int i, j;
+
+ if (m2.nRow != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix6"));
+
+ if (m2.nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix7"));
+
+ if (nCol != m1.nCol || nRow != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix8"));
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = m1.values[i][j] + m2.values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference of itself
+ * and matrix m1 (this = this - m1).
+ * @param m1 the other matrix
+ */
+ public final void sub(GMatrix m1)
+ {
+ int i, j;
+ if (nRow != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix9"));
+
+ if (nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix28"));
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = values[i][j] - m1.values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of matrices m1 and m2 (this = m1 - m2).
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void sub(GMatrix m1, GMatrix m2)
+ {
+ int i, j;
+ if (m2.nRow != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix10"));
+
+ if (m2.nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix11"));
+
+ if (nRow != m1.nRow || nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix12"));
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = m1.values[i][j] - m2.values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Negates the value of this matrix: this = -this.
+ */
+ public final void negate()
+ {
+ int i, j;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0;j < nCol; j++) {
+ values[i][j] = -values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix equal to the negation of
+ * of the GMatrix parameter.
+ * @param m1 The source matrix
+ */
+ public final void negate(GMatrix m1)
+ {
+ int i, j;
+ if (nRow != m1.nRow || nCol != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix13"));
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = -m1.values[i][j];
+ }
+ }
+ }
+
+ /**
+ * Sets this GMatrix to the identity matrix.
+ */
+ public final void setIdentity()
+ {
+ int i, j;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+
+ int l;
+ if (nRow < nCol)
+ l = nRow;
+ else
+ l = nCol;
+
+ for (i = 0; i < l; i++) {
+ values[i][i] = 1.0;
+ }
+ }
+
+ /**
+ * Sets all the values in this matrix to zero.
+ */
+ public final void setZero()
+ {
+ int i, j;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+ }
+
+ /**
+ * Subtracts this matrix from the identity matrix and puts the values
+ * back into this (this = I - this).
+ */
+ public final void identityMinus()
+ {
+ int i, j;
+
+ for(i = 0; i < nRow; i++) {
+ for(j = 0; j < nCol; j++) {
+ values[i][j] = -values[i][j];
+ }
+ }
+
+ int l;
+ if( nRow < nCol)
+ l = nRow;
+ else
+ l = nCol;
+
+ for(i = 0; i < l; i++) {
+ values[i][i] += 1.0;
+ }
+ }
+
+
+ /**
+ * Inverts this matrix in place.
+ */
+ public final void invert()
+ {
+ invertGeneral(this);
+ }
+
+ /**
+ * Inverts matrix m1 and places the new values into this matrix. Matrix
+ * m1 is not modified.
+ * @param m1 the matrix to be inverted
+ */
+ public final void invert(GMatrix m1)
+ {
+ invertGeneral(m1);
+ }
+
+ /**
+ * Copies a sub-matrix derived from this matrix into the target matrix.
+ * The upper left of the sub-matrix is located at (rowSource, colSource);
+ * the lower right of the sub-matrix is located at
+ * (lastRowSource,lastColSource). The sub-matrix is copied into the
+ * the target matrix starting at (rowDest, colDest).
+ * @param rowSource the top-most row of the sub-matrix
+ * @param colSource the left-most column of the sub-matrix
+ * @param numRow the number of rows in the sub-matrix
+ * @param numCol the number of columns in the sub-matrix
+ * @param rowDest the top-most row of the position of the copied
+ * sub-matrix within the target matrix
+ * @param colDest the left-most column of the position of the copied
+ * sub-matrix within the target matrix
+ * @param target the matrix into which the sub-matrix will be copied
+ */
+ public final void copySubMatrix(int rowSource, int colSource,
+ int numRow, int numCol, int rowDest,
+ int colDest, GMatrix target)
+ {
+ int i, j;
+
+ if (this != target) {
+ for (i = 0; i < numRow; i++) {
+ for (j = 0; j < numCol; j++) {
+ target.values[rowDest+i][colDest+j] =
+ values[rowSource+i][colSource+j];
+ }
+ }
+ } else {
+ double[][] tmp = new double[numRow][numCol];
+ for (i = 0; i < numRow; i++) {
+ for (j = 0; j < numCol; j++) {
+ tmp[i][j] = values[rowSource+i][colSource+j];
+ }
+ }
+ for (i = 0; i < numRow; i++) {
+ for (j = 0; j < numCol; j++) {
+ target.values[rowDest+i][colDest+j] = tmp[i][j];
+ }
+ }
+ }
+ }
+
+ /**
+ * Changes the size of this matrix dynamically. If the size is increased
+ * no data values will be lost. If the size is decreased, only those data
+ * values whose matrix positions were eliminated will be lost.
+ * @param nRow number of desired rows in this matrix
+ * @param nCol number of desired columns in this matrix
+ */
+ public final void setSize(int nRow, int nCol)
+ {
+ double[][] tmp = new double[nRow][nCol];
+ int i, j, maxRow, maxCol;
+
+ if (this.nRow < nRow)
+ maxRow = this.nRow;
+ else
+ maxRow = nRow;
+
+ if (this.nCol < nCol)
+ maxCol = this.nCol;
+ else
+ maxCol = nCol;
+
+ for (i = 0; i < maxRow; i++) {
+ for (j = 0; j < maxCol; j++) {
+ tmp[i][j] = values[i][j];
+ }
+ }
+
+ this.nRow = nRow;
+ this.nCol = nCol;
+
+ values = tmp;
+ }
+
+ /**
+ * Sets the value of this matrix to the values found in the array parameter.
+ * The values are copied in one row at a time, in row major
+ * fashion. The array should be at least equal in length to
+ * the number of matrix rows times the number of matrix columns
+ * in this matrix.
+ * @param matrix the row major source array
+ */
+ public final void set(double[] matrix)
+ {
+ int i, j;
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = matrix[nCol*i+j];
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to that of the Matrix3f provided.
+ * @param m1 the matrix
+ */
+ public final void set(Matrix3f m1)
+ {
+ int i, j;
+
+ if (nCol < 3 || nRow < 3) { // expand matrix if too small
+ nCol = 3;
+ nRow = 3;
+ values = new double[nRow][nCol];
+ }
+
+ values[0][0] = m1.m00;
+ values[0][1] = m1.m01;
+ values[0][2] = m1.m02;
+
+ values[1][0] = m1.m10;
+ values[1][1] = m1.m11;
+ values[1][2] = m1.m12;
+
+ values[2][0] = m1.m20;
+ values[2][1] = m1.m21;
+ values[2][2] = m1.m22;
+
+ for (i = 3; i < nRow; i++) { // pad rest or matrix with zeros
+ for (j = 3; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to that of the Matrix3d provided.
+ * @param m1 the matrix
+ */
+ public final void set(Matrix3d m1)
+ {
+ if (nRow < 3 || nCol < 3) {
+ values = new double[3][3];
+ nRow = 3;
+ nCol = 3;
+ }
+
+ values[0][0] = m1.m00;
+ values[0][1] = m1.m01;
+ values[0][2] = m1.m02;
+
+ values[1][0] = m1.m10;
+ values[1][1] = m1.m11;
+ values[1][2] = m1.m12;
+
+ values[2][0] = m1.m20;
+ values[2][1] = m1.m21;
+ values[2][2] = m1.m22;
+
+ for (int i = 3; i < nRow; i++) { // pad rest or matrix with zeros
+ for(int j = 3; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+
+ }
+
+ /**
+ * Sets the value of this matrix to that of the Matrix4f provided.
+ * @param m1 the matrix
+ */
+ public final void set(Matrix4f m1)
+ {
+ if (nRow < 4 || nCol < 4) {
+ values = new double[4][4];
+ nRow = 4;
+ nCol = 4;
+ }
+
+ values[0][0] = m1.m00;
+ values[0][1] = m1.m01;
+ values[0][2] = m1.m02;
+ values[0][3] = m1.m03;
+
+ values[1][0] = m1.m10;
+ values[1][1] = m1.m11;
+ values[1][2] = m1.m12;
+ values[1][3] = m1.m13;
+
+ values[2][0] = m1.m20;
+ values[2][1] = m1.m21;
+ values[2][2] = m1.m22;
+ values[2][3] = m1.m23;
+
+ values[3][0] = m1.m30;
+ values[3][1] = m1.m31;
+ values[3][2] = m1.m32;
+ values[3][3] = m1.m33;
+
+ for (int i = 4 ; i < nRow; i++) { // pad rest or matrix with zeros
+ for (int j = 4; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to that of the Matrix4d provided.
+ * @param m1 the matrix
+ */
+ public final void set(Matrix4d m1)
+ {
+ if (nRow < 4 || nCol < 4) {
+ values = new double[4][4];
+ nRow = 4;
+ nCol = 4;
+ }
+
+ values[0][0] = m1.m00;
+ values[0][1] = m1.m01;
+ values[0][2] = m1.m02;
+ values[0][3] = m1.m03;
+
+ values[1][0] = m1.m10;
+ values[1][1] = m1.m11;
+ values[1][2] = m1.m12;
+ values[1][3] = m1.m13;
+
+ values[2][0] = m1.m20;
+ values[2][1] = m1.m21;
+ values[2][2] = m1.m22;
+ values[2][3] = m1.m23;
+
+ values[3][0] = m1.m30;
+ values[3][1] = m1.m31;
+ values[3][2] = m1.m32;
+ values[3][3] = m1.m33;
+
+ for (int i = 4; i < nRow; i++) { // pad rest or matrix with zeros
+ for (int j = 4; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the values found in matrix m1.
+ * @param m1 the source matrix
+ */
+ public final void set(GMatrix m1)
+ {
+ int i, j;
+
+ if (nRow < m1.nRow || nCol < m1.nCol) {
+ nRow = m1.nRow;
+ nCol = m1.nCol;
+ values = new double[nRow][nCol];
+ }
+
+ for (i = 0; i < Math.min(nRow, m1.nRow); i++) {
+ for (j = 0; j < Math.min(nCol, m1.nCol); j++) {
+ values[i][j] = m1.values[i][j];
+ }
+ }
+
+ for (i = m1.nRow; i < nRow; i++) { // pad rest or matrix with zeros
+ for (j = m1.nCol; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+ }
+
+ /**
+ * Returns the number of rows in this matrix.
+ * @return number of rows in this matrix
+ */
+ public final int getNumRow()
+ {
+ return(nRow);
+ }
+
+ /**
+ * Returns the number of colmuns in this matrix.
+ * @return number of columns in this matrix
+ */
+ public final int getNumCol()
+ {
+ return(nCol);
+ }
+
+ /**
+ * Retrieves the value at the specified row and column of this matrix.
+ * @param row the row number to be retrieved (zero indexed)
+ * @param column the column number to be retrieved (zero indexed)
+ * @return the value at the indexed element
+ */
+ public final double getElement(int row, int column)
+ {
+ return(values[row][column]);
+ }
+
+
+ /**
+ * Modifies the value at the specified row and column of this matrix.
+ * @param row the row number to be modified (zero indexed)
+ * @param column the column number to be modified (zero indexed)
+ * @param value the new matrix element value
+ */
+ public final void setElement(int row, int column, double value)
+ {
+ values[row][column] = value;
+ }
+
+ /**
+ * Places the values of the specified row into the array parameter.
+ * @param row the target row number
+ * @param array the array into which the row values will be placed
+ */
+ public final void getRow(int row, double[] array)
+ {
+ for (int i = 0; i < nCol; i++) {
+ array[i] = values[row][i];
+ }
+ }
+
+ /**
+ * Places the values of the specified row into the vector parameter.
+ * @param row the target row number
+ * @param vector the vector into which the row values will be placed
+ */
+ public final void getRow(int row, GVector vector)
+ {
+ if (vector.getSize() < nCol)
+ vector.setSize(nCol);
+
+ for (int i = 0; i < nCol; i++) {
+ vector.values[i] = values[row][i];
+ }
+ }
+
+ /**
+ * Places the values of the specified column into the array parameter.
+ * @param col the target column number
+ * @param array the array into which the column values will be placed
+ */
+ public final void getColumn(int col, double[] array)
+ {
+ for (int i = 0; i < nRow; i++) {
+ array[i] = values[i][col];
+ }
+
+ }
+
+ /**
+ * Places the values of the specified column into the vector parameter.
+ * @param col the target column number
+ * @param vector the vector into which the column values will be placed
+ */
+ public final void getColumn(int col, GVector vector)
+ {
+ if (vector.getSize() < nRow)
+ vector.setSize(nRow);
+
+ for (int i = 0; i < nRow; i++) {
+ vector.values[i] = values[i][col];
+ }
+ }
+
+ /**
+ * Places the values in the upper 3x3 of this GMatrix into
+ * the matrix m1.
+ * @param m1 The matrix that will hold the new values
+ */
+ public final void get(Matrix3d m1)
+ {
+ if (nRow < 3 || nCol < 3) {
+ m1.setZero();
+ if (nCol > 0) {
+ if (nRow > 0){
+ m1.m00 = values[0][0];
+ if (nRow > 1){
+ m1.m10 = values[1][0];
+ if( nRow > 2 ){
+ m1.m20= values[2][0];
+ }
+ }
+ }
+ if (nCol > 1) {
+ if (nRow > 0) {
+ m1.m01 = values[0][1];
+ if (nRow > 1){
+ m1.m11 = values[1][1];
+ if (nRow > 2){
+ m1.m21 = values[2][1];
+ }
+ }
+ }
+ if (nCol > 2) {
+ if (nRow > 0) {
+ m1.m02 = values[0][2];
+ if (nRow > 1) {
+ m1.m12 = values[1][2];
+ if (nRow > 2) {
+ m1.m22 = values[2][2];
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ m1.m00 = values[0][0];
+ m1.m01 = values[0][1];
+ m1.m02 = values[0][2];
+
+ m1.m10 = values[1][0];
+ m1.m11 = values[1][1];
+ m1.m12 = values[1][2];
+
+ m1.m20 = values[2][0];
+ m1.m21 = values[2][1];
+ m1.m22 = values[2][2];
+ }
+ }
+
+ /**
+ * Places the values in the upper 3x3 of this GMatrix into
+ * the matrix m1.
+ * @param m1 The matrix that will hold the new values
+ */
+ public final void get(Matrix3f m1)
+ {
+
+ if (nRow < 3 || nCol < 3) {
+ m1.setZero();
+ if (nCol > 0) {
+ if (nRow > 0) {
+ m1.m00 = (float)values[0][0];
+ if (nRow > 1) {
+ m1.m10 = (float)values[1][0];
+ if (nRow > 2) {
+ m1.m20 = (float)values[2][0];
+ }
+ }
+ }
+ if (nCol > 1) {
+ if (nRow > 0) {
+ m1.m01 = (float)values[0][1];
+ if (nRow > 1){
+ m1.m11 = (float)values[1][1];
+ if (nRow > 2){
+ m1.m21 = (float)values[2][1];
+ }
+ }
+ }
+ if (nCol > 2) {
+ if (nRow > 0) {
+ m1.m02 = (float)values[0][2];
+ if (nRow > 1) {
+ m1.m12 = (float)values[1][2];
+ if (nRow > 2) {
+ m1.m22 = (float)values[2][2];
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ m1.m00 = (float)values[0][0];
+ m1.m01 = (float)values[0][1];
+ m1.m02 = (float)values[0][2];
+
+ m1.m10 = (float)values[1][0];
+ m1.m11 = (float)values[1][1];
+ m1.m12 = (float)values[1][2];
+
+ m1.m20 = (float)values[2][0];
+ m1.m21 = (float)values[2][1];
+ m1.m22 = (float)values[2][2];
+ }
+ }
+
+ /**
+ * Places the values in the upper 4x4 of this GMatrix into
+ * the matrix m1.
+ * @param m1 The matrix that will hold the new values
+ */
+ public final void get(Matrix4d m1)
+ {
+ if (nRow < 4 || nCol < 4) {
+ m1.setZero();
+ if (nCol > 0) {
+ if (nRow > 0) {
+ m1.m00 = values[0][0];
+ if (nRow > 1) {
+ m1.m10 = values[1][0];
+ if (nRow > 2) {
+ m1.m20 = values[2][0];
+ if (nRow > 3) {
+ m1.m30 = values[3][0];
+ }
+ }
+ }
+ }
+ if (nCol > 1) {
+ if (nRow > 0) {
+ m1.m01 = values[0][1];
+ if (nRow > 1) {
+ m1.m11 = values[1][1];
+ if (nRow > 2) {
+ m1.m21 = values[2][1];
+ if (nRow > 3) {
+ m1.m31 = values[3][1];
+ }
+ }
+ }
+ }
+ if (nCol > 2) {
+ if (nRow > 0) {
+ m1.m02 = values[0][2];
+ if (nRow > 1) {
+ m1.m12 = values[1][2];
+ if (nRow > 2) {
+ m1.m22 = values[2][2];
+ if (nRow > 3) {
+ m1.m32 = values[3][2];
+ }
+ }
+ }
+ }
+ if (nCol > 3) {
+ if (nRow > 0) {
+ m1.m03 = values[0][3];
+ if (nRow > 1) {
+ m1.m13 = values[1][3];
+ if (nRow > 2) {
+ m1.m23 = values[2][3];
+ if (nRow > 3) {
+ m1.m33 = values[3][3];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ m1.m00 = values[0][0];
+ m1.m01 = values[0][1];
+ m1.m02 = values[0][2];
+ m1.m03 = values[0][3];
+
+ m1.m10 = values[1][0];
+ m1.m11 = values[1][1];
+ m1.m12 = values[1][2];
+ m1.m13 = values[1][3];
+
+ m1.m20 = values[2][0];
+ m1.m21 = values[2][1];
+ m1.m22 = values[2][2];
+ m1.m23 = values[2][3];
+
+ m1.m30 = values[3][0];
+ m1.m31 = values[3][1];
+ m1.m32 = values[3][2];
+ m1.m33 = values[3][3];
+ }
+
+ }
+
+ /**
+ * Places the values in the upper 4x4 of this GMatrix into
+ * the matrix m1.
+ * @param m1 The matrix that will hold the new values
+ */
+ public final void get(Matrix4f m1)
+ {
+
+ if (nRow < 4 || nCol < 4) {
+ m1.setZero();
+ if (nCol > 0) {
+ if (nRow > 0) {
+ m1.m00 = (float)values[0][0];
+ if (nRow > 1) {
+ m1.m10 = (float)values[1][0];
+ if (nRow > 2) {
+ m1.m20 = (float)values[2][0];
+ if (nRow > 3) {
+ m1.m30 = (float)values[3][0];
+ }
+ }
+ }
+ }
+ if (nCol > 1) {
+ if (nRow > 0) {
+ m1.m01 = (float)values[0][1];
+ if (nRow > 1) {
+ m1.m11 = (float)values[1][1];
+ if (nRow > 2) {
+ m1.m21 = (float)values[2][1];
+ if (nRow > 3) {
+ m1.m31 = (float)values[3][1];
+ }
+ }
+ }
+ }
+ if (nCol > 2) {
+ if (nRow > 0) {
+ m1.m02 = (float)values[0][2];
+ if (nRow > 1) {
+ m1.m12 = (float)values[1][2];
+ if (nRow > 2) {
+ m1.m22 = (float)values[2][2];
+ if (nRow > 3) {
+ m1.m32 = (float)values[3][2];
+ }
+ }
+ }
+ }
+ if (nCol > 3) {
+ if (nRow > 0) {
+ m1.m03 = (float)values[0][3];
+ if (nRow > 1) {
+ m1.m13 = (float)values[1][3];
+ if (nRow > 2) {
+ m1.m23 = (float)values[2][3];
+ if (nRow > 3) {
+ m1.m33 = (float)values[3][3];
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ } else {
+ m1.m00 = (float)values[0][0];
+ m1.m01 = (float)values[0][1];
+ m1.m02 = (float)values[0][2];
+ m1.m03 = (float)values[0][3];
+
+ m1.m10 = (float)values[1][0];
+ m1.m11 = (float)values[1][1];
+ m1.m12 = (float)values[1][2];
+ m1.m13 = (float)values[1][3];
+
+ m1.m20 = (float)values[2][0];
+ m1.m21 = (float)values[2][1];
+ m1.m22 = (float)values[2][2];
+ m1.m23 = (float)values[2][3];
+
+ m1.m30 = (float)values[3][0];
+ m1.m31 = (float)values[3][1];
+ m1.m32 = (float)values[3][2];
+ m1.m33 = (float)values[3][3];
+ }
+ }
+
+ /**
+ * Places the values in the this GMatrix into the matrix m1;
+ * m1 should be at least as large as this GMatrix.
+ * @param m1 The matrix that will hold the new values
+ */
+ public final void get(GMatrix m1)
+ {
+ int i, j, nc, nr;
+
+ if (nCol < m1.nCol)
+ nc = nCol;
+ else
+ nc = m1.nCol;
+
+ if (nRow < m1.nRow)
+ nr = nRow;
+ else
+ nr = m1.nRow;
+
+ for (i = 0; i < nr; i++) {
+ for (j = 0; j < nc; j++) {
+ m1.values[i][j] = values[i][j];
+ }
+ }
+ for (i = nr; i < m1.nRow; i++) {
+ for (j = 0; j < m1.nCol; j++) {
+ m1.values[i][j] = 0.0;
+ }
+ }
+ for (j = nc; j < m1.nCol; j++) {
+ for (i = 0; i < nr; i++) {
+ m1.values[i][j] = 0.0;
+ }
+ }
+ }
+
+ /**
+ * Copy the values from the array into the specified row of this
+ * matrix.
+ * @param row the row of this matrix into which the array values
+ * will be copied.
+ * @param array the source array
+ */
+ public final void setRow(int row, double[] array)
+ {
+ for (int i = 0; i < nCol; i++) {
+ values[row][i] = array[i];
+ }
+ }
+
+ /**
+ * Copy the values from the vector into the specified row of this
+ * matrix.
+ * @param row the row of this matrix into which the array values
+ * will be copied
+ * @param vector the source vector
+ */
+ public final void setRow(int row, GVector vector)
+ {
+ for(int i = 0; i < nCol; i++) {
+ values[row][i] = vector.values[i];
+ }
+ }
+
+ /**
+ * Copy the values from the array into the specified column of this
+ * matrix.
+ * @param col the column of this matrix into which the array values
+ * will be copied
+ * @param array the source array
+ */
+ public final void setColumn(int col, double[] array)
+ {
+ for(int i = 0; i < nRow; i++) {
+ values[i][col] = array[i];
+ }
+ }
+
+ /**
+ * Copy the values from the vector into the specified column of this
+ * matrix.
+ * @param col the column of this matrix into which the array values
+ * will be copied
+ * @param vector the source vector
+ */
+ public final void setColumn(int col, GVector vector)
+ {
+ for(int i = 0; i < nRow; i++) {
+ values[i][col] = vector.values[i];
+ }
+
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times the transpose of matrix
+ * m2, and places the result into this.
+ * @param m1 The matrix on the left hand side of the multiplication
+ * @param m2 The matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeBoth(GMatrix m1, GMatrix m2)
+ {
+ int i, j, k;
+
+ if (m1.nRow != m2.nCol || nRow != m1.nCol || nCol != m2.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix14"));
+
+ if (m1 == this || m2 == this) {
+ double[][] tmp = new double[nRow][nCol];
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ tmp[i][j] = 0.0;
+ for (k = 0; k < m1.nRow; k++) {
+ tmp[i][j] += m1.values[k][i]*m2.values[j][k];
+ }
+ }
+ }
+ values = tmp;
+ } else {
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = 0.0;
+ for (k = 0; k < m1.nRow; k++) {
+ values[i][j] += m1.values[k][i]*m2.values[j][k];
+ }
+ }
+ }
+ }
+ }
+
+ /**
+ * Multiplies matrix m1 times the transpose of matrix m2, and
+ * places the result into this.
+ * @param m1 The matrix on the left hand side of the multiplication
+ * @param m2 The matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeRight(GMatrix m1, GMatrix m2)
+ {
+ int i, j, k;
+
+ if (m1.nCol != m2.nCol || nCol != m2.nRow || nRow != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix15"));
+
+ if (m1 == this || m2 == this) {
+ double[][] tmp = new double[nRow][nCol];
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ tmp[i][j] = 0.0;
+ for (k = 0; k < m1.nCol; k++) {
+ tmp[i][j] += m1.values[i][k]*m2.values[j][k];
+ }
+ }
+ }
+ values = tmp;
+ } else {
+ for (i = 0; i < nRow; i++) {
+ for (j = 0;j < nCol; j++) {
+ values[i][j] = 0.0;
+ for (k = 0; k < m1.nCol; k++) {
+ values[i][j] += m1.values[i][k]*m2.values[j][k];
+ }
+ }
+ }
+ }
+
+ }
+
+
+ /**
+ * Multiplies the transpose of matrix m1 times matrix m2, and
+ * places the result into this.
+ * @param m1 The matrix on the left hand side of the multiplication
+ * @param m2 The matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeLeft(GMatrix m1, GMatrix m2)
+ {
+ int i, j, k;
+
+ if (m1.nRow != m2.nRow || nCol != m2.nCol || nRow != m1.nCol)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix16"));
+
+ if (m1 == this || m2 == this) {
+ double[][] tmp = new double[nRow][nCol];
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ tmp[i][j] = 0.0;
+ for (k = 0; k < m1.nRow; k++) {
+ tmp[i][j] += m1.values[k][i]*m2.values[k][j];
+ }
+ }
+ }
+ values = tmp;
+ } else {
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = 0.0;
+ for (k = 0; k < m1.nRow; k++) {
+ values[i][j] += m1.values[k][i]*m2.values[k][j];
+ }
+ }
+ }
+ }
+ }
+
+
+ /**
+ * Transposes this matrix in place.
+ */
+ public final void transpose()
+ {
+ int i, j;
+
+ if (nRow != nCol) {
+ double[][] tmp;
+ i=nRow;
+ nRow = nCol;
+ nCol = i;
+ tmp = new double[nRow][nCol];
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ tmp[i][j] = values[j][i];
+ }
+ }
+ values = tmp;
+ } else {
+ double swap;
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < i; j++) {
+ swap = values[i][j];
+ values[i][j] = values[j][i];
+ values[j][i] = swap;
+ }
+ }
+ }
+ }
+
+ /**
+ * Places the matrix values of the transpose of matrix m1 into this matrix.
+ * @param m1 the matrix to be transposed (but not modified)
+ */
+ public final void transpose(GMatrix m1)
+ {
+ int i, j;
+
+ if (nRow != m1.nCol || nCol != m1.nRow)
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix17"));
+
+ if (m1 != this) {
+ for (i = 0; i < nRow; i++) {
+ for (j = 0;j < nCol; j++) {
+ values[i][j] = m1.values[j][i];
+ }
+ }
+ } else {
+ transpose();
+ }
+ }
+
+ /**
+ * Returns a string that contains the values of this GMatrix.
+ * @return the String representation
+ */
+ public String toString()
+ {
+ StringBuffer buffer = new StringBuffer(nRow*nCol*8);
+
+ int i, j;
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ buffer.append(values[i][j]).append(" ");
+ }
+ buffer.append("\n");
+ }
+
+ return buffer.toString();
+ }
+
+ private static void checkMatrix( GMatrix m)
+ {
+ int i, j;
+
+ for (i = 0; i < m.nRow; i++) {
+ for (j = 0; j < m.nCol; j++) {
+ if (Math.abs(m.values[i][j]) < 0.0000000001) {
+ System.out.print(" 0.0 ");
+ } else {
+ System.out.print(" " + m.values[i][j]);
+ }
+ }
+ System.out.print("\n");
+ }
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different GMatrix objects with identical data
+ * values (i.e., GMatrix.equals returns true) will return the
+ * same hash number. Two GMatrix objects with different data
+ * members may return the same hash value, although this is not
+ * likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+
+ bits = 31L * bits + (long)nRow;
+ bits = 31L * bits + (long)nCol;
+
+ for (int i = 0; i < nRow; i++) {
+ for (int j = 0; j < nCol; j++) {
+ bits = 31L * bits + Double.doubleToLongBits(values[i][j]);
+ }
+ }
+
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Returns true if all of the data members of GMatrix m1 are
+ * equal to the corresponding data members in this GMatrix.
+ * @param m1 The matrix with which the comparison is made.
+ * @return true or false
+ */
+ public boolean equals(GMatrix m1)
+ {
+ try {
+ int i, j;
+
+ if (nRow != m1.nRow || nCol != m1.nCol)
+ return false;
+
+ for (i = 0;i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ if (values[i][j] != m1.values[i][j])
+ return false;
+ }
+ }
+ return true;
+ }
+ catch (NullPointerException e2) {
+ return false;
+ }
+ }
+
+ /**
+ * Returns true if the Object o1 is of type GMatrix and all of the
+ * data members of o1 are equal to the corresponding data members in
+ * this GMatrix.
+ * @param o1 The object with which the comparison is made.
+ * @return true or false
+ */
+ public boolean equals(Object o1)
+ {
+ try {
+ GMatrix m2 = (GMatrix) o1;
+ int i, j;
+ if (nRow != m2.nRow || nCol != m2.nCol)
+ return false;
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ if (values[i][j] != m2.values[i][j])
+ return false;
+ }
+ }
+ return true;
+ }
+ catch (ClassCastException e1) {
+ return false;
+ }
+ catch (NullPointerException e2) {
+ return false;
+ }
+ }
+
+ /**
+ * @deprecated Use epsilonEquals(GMatrix, double) instead
+ */
+ public boolean epsilonEquals(GMatrix m1, float epsilon) {
+ return epsilonEquals(m1, (double)epsilon);
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this matrix
+ * and matrix m1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[i=0,1,2, . . .n ; j=0,1,2, . . .n ; abs(this.m(i,j) - m1.m(i,j)]
+ * @param m1 The matrix to be compared to this matrix
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(GMatrix m1, double epsilon)
+ {
+ int i, j;
+ double diff;
+ if (nRow != m1.nRow || nCol != m1.nCol)
+ return false;
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ diff = values[i][j] - m1.values[i][j];
+ if ((diff < 0 ? -diff : diff) > epsilon)
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Returns the trace of this matrix.
+ * @return the trace of this matrix
+ */
+ public final double trace()
+ {
+ int i, l;
+ double t;
+
+ if (nRow < nCol)
+ l = nRow;
+ else
+ l = nCol;
+
+ t = 0.0;
+ for (i = 0; i < l; i++) {
+ t += values[i][i];
+ }
+ return t;
+ }
+
+ /**
+ * Finds the singular value decomposition (SVD) of this matrix
+ * such that this = U*W*transpose(V); and returns the rank of
+ * this matrix; the values of U,W,V are all overwritten. Note
+ * that the matrix V is output as V, and
+ * not transpose(V). If this matrix is mxn, then U is mxm, W
+ * is a diagonal matrix that is mxn, and V is nxn. Using the
+ * notation W = diag(w), then the inverse of this matrix is:
+ * inverse(this) = V*diag(1/w)*tranpose(U), where diag(1/w)
+ * is the same matrix as W except that the reciprocal of each
+ * of the diagonal components is used.
+ * @param U The computed U matrix in the equation this = U*W*transpose(V)
+ * @param W The computed W matrix in the equation this = U*W*transpose(V)
+ * @param V The computed V matrix in the equation this = U*W*transpose(V)
+ * @return The rank of this matrix.
+ */
+ public final int SVD(GMatrix U, GMatrix W, GMatrix V)
+ {
+ // check for consistancy in dimensions
+ if (nCol != V.nCol || nCol != V.nRow) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix18"));
+ }
+
+ if (nRow != U.nRow || nRow != U.nCol) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix25"));
+ }
+
+ if (nRow != W.nRow || nCol != W.nCol) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix26"));
+ }
+
+ // Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially
+ // addresses bug 4348562 for J3D 1.2.1.
+ //
+ // Does *not* fix the following problems reported in 4348562,
+ // which will wait for J3D 1.3:
+ //
+ // 1) no output of W
+ // 2) wrong transposition of U
+ // 3) wrong results for 4x4 matrices
+ // 4) slow performance
+ if (nRow == 2 && nCol == 2) {
+ if (values[1][0] == 0.0) {
+ U.setIdentity();
+ V.setIdentity();
+
+ if (values[0][1] == 0.0) {
+ return 2;
+ }
+
+ double[] sinl = new double[1];
+ double[] sinr = new double[1];
+ double[] cosl = new double[1];
+ double[] cosr = new double[1];
+ double[] single_values = new double[2];
+
+ single_values[0] = values[0][0];
+ single_values[1] = values[1][1];
+
+ compute_2X2(values[0][0], values[0][1], values[1][1],
+ single_values, sinl, cosl, sinr, cosr, 0);
+
+ update_u(0, U, cosl, sinl);
+ update_v(0, V, cosr, sinr);
+
+ return 2;
+ }
+ // else call computeSVD() and check for 2x2 there
+ }
+
+ return computeSVD(this, U, W, V);
+ }
+
+ /**
+ * LU Decomposition: this matrix must be a square matrix and the
+ * LU GMatrix parameter must be the same size as this matrix.
+ * The matrix LU will be overwritten as the combination of a
+ * lower diagonal and upper diagonal matrix decompostion of this
+ * matrix; the diagonal
+ * elements of L (unity) are not stored. The GVector parameter
+ * records the row permutation effected by the partial pivoting,
+ * and is used as a parameter to the GVector method LUDBackSolve
+ * to solve sets of linear equations.
+ * This method returns +/- 1 depending on whether the number
+ * of row interchanges was even or odd, respectively.
+ * @param LU The matrix into which the lower and upper decompositions
+ * will be placed.
+ * @param permutation The row permutation effected by the partial
+ * pivoting
+ * @return +-1 depending on whether the number of row interchanges
+ * was even or odd respectively
+ */
+ public final int LUD(GMatrix LU, GVector permutation)
+ {
+ int size = LU.nRow*LU.nCol;
+ double[] temp = new double[size];
+ int[] even_row_exchange = new int[1];
+ int[] row_perm = new int[LU.nRow];
+ int i, j;
+
+ if (nRow != nCol) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix19"));
+ }
+
+ if (nRow != LU.nRow) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix27"));
+ }
+
+ if (nCol != LU.nCol) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix27"));
+ }
+
+ if (LU.nRow != permutation.getSize()) {
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix20"));
+ }
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ temp[i*nCol+j] = values[i][j];
+ }
+ }
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(LU.nRow, temp, row_perm, even_row_exchange)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException
+ (VecMathI18N.getString("GMatrix21"));
+ }
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ LU.values[i][j] = temp[i*nCol+j];
+ }
+ }
+
+ for (i = 0; i < LU.nRow; i++){
+ permutation.values[i] = (double)row_perm[i];
+ }
+
+ return even_row_exchange[0];
+ }
+
+ /**
+ * Sets this matrix to a uniform scale matrix; all of the
+ * values are reset.
+ * @param scale The new scale value
+ */
+ public final void setScale(double scale)
+ {
+ int i, j, l;
+
+ if (nRow < nCol)
+ l = nRow;
+ else
+ l = nCol;
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = 0.0;
+ }
+ }
+
+ for (i = 0; i < l; i++) {
+ values[i][i] = scale;
+ }
+ }
+
+ /**
+ * General invert routine. Inverts m1 and places the result in "this".
+ * Note that this routine handles both the "this" version and the
+ * non-"this" version.
+ *
+ * Also note that since this routine is slow anyway, we won't worry
+ * about allocating a little bit of garbage.
+ */
+ final void invertGeneral(GMatrix m1) {
+ int size = m1.nRow*m1.nCol;
+ double temp[] = new double[size];
+ double result[] = new double[size];
+ int row_perm[] = new int[m1.nRow];
+ int[] even_row_exchange = new int[1];
+ int i, j;
+
+ // Use LU decomposition and backsubstitution code specifically
+ // for floating-point nxn matrices.
+ if (m1.nRow != m1.nCol) {
+ // Matrix is either under or over determined
+ throw new MismatchedSizeException
+ (VecMathI18N.getString("GMatrix22"));
+ }
+
+ // Copy source matrix to temp
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ temp[i*nCol+j] = m1.values[i][j];
+ }
+ }
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(m1.nRow, temp, row_perm, even_row_exchange)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException
+ (VecMathI18N.getString("GMatrix21"));
+ }
+
+ // Perform back substitution on the identity matrix
+ for (i = 0; i < size; i++)
+ result[i] = 0.0;
+
+ for (i = 0; i < nCol; i++)
+ result[i+i*nCol] = 1.0;
+
+ luBacksubstitution(m1.nRow, temp, row_perm, result);
+
+ for (i = 0; i < nRow; i++) {
+ for (j = 0; j < nCol; j++) {
+ values[i][j] = result[i*nCol+j];
+ }
+ }
+ }
+
+ /**
+ * Given a nxn array "matrix0", this function replaces it with the
+ * LU decomposition of a row-wise permutation of itself. The input
+ * parameters are "matrix0" and "dim". The array "matrix0" is also
+ * an output parameter. The vector "row_perm[]" is an output
+ * parameter that contains the row permutations resulting from partial
+ * pivoting. The output parameter "even_row_xchg" is 1 when the
+ * number of row exchanges is even, or -1 otherwise. Assumes data
+ * type is always double.
+ *
+ * @return true if the matrix is nonsingular, or false otherwise.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 40-45.
+ //
+ static boolean luDecomposition(int dim, double[] matrix0,
+ int[] row_perm, int[] even_row_xchg) {
+
+ double row_scale[] = new double[dim];
+
+ // Determine implicit scaling information by looping over rows
+ int i, j;
+ int ptr, rs, mtx;
+ double big, temp;
+
+ ptr = 0;
+ rs = 0;
+ even_row_xchg[0] = 1;
+
+ // For each row ...
+ i = dim;
+ while (i-- != 0) {
+ big = 0.0;
+
+ // For each column, find the largest element in the row
+ j = dim;
+ while (j-- != 0) {
+ temp = matrix0[ptr++];
+ temp = Math.abs(temp);
+ if (temp > big) {
+ big = temp;
+ }
+ }
+
+ // Is the matrix singular?
+ if (big == 0.0) {
+ return false;
+ }
+ row_scale[rs++] = 1.0 / big;
+ }
+
+ // For all columns, execute Crout's method
+ mtx = 0;
+ for (j = 0; j < dim; j++) {
+ int imax, k;
+ int target, p1, p2;
+ double sum;
+
+ // Determine elements of upper diagonal matrix U
+ for (i = 0; i < j; i++) {
+ target = mtx + (dim*i) + j;
+ sum = matrix0[target];
+ k = i;
+ p1 = mtx + (dim*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += dim;
+ }
+ matrix0[target] = sum;
+ }
+
+ // Search for largest pivot element and calculate
+ // intermediate elements of lower diagonal matrix L.
+ big = 0.0;
+ imax = -1;
+ for (i = j; i < dim; i++) {
+ target = mtx + (dim*i) + j;
+ sum = matrix0[target];
+ k = j;
+ p1 = mtx + (dim*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += dim;
+ }
+ matrix0[target] = sum;
+
+ // Is this the best pivot so far?
+ if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
+ big = temp;
+ imax = i;
+ }
+ }
+
+ if (imax < 0) {
+ throw new RuntimeException(VecMathI18N.getString("GMatrix24"));
+ }
+
+ // Is a row exchange necessary?
+ if (j != imax) {
+ // Yes: exchange rows
+ k = dim;
+ p1 = mtx + (dim*imax);
+ p2 = mtx + (dim*j);
+ while (k-- != 0) {
+ temp = matrix0[p1];
+ matrix0[p1++] = matrix0[p2];
+ matrix0[p2++] = temp;
+ }
+
+ // Record change in scale factor
+ row_scale[imax] = row_scale[j];
+ even_row_xchg[0] = -even_row_xchg[0]; // change exchange parity
+ }
+
+ // Record row permutation
+ row_perm[j] = imax;
+
+ // Is the matrix singular
+ if (matrix0[(mtx + (dim*j) + j)] == 0.0) {
+ return false;
+ }
+
+ // Divide elements of lower diagonal matrix L by pivot
+ if (j != (dim-1)) {
+ temp = 1.0 / (matrix0[(mtx + (dim*j) + j)]);
+ target = mtx + (dim*(j+1)) + j;
+ i = (dim-1) - j;
+ while (i-- != 0) {
+ matrix0[target] *= temp;
+ target += dim;
+ }
+ }
+
+ }
+
+ return true;
+ }
+
+ /**
+ * Solves a set of linear equations. The input parameters "matrix1",
+ * and "row_perm" come from luDecompostion and do not change
+ * here. The parameter "matrix2" is a set of column vectors assembled
+ * into a nxn matrix of floating-point values. The procedure takes each
+ * column of "matrix2" in turn and treats it as the right-hand side of the
+ * matrix equation Ax = LUx = b. The solution vector replaces the
+ * original column of the matrix.
+ *
+ * If "matrix2" is the identity matrix, the procedure replaces its contents
+ * with the inverse of the matrix from which "matrix1" was originally
+ * derived.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 44-45.
+ //
+ static void luBacksubstitution(int dim, double[] matrix1,
+ int[] row_perm,
+ double[] matrix2) {
+
+ int i, ii, ip, j, k;
+ int rp;
+ int cv, rv, ri;
+ double tt;
+
+ // rp = row_perm;
+ rp = 0;
+
+ // For each column vector of matrix2 ...
+ for (k = 0; k < dim; k++) {
+ // cv = &(matrix2[0][k]);
+ cv = k;
+ ii = -1;
+
+ // Forward substitution
+ for (i = 0; i < dim; i++) {
+ double sum;
+
+ ip = row_perm[rp+i];
+ sum = matrix2[cv+dim*ip];
+ matrix2[cv+dim*ip] = matrix2[cv+dim*i];
+ if (ii >= 0) {
+ // rv = &(matrix1[i][0]);
+ rv = i*dim;
+ for (j = ii; j <= i-1; j++) {
+ sum -= matrix1[rv+j] * matrix2[cv+dim*j];
+ }
+ }
+ else if (sum != 0.0) {
+ ii = i;
+ }
+ matrix2[cv+dim*i] = sum;
+ }
+
+ // Backsubstitution
+ for (i = 0; i < dim; i++) {
+ ri = (dim-1-i);
+ rv = dim*(ri);
+ tt = 0.0;
+ for(j=1;j<=i;j++) {
+ tt += matrix1[rv+dim-j] * matrix2[cv+dim*(dim-j)];
+ }
+ matrix2[cv+dim*ri]= (matrix2[cv+dim*ri] - tt) / matrix1[rv+ri];
+ }
+ }
+ }
+
+ static int computeSVD(GMatrix mat, GMatrix U, GMatrix W, GMatrix V) {
+ int i, j, k;
+ int nr, nc, si;
+
+ int converged, rank;
+ double cs, sn, r, mag,scale, t;
+ int eLength, sLength, vecLength;
+
+ GMatrix tmp = new GMatrix(mat.nRow, mat.nCol);
+ GMatrix u = new GMatrix(mat.nRow, mat.nCol);
+ GMatrix v = new GMatrix(mat.nRow, mat.nCol);
+ GMatrix m = new GMatrix(mat);
+
+ // compute the number of singular values
+ if (m.nRow >= m.nCol) {
+ sLength = m.nCol;
+ eLength = m.nCol-1;
+ }else {
+ sLength = m.nRow;
+ eLength = m.nRow;
+ }
+
+ if (m.nRow > m.nCol)
+ vecLength = m.nRow;
+ else
+ vecLength = m.nCol;
+
+ double[] vec = new double[vecLength];
+ double[] single_values = new double[sLength];
+ double[] e = new double[eLength];
+
+ if(debug) {
+ System.out.println("input to compute_svd = \n"+m.toString());
+ }
+
+ rank = 0;
+
+ U.setIdentity();
+ V.setIdentity();
+
+ nr = m.nRow;
+ nc = m.nCol;
+
+ // householder reduction
+ for (si = 0; si < sLength; si++) {
+ // for each singular value
+
+ if (nr > 1) {
+ // zero out column
+ if (debug)
+ System.out.println
+ ("*********************** U ***********************\n");
+
+ // compute reflector
+ mag = 0.0;
+ for (i = 0; i < nr; i++) {
+ mag += m.values[i+si][si] * m.values[i+si][si];
+ if (debug)
+ System.out.println
+ ("mag = " + mag + " matrix.dot = " +
+ m.values[i+si][si] * m.values[i+si][si]);
+ }
+
+ mag = Math.sqrt(mag);
+ if (m.values[si][si] == 0.0) {
+ vec[0] = mag;
+ } else {
+ vec[0] = m.values[si][si] + d_sign(mag, m.values[si][si]);
+ }
+
+ for (i = 1; i < nr; i++) {
+ vec[i] = m.values[si+i][si];
+ }
+
+ scale = 0.0;
+ for (i = 0; i < nr; i++) {
+ if (debug)
+ System.out.println("vec["+i+"]="+vec[i]);
+
+ scale += vec[i]*vec[i];
+ }
+
+ scale = 2.0/scale;
+ if (debug)
+ System.out.println("scale = "+scale);
+
+ for (j = si; j < m.nRow; j++) {
+ for (k = si; k < m.nRow; k++) {
+ u.values[j][k] = -scale * vec[j-si]*vec[k-si];
+ }
+ }
+
+ for (i = si; i < m.nRow; i++){
+ u.values[i][i] += 1.0;
+ }
+
+ // compute s
+ t = 0.0;
+ for (i = si; i < m.nRow; i++){
+ t += u.values[si][i] * m.values[i][si];
+ }
+ m.values[si][si] = t;
+
+ // apply reflector
+ for (j = si; j < m.nRow; j++) {
+ for (k = si+1; k < m.nCol; k++) {
+ tmp.values[j][k] = 0.0;
+ for (i = si; i < m.nCol; i++) {
+ tmp.values[j][k] += u.values[j][i] * m.values[i][k];
+ }
+ }
+ }
+
+ for (j = si; j < m.nRow; j++) {
+ for (k = si+1; k < m.nCol; k++) {
+ m.values[j][k] = tmp.values[j][k];
+ }
+ }
+
+ if (debug) {
+ System.out.println("U =\n" + U.toString());
+ System.out.println("u =\n" + u.toString());
+ }
+
+ // update U matrix
+ for (j = si; j < m.nRow; j++) {
+ for (k = 0; k < m.nCol; k++) {
+ tmp.values[j][k] = 0.0;
+ for (i = si; i < m.nCol; i++) {
+ tmp.values[j][k] += u.values[j][i] * U.values[i][k];
+ }
+ }
+ }
+
+ for (j = si; j < m.nRow; j++) {
+ for (k = 0; k < m.nCol; k++) {
+ U.values[j][k] = tmp.values[j][k];
+ }
+ }
+
+ if (debug) {
+ System.out.println("single_values["+si+"] =\n" +
+ single_values[si]);
+ System.out.println("m =\n" + m.toString());
+ System.out.println("U =\n" + U.toString());
+ }
+
+ nr--;
+ }
+
+ if( nc > 2 ) {
+ // zero out row
+ if (debug)
+ System.out.println
+ ("*********************** V ***********************\n");
+
+ mag = 0.0;
+ for (i = 1; i < nc; i++){
+ mag += m.values[si][si+i] * m.values[si][si+i];
+ }
+
+ if (debug)
+ System.out.println("mag = " + mag);
+
+ // generate the reflection vector, compute the first entry and
+ // copy the rest from the row to be zeroed
+ mag = Math.sqrt(mag);
+ if (m.values[si][si+1] == 0.0) {
+ vec[0] = mag;
+ } else {
+ vec[0] = m.values[si][si+1] +
+ d_sign(mag, m.values[si][si+1]);
+ }
+
+ for (i = 1; i < nc - 1; i++){
+ vec[i] = m.values[si][si+i+1];
+ }
+
+ // use reflection vector to compute v matrix
+ scale = 0.0;
+ for (i = 0; i < nc - 1; i++){
+ if( debug )System.out.println("vec["+i+"]="+vec[i]);
+ scale += vec[i]*vec[i];
+ }
+
+ scale = 2.0/scale;
+ if (debug)
+ System.out.println("scale = "+scale);
+
+ for (j = si + 1; j < nc; j++) {
+ for (k = si+1; k < m.nCol; k++) {
+ v.values[j][k] = -scale * vec[j-si-1]*vec[k-si-1];
+ }
+ }
+
+ for (i = si + 1; i < m.nCol; i++){
+ v.values[i][i] += 1.0;
+ }
+
+ t=0.0;
+ for (i = si; i < m.nCol; i++){
+ t += v.values[i][si+1] * m.values[si][i];
+ }
+ m.values[si][si+1]=t;
+
+ // apply reflector
+ for (j = si + 1; j < m.nRow; j++) {
+ for (k = si + 1; k < m.nCol; k++) {
+ tmp.values[j][k] = 0.0;
+ for (i = si + 1; i < m.nCol; i++) {
+ tmp.values[j][k] += v.values[i][k] * m.values[j][i];
+ }
+ }
+ }
+
+ for (j = si + 1; j < m.nRow; j++) {
+ for (k = si + 1; k < m.nCol; k++) {
+ m.values[j][k] = tmp.values[j][k];
+ }
+ }
+
+ if (debug) {
+ System.out.println("V =\n" + V.toString());
+ System.out.println("v =\n" + v.toString());
+ System.out.println("tmp =\n" + tmp.toString());
+ }
+
+ // update V matrix
+ for (j = 0; j < m.nRow; j++) {
+ for (k = si + 1; k < m.nCol; k++) {
+ tmp.values[j][k] = 0.0;
+ for (i = si + 1; i < m.nCol; i++) {
+ tmp.values[j][k] += v.values[i][k] * V.values[j][i];
+ }
+ }
+ }
+
+ if (debug)
+ System.out.println("tmp =\n" + tmp.toString());
+
+ for (j = 0;j < m.nRow; j++) {
+ for (k = si + 1; k < m.nCol; k++) {
+ V.values[j][k] = tmp.values[j][k];
+ }
+ }
+
+ if (debug) {
+ System.out.println("m =\n" + m.toString());
+ System.out.println("V =\n" + V.toString());
+ }
+
+ nc--;
+ }
+ }
+
+ for (i = 0; i < sLength; i++){
+ single_values[i] = m.values[i][i];
+ }
+
+ for (i = 0; i < eLength; i++){
+ e[i] = m.values[i][i+1];
+ }
+
+ // Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially
+ // addresses bug 4348562 for J3D 1.2.1.
+ //
+ // Does *not* fix the following problems reported in 4348562,
+ // which will wait for J3D 1.3:
+ //
+ // 1) no output of W
+ // 2) wrong transposition of U
+ // 3) wrong results for 4x4 matrices
+ // 4) slow performance
+ if (m.nRow == 2 && m.nCol == 2) {
+ double[] cosl = new double[1];
+ double[] cosr = new double[1];
+ double[] sinl = new double[1];
+ double[] sinr = new double[1];
+
+ compute_2X2(single_values[0], e[0], single_values[1],
+ single_values, sinl, cosl, sinr, cosr, 0);
+
+ update_u(0, U, cosl, sinl);
+ update_v(0, V, cosr, sinr);
+
+ return 2;
+ }
+
+ // compute_qr causes ArrayIndexOutOfBounds for 2x2 matrices
+ compute_qr (0, e.length-1, single_values, e, U, V);
+
+ // compute rank = number of non zero singular values
+ rank = single_values.length;
+
+ // sort by order of size of single values
+ // and check for zero's
+ return rank;
+ }
+
+ static void compute_qr(int start, int end, double[] s, double[] e,
+ GMatrix u, GMatrix v) {
+
+ int i, j, k, n, sl;
+ boolean converged;
+ double shift, r, utemp, vtemp, f, g;
+ double[] cosl = new double[1];
+ double[] cosr = new double[1];
+ double[] sinl = new double[1];
+ double[] sinr = new double[1];
+ GMatrix m = new GMatrix(u.nCol, v.nRow);
+
+ final int MAX_INTERATIONS = 2;
+ final double CONVERGE_TOL = 4.89E-15;
+
+ if (debug) {
+ System.out.println("start =" + start);
+ System.out.println("s =\n");
+ for(i=0;i<s.length;i++) {
+ System.out.println(s[i]);
+ }
+
+ System.out.println("\nes =\n");
+ for (i = 0; i < e.length; i++) {
+ System.out.println(e[i]);
+ }
+
+ for (i = 0; i < s.length; i++) {
+ m.values[i][i] = s[i];
+ }
+
+ for (i = 0; i < e.length; i++) {
+ m.values[i][i+1] = e[i];
+ }
+ System.out.println("\nm =\n" + m.toString());
+ }
+
+ double c_b48 = 1.0;
+ double c_b71 = -1.0;
+ converged = false;
+
+ if (debug)
+ print_svd(s, e, u, v);
+
+ f = 0.0;
+ g = 0.0;
+
+ for (k = 0; k < MAX_INTERATIONS && !converged;k++) {
+ for (i = start; i <= end; i++) {
+
+ // if at start of iterfaction compute shift
+ if (i == start) {
+ if (e.length == s.length)
+ sl = end;
+ else
+ sl = end + 1;
+
+ shift = compute_shift(s[sl-1], e[end], s[sl]);
+
+ f = (Math.abs(s[i]) - shift) *
+ (d_sign(c_b48, s[i]) + shift/s[i]);
+ g = e[i];
+ }
+
+ r = compute_rot(f, g, sinr, cosr);
+ if (i != start)
+ e[i-1] = r;
+
+ f = cosr[0] * s[i] + sinr[0] * e[i];
+ e[i] = cosr[0] * e[i] - sinr[0] * s[i];
+ g = sinr[0] * s[i+1];
+ s[i+1] = cosr[0] * s[i+1];
+
+ // if (debug) print_se(s,e);
+ update_v (i, v, cosr, sinr);
+ if (debug)
+ print_m(m,u,v);
+
+ r = compute_rot(f, g, sinl, cosl);
+ s[i] = r;
+ f = cosl[0] * e[i] + sinl[0] * s[i+1];
+ s[i+1] = cosl[0] * s[i+1] - sinl[0] * e[i];
+
+ if( i < end) {
+ // if not last
+ g = sinl[0] * e[i+1];
+ e[i+1] = cosl[0] * e[i+1];
+ }
+ //if (debug) print_se(s,e);
+
+ update_u(i, u, cosl, sinl);
+ if (debug)
+ print_m(m,u,v);
+ }
+
+ // if extra off diagonal perform one more right side rotation
+ if (s.length == e.length) {
+ r = compute_rot(f, g, sinr, cosr);
+ f = cosr[0] * s[i] + sinr[0] * e[i];
+ e[i] = cosr[0] * e[i] - sinr[0] * s[i];
+ s[i+1] = cosr[0] * s[i+1];
+
+ update_v(i, v, cosr, sinr);
+ if (debug)
+ print_m(m,u,v);
+ }
+
+ if (debug) {
+ System.out.println
+ ("\n*********************** iteration #" + k +
+ " ***********************\n");
+ print_svd(s, e, u, v);
+ }
+
+ // check for convergence on off diagonals and reduce
+ while ((end-start > 1) && (Math.abs(e[end]) < CONVERGE_TOL)) {
+ end--;
+ }
+
+ // check if need to split
+ for (n = end - 2; n > start; n--) {
+ if (Math.abs(e[n]) < CONVERGE_TOL) { // split
+ compute_qr(n + 1, end, s, e, u, v); // do lower matrix
+ end = n - 1; // do upper matrix
+
+ // check for convergence on off diagonals and reduce
+ while ((end - start > 1) &&
+ (Math.abs(e[end]) < CONVERGE_TOL)) {
+ end--;
+ }
+ }
+ }
+
+ if (debug)
+ System.out.println("start = " + start);
+
+ if ((end - start <= 1) && (Math.abs(e[start+1]) < CONVERGE_TOL)) {
+ converged = true;
+ } else {
+ // check if zero on the diagonal
+ }
+
+ }
+
+ if (debug)
+ System.out.println("\n****call compute_2X2 ********************\n");
+
+ if (Math.abs(e[1]) < CONVERGE_TOL) {
+ compute_2X2(s[start], e[start], s[start+1], s,
+ sinl, cosl, sinr, cosr, 0);
+ e[start] = 0.0;
+ e[start+1] = 0.0;
+ } else {
+ }
+
+ i = start;
+ update_u(i, u, cosl, sinl);
+ update_v(i, v, cosr, sinr);
+
+ if(debug) {
+ System.out.println
+ ("\n*******after call compute_2X2 **********************\n");
+ print_svd(s, e, u, v);
+ }
+
+ return;
+ }
+
+ private static void print_se(double[] s, double[] e) {
+ System.out.println("\ns =" + s[0] + " " + s[1] + " " + s[2]);
+ System.out.println("e =" + e[0] + " " + e[1]);
+ }
+
+ private static void update_v(int index, GMatrix v,
+ double[] cosr, double[] sinr) {
+ int j;
+ double vtemp;
+
+ for (j = 0; j < v.nRow; j++) {
+ vtemp = v.values[j][index];
+ v.values[j][index] =
+ cosr[0]*vtemp + sinr[0]*v.values[j][index+1];
+ v.values[j][index+1] =
+ -sinr[0]*vtemp + cosr[0]*v.values[j][index+1];
+ }
+ }
+
+ private static void chase_up(double[] s, double[] e, int k, GMatrix v) {
+ double f, g, r;
+ double[] cosr = new double[1];
+ double[] sinr = new double[1];
+ int i;
+ GMatrix t = new GMatrix(v.nRow, v.nCol);
+ GMatrix m = new GMatrix(v.nRow, v.nCol);
+
+ if (debug) {
+ m.setIdentity();
+ for (i = 0; i < s.length; i++) {
+ m.values[i][i] = s[i];
+ }
+ for (i = 0; i < e.length; i++) {
+ m.values[i][i+1] = e[i];
+ }
+ }
+
+ f = e[k];
+ g = s[k];
+
+ for (i = k; i > 0; i--) {
+ r = compute_rot(f, g, sinr, cosr);
+ f = -e[i-1] * sinr[0];
+ g = s[i-1];
+ s[i] = r;
+ e[i-1] = e[i-1] * cosr[0];
+ update_v_split(i, k+1, v, cosr, sinr, t, m);
+ }
+
+ s[i+1] = compute_rot(f, g, sinr, cosr);
+ update_v_split(i, k+1, v, cosr, sinr, t, m);
+ }
+
+ private static void chase_across(double[] s, double[] e, int k, GMatrix u) {
+ double f, g, r;
+ double[] cosl = new double[1];
+ double[] sinl = new double[1];
+ int i;
+ GMatrix t = new GMatrix(u.nRow, u.nCol);
+ GMatrix m = new GMatrix(u.nRow, u.nCol);
+
+ if (debug) {
+ m.setIdentity();
+ for (i = 0; i < s.length; i++) {
+ m.values[i][i] = s[i];
+ }
+ for (i = 0; i < e.length; i++) {
+ m.values[i][i+1] = e[i];
+ }
+ }
+
+ g = e[k];
+ f = s[k+1];
+
+ for (i = k; i < u.nCol-2; i++){
+ r = compute_rot(f, g, sinl, cosl);
+ g = -e[i+1] * sinl[0];
+ f = s[i+2];
+ s[i+1] = r;
+ e[i+1] = e[i+1] * cosl[0];
+ update_u_split(k, i + 1, u, cosl, sinl, t, m);
+ }
+
+ s[i+1] = compute_rot(f, g, sinl, cosl);
+ update_u_split(k, i + 1, u, cosl, sinl, t, m);
+ }
+
+ private static void update_v_split(int topr, int bottomr, GMatrix v,
+ double[] cosr, double[] sinr,
+ GMatrix t, GMatrix m) {
+ int j;
+ double vtemp;
+
+ for (j = 0; j < v.nRow; j++) {
+ vtemp = v.values[j][topr];
+ v.values[j][topr] = cosr[0]*vtemp - sinr[0]*v.values[j][bottomr];
+ v.values[j][bottomr] = sinr[0]*vtemp + cosr[0]*v.values[j][bottomr];
+ }
+
+ if (debug) {
+ t.setIdentity();
+ for (j = 0; j < v.nRow; j++) {
+ vtemp = t.values[j][topr];
+ t.values[j][topr] =
+ cosr[0]*vtemp - sinr[0]*t.values[j][bottomr];
+ t.values[j][bottomr] =
+ sinr[0]*vtemp + cosr[0]*t.values[j][bottomr];
+ }
+ }
+
+ System.out.println("topr =" + topr);
+ System.out.println("bottomr =" + bottomr);
+ System.out.println("cosr =" + cosr[0]);
+ System.out.println("sinr =" + sinr[0]);
+ System.out.println("\nm =");
+ checkMatrix(m);
+ System.out.println("\nv =");
+ checkMatrix(t);
+ m.mul(m,t);
+ System.out.println("\nt*m =");
+ checkMatrix(m);
+ }
+
+ private static void update_u_split(int topr, int bottomr, GMatrix u,
+ double[] cosl, double[] sinl,
+ GMatrix t, GMatrix m) {
+ int j;
+ double utemp;
+
+ for (j = 0; j < u.nCol; j++) {
+ utemp = u.values[topr][j];
+ u.values[topr][j] = cosl[0]*utemp - sinl[0]*u.values[bottomr][j];
+ u.values[bottomr][j] = sinl[0]*utemp + cosl[0]*u.values[bottomr][j];
+ }
+
+ if(debug) {
+ t.setIdentity();
+ for (j = 0;j < u.nCol; j++) {
+ utemp = t.values[topr][j];
+ t.values[topr][j] =
+ cosl[0]*utemp - sinl[0]*t.values[bottomr][j];
+ t.values[bottomr][j] =
+ sinl[0]*utemp + cosl[0]*t.values[bottomr][j];
+ }
+ }
+ System.out.println("\nm=");
+ checkMatrix(m);
+ System.out.println("\nu=");
+ checkMatrix(t);
+ m.mul(t,m);
+ System.out.println("\nt*m=");
+ checkMatrix(m);
+ }
+
+ private static void update_u(int index, GMatrix u,
+ double[] cosl, double[] sinl) {
+ int j;
+ double utemp;
+
+ for (j = 0; j < u.nCol; j++) {
+ utemp = u.values[index][j];
+ u.values[index][j] =
+ cosl[0]*utemp + sinl[0]*u.values[index+1][j];
+ u.values[index+1][j] =
+ -sinl[0]*utemp + cosl[0]*u.values[index+1][j];
+ }
+ }
+
+ private static void print_m(GMatrix m, GMatrix u, GMatrix v) {
+ GMatrix mtmp = new GMatrix(m.nCol, m.nRow);
+
+ mtmp.mul(u, mtmp);
+ mtmp.mul(mtmp, v);
+ System.out.println("\n m = \n" + mtmp.toString(mtmp));
+
+ }
+
+ private static String toString(GMatrix m)
+ {
+ StringBuffer buffer = new StringBuffer(m.nRow * m.nCol * 8);
+ int i, j;
+
+ for (i = 0; i < m.nRow; i++) {
+ for(j = 0; j < m.nCol; j++) {
+ if (Math.abs(m.values[i][j]) < .000000001) {
+ buffer.append("0.0000 ");
+ } else {
+ buffer.append(m.values[i][j]).append(" ");
+ }
+ }
+ buffer.append("\n");
+ }
+ return buffer.toString();
+ }
+
+ private static void print_svd(double[] s, double[] e,
+ GMatrix u, GMatrix v) {
+ int i;
+ GMatrix mtmp = new GMatrix(u.nCol, v.nRow);
+
+ System.out.println(" \ns = ");
+ for (i = 0; i < s.length; i++) {
+ System.out.println(" " + s[i]);
+ }
+
+ System.out.println(" \ne = ");
+ for (i = 0; i < e.length; i++) {
+ System.out.println(" " + e[i]);
+ }
+
+ System.out.println(" \nu = \n" + u.toString());
+ System.out.println(" \nv = \n" + v.toString());
+
+ mtmp.setIdentity();
+ for (i = 0; i < s.length; i++) {
+ mtmp.values[i][i] = s[i];
+ }
+ for (i = 0; i < e.length; i++) {
+ mtmp.values[i][i+1] = e[i];
+ }
+ System.out.println(" \nm = \n"+mtmp.toString());
+
+ mtmp.mulTransposeLeft(u, mtmp);
+ mtmp.mulTransposeRight(mtmp, v);
+
+ System.out.println(" \n u.transpose*m*v.transpose = \n" +
+ mtmp.toString());
+ }
+
+ static double max(double a, double b) {
+ if (a > b)
+ return a;
+ else
+ return b;
+ }
+
+ static double min(double a, double b) {
+ if (a < b)
+ return a;
+ else
+ return b;
+ }
+
+ static double compute_shift(double f, double g, double h) {
+ double d__1, d__2;
+ double fhmn, fhmx, c, fa, ga, ha, as, at, au;
+ double ssmin;
+
+ fa = Math.abs(f);
+ ga = Math.abs(g);
+ ha = Math.abs(h);
+ fhmn = min(fa,ha);
+ fhmx = max(fa,ha);
+
+ if (fhmn == 0.0) {
+ ssmin = 0.0;
+ if (fhmx == 0.0) {
+ } else {
+ d__1 = min(fhmx,ga) / max(fhmx,ga);
+ }
+ } else {
+ if (ga < fhmx) {
+ as = fhmn / fhmx + 1.0;
+ at = (fhmx - fhmn) / fhmx;
+ d__1 = ga / fhmx;
+ au = d__1 * d__1;
+ c = 2.0 / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au));
+ ssmin = fhmn * c;
+ } else {
+ au = fhmx / ga;
+ if (au == 0.0) {
+ ssmin = fhmn * fhmx / ga;
+ } else {
+ as = fhmn / fhmx + 1.0;
+ at = (fhmx - fhmn) / fhmx;
+ d__1 = as * au;
+ d__2 = at * au;
+ c = 1.0 / (Math.sqrt(d__1 * d__1 + 1.0) +
+ Math.sqrt(d__2 * d__2 + 1.0));
+ ssmin = fhmn * c * au;
+ ssmin += ssmin;
+ }
+ }
+ }
+
+ return ssmin;
+ }
+
+ static int compute_2X2(double f, double g, double h,
+ double[] single_values, double[] snl, double[] csl,
+ double[] snr, double[] csr, int index) {
+
+ double c_b3 = 2.0;
+ double c_b4 = 1.0;
+
+ double d__1;
+ int pmax;
+ double temp;
+ boolean swap;
+ double a, d, l, m, r, s, t, tsign, fa, ga, ha;
+ double ft, gt, ht, mm;
+ boolean gasmal;
+ double tt, clt, crt, slt, srt;
+ double ssmin,ssmax;
+
+ ssmax = single_values[0];
+ ssmin = single_values[1];
+ clt = 0.0;
+ crt = 0.0;
+ slt = 0.0;
+ srt = 0.0;
+ tsign = 0.0;
+
+ ft = f;
+ fa = Math.abs(ft);
+ ht = h;
+ ha = Math.abs(h);
+
+ pmax = 1;
+ if (ha > fa)
+ swap = true;
+ else
+ swap = false;
+
+ if (swap) {
+ pmax = 3;
+ temp = ft;
+ ft = ht;
+ ht = temp;
+ temp = fa;
+ fa = ha;
+ ha = temp;
+
+ }
+
+ gt = g;
+ ga = Math.abs(gt);
+ if (ga == 0.0) {
+ single_values[1] = ha;
+ single_values[0] = fa;
+ clt = 1.0;
+ crt = 1.0;
+ slt = 0.0;
+ srt = 0.0;
+ } else {
+ gasmal = true;
+ if (ga > fa) {
+ pmax = 2;
+ if (fa / ga < EPS) {
+ gasmal = false;
+ ssmax = ga;
+
+ if (ha > 1.0) {
+ ssmin = fa / (ga / ha);
+ } else {
+ ssmin = fa / ga * ha;
+ }
+ clt = 1.0;
+ slt = ht / gt;
+ srt = 1.0;
+ crt = ft / gt;
+ }
+ }
+ if (gasmal) {
+ d = fa - ha;
+ if (d == fa) {
+
+ l = 1.0;
+ } else {
+ l = d / fa;
+ }
+
+ m = gt / ft;
+ t = 2.0 - l;
+ mm = m * m;
+ tt = t * t;
+ s = Math.sqrt(tt + mm);
+
+ if (l == 0.0) {
+ r = Math.abs(m);
+ } else {
+ r = Math.sqrt(l * l + mm);
+ }
+
+ a = (s + r) * 0.5;
+ if (ga > fa) {
+ pmax = 2;
+ if (fa / ga < EPS) {
+ gasmal = false;
+ ssmax = ga;
+ if (ha > 1.0) {
+ ssmin = fa / (ga / ha);
+ } else {
+ ssmin = fa / ga * ha;
+ }
+ clt = 1.0;
+ slt = ht / gt;
+ srt = 1.0;
+ crt = ft / gt;
+ }
+ }
+ if (gasmal) {
+ d = fa - ha;
+ if (d == fa) {
+ l = 1.0;
+ } else {
+ l = d / fa;
+ }
+
+ m = gt / ft;
+ t = 2.0 - l;
+
+ mm = m * m;
+ tt = t * t;
+ s = Math.sqrt(tt + mm);
+
+ if (l == 0.) {
+ r = Math.abs(m);
+ } else {
+ r = Math.sqrt(l * l + mm);
+ }
+
+ a = (s + r) * 0.5;
+ ssmin = ha / a;
+ ssmax = fa * a;
+
+ if (mm == 0.0) {
+ if (l == 0.0) {
+ t = d_sign(c_b3, ft) * d_sign(c_b4, gt);
+ } else {
+ t = gt / d_sign(d, ft) + m / t;
+ }
+ } else {
+ t = (m / (s + t) + m / (r + l)) * (a + 1.0);
+ }
+
+ l = Math.sqrt(t * t + 4.0);
+ crt = 2.0 / l;
+ srt = t / l;
+ clt = (crt + srt * m) / a;
+ slt = ht / ft * srt / a;
+ }
+ }
+ if (swap) {
+ csl[0] = srt;
+ snl[0] = crt;
+ csr[0] = slt;
+ snr[0] = clt;
+ } else {
+ csl[0] = clt;
+ snl[0] = slt;
+ csr[0] = crt;
+ snr[0] = srt;
+ }
+
+ if (pmax == 1) {
+ tsign = d_sign(c_b4, csr[0]) *
+ d_sign(c_b4, csl[0]) * d_sign(c_b4, f);
+ }
+ if (pmax == 2) {
+ tsign = d_sign(c_b4, snr[0]) *
+ d_sign(c_b4, csl[0]) * d_sign(c_b4, g);
+ }
+ if (pmax == 3) {
+ tsign = d_sign(c_b4, snr[0]) *
+ d_sign(c_b4, snl[0]) * d_sign(c_b4, h);
+ }
+
+ single_values[index] = d_sign(ssmax, tsign);
+ d__1 = tsign * d_sign(c_b4, f) * d_sign(c_b4, h);
+ single_values[index+1] = d_sign(ssmin, d__1);
+ }
+
+ return 0;
+ }
+
+ static double compute_rot(double f, double g, double[] sin, double[] cos) {
+ int i__1;
+ double d__1, d__2;
+ double cs, sn;
+ int i;
+ double scale;
+ int count;
+ double f1, g1;
+ double r;
+ final double safmn2 = 2.002083095183101E-146;
+ final double safmx2 = 4.994797680505588E+145;
+
+ if (g == 0.0) {
+ cs = 1.0;
+ sn = 0.0;
+ r = f;
+ } else if (f == 0.0) {
+ cs = 0.0;
+ sn = 1.0;
+ r = g;
+ } else {
+ f1 = f;
+ g1 = g;
+ scale = max(Math.abs(f1),Math.abs(g1));
+ if (scale >= safmx2) {
+ count = 0;
+ while(scale >= safmx2) {
+ ++count;
+ f1 *= safmn2;
+ g1 *= safmn2;
+ scale = max(Math.abs(f1), Math.abs(g1));
+ }
+ r = Math.sqrt(f1*f1 + g1*g1);
+ cs = f1 / r;
+ sn = g1 / r;
+ i__1 = count;
+ for (i = 1; i <= count; ++i) {
+ r *= safmx2;
+ }
+ } else if (scale <= safmn2) {
+ count = 0;
+ while(scale <= safmn2) {
+ ++count;
+ f1 *= safmx2;
+ g1 *= safmx2;
+ scale = max(Math.abs(f1), Math.abs(g1));
+ }
+ r = Math.sqrt(f1*f1 + g1*g1);
+ cs = f1 / r;
+ sn = g1 / r;
+ i__1 = count;
+ for (i = 1; i <= count; ++i) {
+ r *= safmn2;
+ }
+ } else {
+ r = Math.sqrt(f1*f1 + g1*g1);
+ cs = f1 / r;
+ sn = g1 / r;
+ }
+ if (Math.abs(f) > Math.abs(g) && cs < 0.0) {
+ cs = -cs;
+ sn = -sn;
+ r = -r;
+ }
+ }
+ sin[0] = sn;
+ cos[0] = cs;
+ return r;
+ }
+
+ static double d_sign(double a, double b) {
+ double x;
+ x = (a >= 0 ? a : - a);
+ return (b >= 0 ? x : -x);
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ GMatrix m1 = null;
+ try {
+ m1 = (GMatrix)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+
+ // Also need to clone array of values
+ m1.values = new double[nRow][nCol];
+ for (int i = 0; i < nRow; i++) {
+ for(int j = 0; j < nCol; j++) {
+ m1.values[i][j] = values[i][j];
+ }
+ }
+
+ return m1;
+ }
+
+}
diff --git a/src/javax/vecmath/GVector.java b/src/javax/vecmath/GVector.java
new file mode 100644
index 0000000..89a9b37
--- /dev/null
+++ b/src/javax/vecmath/GVector.java
@@ -0,0 +1,914 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A double precision, general, dynamically-resizable,
+ * one-dimensional vector class. Index numbering begins with zero.
+ */
+
+public class GVector implements java.io.Serializable, Cloneable {
+
+ private int length;
+ double[] values;
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 1398850036893875112L;
+
+ /**
+ * Constructs a new GVector of the specified
+ * length with all vector elements initialized to 0.
+ * @param length the number of elements in this GVector.
+ */
+ public GVector(int length)
+ {
+ int i;
+
+ this.length = length;
+ values = new double[length];
+ for(i = 0; i < length; i++) values[i] = 0.0;
+ }
+
+ /**
+ * Constructs a new GVector from the specified array elements.
+ * The length of this GVector is set to the length of the
+ * specified array. The array elements are copied into this new
+ * GVector.
+ * @param vector the values for the new GVector.
+ */
+ public GVector(double[] vector)
+ {
+ int i;
+
+ length = vector.length;
+ values = new double[vector.length];
+ for(i = 0; i < length; i++) values[i] = vector[i];
+ }
+
+ /**
+ * Constructs a new GVector from the specified vector.
+ * The vector elements are copied into this new GVector.
+ * @param vector the source GVector for this new GVector.
+ */
+ public GVector(GVector vector)
+ {
+ int i;
+
+ values = new double[vector.length];
+ length = vector.length;
+ for(i = 0; i < length; i++) values[i] = vector.values[i];
+ }
+
+ /**
+ * Constructs a new GVector and copies the initial values
+ * from the specified tuple.
+ * @param tuple the source for the new GVector's initial values
+ */
+ public GVector(Tuple2f tuple)
+ {
+ values = new double[2];
+ values[0] = (double)tuple.x;
+ values[1] = (double)tuple.y;
+ length = 2;
+ }
+
+ /**
+ * Constructs a new GVector and copies the initial values
+ * from the specified tuple.
+ * @param tuple the source for the new GVector's initial values
+ */
+ public GVector(Tuple3f tuple)
+ {
+ values = new double[3];
+ values[0] = (double)tuple.x;
+ values[1] = (double)tuple.y;
+ values[2] = (double)tuple.z;
+ length = 3;
+ }
+
+ /**
+ * Constructs a new GVector and copies the initial values
+ * from the specified tuple.
+ * @param tuple the source for the new GVector's initial values
+ */
+ public GVector(Tuple3d tuple)
+ {
+ values = new double[3];
+ values[0] = tuple.x;
+ values[1] = tuple.y;
+ values[2] = tuple.z;
+ length = 3;
+ }
+
+ /**
+ * Constructs a new GVector and copies the initial values
+ * from the specified tuple.
+ * @param tuple the source for the new GVector's initial values
+ */
+ public GVector(Tuple4f tuple)
+ {
+ values = new double[4];
+ values[0] = (double)tuple.x;
+ values[1] = (double)tuple.y;
+ values[2] = (double)tuple.z;
+ values[3] = (double)tuple.w;
+ length = 4;
+ }
+
+ /**
+ * Constructs a new GVector and copies the initial values
+ * from the specified tuple.
+ * @param tuple the source for the new GVector's initial values
+ */
+ public GVector(Tuple4d tuple)
+ {
+ values = new double[4];
+ values[0] = tuple.x;
+ values[1] = tuple.y;
+ values[2] = tuple.z;
+ values[3] = tuple.w;
+ length = 4;
+ }
+
+ /**
+ * Constructs a new GVector of the specified length and
+ * initializes it by copying the specified number of elements from
+ * the specified array. The array must contain at least
+ * <code>length</code> elements (i.e., <code>vector.length</code> >=
+ * <code>length</code>. The length of this new GVector is set to
+ * the specified length.
+ * @param vector The array from which the values will be copied.
+ * @param length The number of values copied from the array.
+ */
+ public GVector(double vector[], int length) {
+ int i;
+
+ this.length = length;
+ values = new double [length];
+ for(i=0;i<length;i++) {
+ values[i] = vector[i];
+ }
+ }
+
+ /**
+ * Returns the square root of the sum of the squares of this
+ * vector (its length in n-dimensional space).
+ * @return length of this vector
+ */
+
+ public final double norm()
+ {
+ double sq = 0.0;
+ int i;
+
+ for(i=0;i<length;i++) {
+ sq += values[i]*values[i];
+ }
+
+ return(Math.sqrt(sq));
+
+ }
+
+ /**
+ * Returns the sum of the squares of this
+ * vector (its length squared in n-dimensional space).
+ * @return length squared of this vector
+ */
+ public final double normSquared()
+ {
+ double sq = 0.0;
+ int i;
+
+ for(i=0;i<length;i++) {
+ sq += values[i]*values[i];
+ }
+
+ return(sq);
+ }
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(GVector v1)
+ {
+ double sq = 0.0;
+ int i;
+
+ if( length != v1.length)
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector0"));
+
+ for(i=0;i<length;i++) {
+ sq += v1.values[i]*v1.values[i];
+ }
+
+ double invMag;
+ invMag = 1.0/Math.sqrt(sq);
+
+ for(i=0;i<length;i++) {
+ values[i] = v1.values[i]*invMag;
+ }
+ }
+
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ double sq = 0.0;
+ int i;
+
+ for(i=0;i<length;i++) {
+ sq += values[i]*values[i];
+ }
+
+ double invMag;
+ invMag = 1.0/Math.sqrt(sq);
+
+ for(i=0;i<length;i++) {
+ values[i] = values[i]*invMag;
+ }
+
+ }
+
+ /**
+ * Sets the value of this vector to the scalar multiplication
+ * of the scale factor with the vector v1.
+ * @param s the scalar value
+ * @param v1 the source vector
+ */
+ public final void scale(double s, GVector v1)
+ {
+ int i;
+ if( length != v1.length)
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector1"));
+
+ for(i=0;i<length;i++) {
+ values[i] = v1.values[i]*s;
+ }
+ }
+
+ /**
+ * Scales this vector by the scale factor s.
+ * @param s the scalar value
+ */
+ public final void scale(double s)
+ {
+ int i;
+
+ for(i=0;i<length;i++) {
+ values[i] = values[i]*s;
+ }
+ }
+
+ /**
+ * Sets the value of this vector to the scalar multiplication by s
+ * of vector v1 plus vector v2 (this = s*v1 + v2).
+ * @param s the scalar value
+ * @param v1 the vector to be multiplied
+ * @param v2 the vector to be added
+ */
+ public final void scaleAdd(double s, GVector v1, GVector v2)
+ {
+
+ int i;
+
+ if( v2.length != v1.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector2"));
+
+ if( length != v1.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector3"));
+
+ for(i=0;i<length;i++) {
+ values[i] = v1.values[i]*s + v2.values[i];
+ }
+ }
+
+ /**
+ * Sets the value of this vector to sum of itself and the specified
+ * vector
+ * @param vector the second vector
+ */
+ public final void add(GVector vector)
+ {
+ int i;
+
+ if( length != vector.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector4"));
+
+ for(i = 0; i < length; i++) {
+ this.values[i] += vector.values[i];
+ }
+ }
+
+ /**
+ * Sets the value of this vector to the vector sum of vectors vector1
+ * and vector2.
+ * @param vector1 the first vector
+ * @param vector2 the second vector
+ */
+ public final void add(GVector vector1, GVector vector2)
+ {
+ int i;
+
+ if( vector1.length != vector2.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector5"));
+
+ if( length != vector1.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector6"));
+
+ for(i = 0; i < length; i++)
+ this.values[i] = vector1.values[i] + vector2.values[i];
+ }
+
+ /**
+ * Sets the value of this vector to the vector difference of itself
+ * and vector (this = this - vector).
+ * @param vector the other vector
+ */
+ public final void sub(GVector vector)
+ {
+ int i;
+
+ if( length != vector.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector7"));
+
+ for(i = 0; i < length; i++) {
+ this.values[i] -= vector.values[i];
+ }
+ }
+
+ /**
+ * Sets the value of this vector to the vector difference
+ * of vectors vector1 and vector2 (this = vector1 - vector2).
+ * @param vector1 the first vector
+ * @param vector2 the second vector
+ */
+ public final void sub(GVector vector1, GVector vector2)
+ {
+ int i,l;
+
+
+ if( vector1.length != vector2.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector8"));
+
+ if( length != vector1.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector9"));
+
+ for(i = 0; i < length; i++)
+ this.values[i] = vector1.values[i] - vector2.values[i];
+ }
+
+ /**
+ * Multiplies matrix m1 times Vector v1 and places the result
+ * into this vector (this = m1*v1).
+ * @param m1 The matrix in the multiplication
+ * @param v1 The vector that is multiplied
+ */
+ public final void mul(GMatrix m1, GVector v1) {
+ if (m1.getNumCol() != v1.length)
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector10"));
+
+ if (length != m1.getNumRow())
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector11"));
+
+ double v[];
+ if (v1 != this) {
+ v = v1.values;
+ } else {
+ v = (double []) values.clone();
+ }
+
+ for(int j=length-1; j>=0; j--){
+ values[j] = 0.0;
+ for(int i=v1.length-1;i>=0; i--){
+ values[j] += m1.values[j][i] * v[i];
+ }
+ }
+ }
+
+ /**
+ * Multiplies the transpose of vector v1 (ie, v1 becomes a row
+ * vector with respect to the multiplication) times matrix m1
+ * and places the result into this vector
+ * (this = transpose(v1)*m1). The result is technically a
+ * row vector, but the GVector class only knows about column
+ * vectors, and so the result is stored as a column vector.
+ * @param m1 The matrix in the multiplication
+ * @param v1 The vector that is temporarily transposed
+ */
+ public final void mul(GVector v1, GMatrix m1) {
+ if (m1.getNumRow() != v1.length)
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector12"));
+
+ if (length != m1.getNumCol())
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector13"));
+
+ double v[];
+ if (v1 != this) {
+ v = v1.values;
+ } else {
+ v = (double []) values.clone();
+ }
+
+ for (int j=length-1; j>=0; j--){
+ values[j] = 0.0;
+ for(int i=v1.length-1; i>=0; i--){
+ values[j] += m1.values[i][j] * v[i];
+ }
+ }
+ }
+
+ /**
+ * Negates the value of this vector: this = -this.
+ */
+ public final void negate() {
+ for(int i=length-1; i>=0; i--) {
+ this.values[i] *= -1.0;
+ }
+ }
+
+ /**
+ * Sets all the values in this vector to zero.
+ */
+ public final void zero() {
+ for (int i=0; i < this.length; i++) {
+ this.values[i] = 0.0;
+ }
+ }
+
+ /**
+ * Changes the size of this vector dynamically. If the size is increased
+ * no data values will be lost. If the size is decreased, only those data
+ * values whose vector positions were eliminated will be lost.
+ * @param length number of desired elements in this vector
+ */
+ public final void setSize(int length) {
+ double[] tmp = new double[length];
+ int i,max;
+
+ if( this.length < length)
+ max = this.length;
+ else
+ max = length;
+
+ for(i=0;i<max;i++) {
+ tmp[i] = values[i];
+ }
+ this.length = length;
+
+ values = tmp;
+
+ }
+
+ /**
+ * Sets the value of this vector to the values found in the array
+ * parameter. The array should be at least equal in length to
+ * the number of elements in the vector.
+ * @param vector the source array
+ */
+ public final void set(double[] vector) {
+ for(int i = length-1; i >=0; i--)
+ values[i] = vector[i];
+ }
+
+ /**
+ * Sets the value of this vector to the values found in vector vector.
+ * @param vector the source vector
+ */
+ public final void set(GVector vector) {
+ int i;
+
+ if (length < vector.length) {
+ length = vector.length;
+ values = new double[length];
+ for(i = 0; i < length; i++)
+ values[i] = vector.values[i];
+ }else {
+ for(i = 0; i < vector.length; i++)
+ values[i] = vector.values[i];
+ for(i = vector.length; i < length; i++)
+ values[i] = 0.0;
+ }
+ }
+
+ /**
+ * Sets the value of this vector to the values in tuple
+ * @param tuple the source for the new GVector's new values
+ */
+ public final void set(Tuple2f tuple)
+ {
+ if (length < 2) {
+ length = 2;
+ values = new double[2];
+ }
+ values[0] = (double)tuple.x;
+ values[1] = (double)tuple.y;
+ for(int i = 2; i < length; i++) values[i] = 0.0;
+
+ }
+
+ /**
+ * Sets the value of this vector to the values in tuple
+ * @param tuple the source for the new GVector's new values
+ */
+ public final void set(Tuple3f tuple)
+ {
+ if (length < 3) {
+ length = 3;
+ values = new double[3];
+ }
+ values[0] = (double)tuple.x;
+ values[1] = (double)tuple.y;
+ values[2] = (double)tuple.z;
+ for(int i = 3; i < length; i++) values[i] = 0.0;
+ }
+
+ /**
+ * Sets the value of this vector to the values in tuple
+ * @param tuple the source for the new GVector's new values
+ */
+ public final void set(Tuple3d tuple)
+ {
+ if (length < 3) {
+ length = 3;
+ values = new double[3];
+ }
+ values[0] = tuple.x;
+ values[1] = tuple.y;
+ values[2] = tuple.z;
+ for(int i = 3; i < length; i++) values[i] = 0.0;
+ }
+
+ /**
+ * Sets the value of this vector to the values in tuple
+ * @param tuple the source for the new GVector's new values
+ */
+ public final void set(Tuple4f tuple)
+ {
+ if (length < 4) {
+ length = 4;
+ values = new double[4];
+ }
+ values[0] = (double)tuple.x;
+ values[1] = (double)tuple.y;
+ values[2] = (double)tuple.z;
+ values[3] = (double)tuple.w;
+ for(int i = 4; i < length; i++) values[i] = 0.0;
+ }
+
+ /**
+ * Sets the value of this vector to the values in tuple
+ * @param tuple the source for the new GVector's new values
+ */
+ public final void set(Tuple4d tuple)
+ {
+ if (length < 4) {
+ length = 4;
+ values = new double[4];
+ }
+ values[0] = tuple.x;
+ values[1] = tuple.y;
+ values[2] = tuple.z;
+ values[3] = tuple.w;
+ for(int i = 4; i < length; i++) values[i] = 0.0;
+ }
+
+ /**
+ * Returns the number of elements in this vector.
+ * @return number of elements in this vector
+ */
+ public final int getSize()
+ {
+ return values.length;
+ }
+
+ /**
+ * Retrieves the value at the specified index value of this vector.
+ * @param index the index of the element to retrieve (zero indexed)
+ * @return the value at the indexed element
+ */
+ public final double getElement(int index)
+ {
+ return values[index];
+ }
+
+
+ /**
+ * Modifies the value at the specified index of this vector.
+ * @param index the index if the element to modify (zero indexed)
+ * @param value the new vector element value
+ */
+ public final void setElement(int index, double value)
+ {
+ values[index] = value;
+ }
+
+ /**
+ * Returns a string that contains the values of this GVector.
+ * @return the String representation
+ */
+ public String toString() {
+ StringBuffer buffer = new StringBuffer(length*8);
+
+ int i;
+
+ for(i=0;i<length;i++) {
+ buffer.append(values[i]).append(" ");
+ }
+
+ return buffer.toString();
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different GVector objects with identical data
+ * values (i.e., GVector.equals returns true) will return the
+ * same hash number. Two GVector objects with different data
+ * members may return the same hash value, although this is not
+ * likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+
+ for (int i = 0; i < length; i++) {
+ bits = 31L * bits + Double.doubleToLongBits(values[i]);
+ }
+
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Returns true if all of the data members of GVector vector1 are
+ * equal to the corresponding data members in this GVector.
+ * @param vector1 The vector with which the comparison is made.
+ * @return true or false
+ */
+ public boolean equals(GVector vector1)
+ {
+ try {
+ if( length != vector1.length) return false;
+
+ for(int i = 0;i<length;i++) {
+ if( values[i] != vector1.values[i]) return false;
+ }
+
+ return true;
+ }
+ catch (NullPointerException e2) { return false; }
+
+ }
+ /**
+ * Returns true if the Object o1 is of type GMatrix and all of the
+ * data members of o1 are equal to the corresponding data members in
+ * this GMatrix.
+ * @param o1 The object with which the comparison is made.
+ * @return true or false
+ */
+ public boolean equals(Object o1)
+ {
+ try {
+ GVector v2 = (GVector) o1;
+
+ if( length != v2.length) return false;
+
+ for(int i = 0;i<length;i++) {
+ if( values[i] != v2.values[i]) return false;
+ }
+ return true;
+ }
+ catch (ClassCastException e1) { return false; }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this vector
+ * and vector v1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), . . . ].
+ * @param v1 The vector to be compared to this vector
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(GVector v1, double epsilon)
+ {
+ double diff;
+
+ if( length != v1.length) return false;
+
+ for(int i = 0;i<length;i++) {
+ diff = values[i] - v1.values[i];
+ if( (diff<0?-diff:diff) > epsilon) return false;
+ }
+ return true;
+ }
+
+ /**
+ * Returns the dot product of this vector and vector v1.
+ * @param v1 the other vector
+ * @return the dot product of this and v1
+ */
+ public final double dot(GVector v1)
+ {
+ if( length != v1.length)
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector14"));
+
+ double result = 0.0;
+ for(int i = 0;i<length;i++) {
+ result += values[i] * v1.values[i];
+ }
+ return result;
+ }
+
+
+ /**
+ * Solves for x in Ax = b, where x is this vector (nx1), A is mxn,
+ * b is mx1, and A = U*W*transpose(V); U,W,V must
+ * be precomputed and can be found by taking the singular value
+ * decomposition (SVD) of A using the method SVD found in the
+ * GMatrix class.
+ * @param U The U matrix produced by the GMatrix method SVD
+ * @param W The W matrix produced by the GMatrix method SVD
+ * @param V The V matrix produced by the GMatrix method SVD
+ * @param b The b vector in the linear equation Ax = b
+ */
+ public final void SVDBackSolve(GMatrix U, GMatrix W, GMatrix V, GVector b)
+ {
+ if( !(U.nRow == b.getSize() &&
+ U.nRow == U.nCol &&
+ U.nRow == W.nRow ) ) {
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector15"));
+ }
+
+ if( !(W.nCol == values.length &&
+ W.nCol == V.nCol &&
+ W.nCol == V.nRow ) ) {
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector23"));
+ }
+
+ GMatrix tmp = new GMatrix( U.nRow, W.nCol);
+ tmp.mul( U, V);
+ tmp.mulTransposeRight( U, W);
+ tmp.invert();
+ mul(tmp, b);
+
+ }
+
+ /**
+ * LU Decomposition Back Solve; this method takes the LU matrix
+ * and the permutation vector produced by the GMatrix method LUD
+ * and solves the equation (LU)*x = b by placing the solution vector
+ * x into this vector. This vector should be the same length or
+ * longer than b.
+ * @param LU The matrix into which the lower and upper decompostions
+ * have been placed
+ * @param b The b vector in the equation (LU)*x = b
+ * @param permutation The row permuations that were necessary to
+ * produce the LU matrix parameter
+ */
+ public final void LUDBackSolve(GMatrix LU, GVector b, GVector permutation)
+ {
+ int size = LU.nRow*LU.nCol;
+
+ double[] temp = new double[size];
+ double[] result = new double[size];
+ int[] row_perm = new int[b.getSize()];
+ int i,j;
+
+ if( LU.nRow != b.getSize() ) {
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector16"));
+ }
+
+ if( LU.nRow != permutation.getSize() ) {
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector24"));
+ }
+
+ if (LU.nRow != LU.nCol) {
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector25"));
+ }
+
+ for(i=0;i<LU.nRow;i++) {
+ for(j=0;j<LU.nCol;j++) {
+ temp[i*LU.nCol+j] = LU.values[i][j];
+ }
+ }
+
+ for(i=0;i<size;i++) result[i] = 0.0;
+ for(i=0;i<LU.nRow;i++) result[i*LU.nCol] = b.values[i];
+ for(i=0;i<LU.nCol;i++) row_perm[i] = (int)permutation.values[i];
+
+ GMatrix.luBacksubstitution(LU.nRow, temp, row_perm, result);
+
+ for(i=0;i<LU.nRow;i++) this.values[i] = result[i*LU.nCol];
+ }
+
+ /**
+ * Returns the (n-space) angle in radians between this vector and
+ * the vector parameter; the return value is constrained to the
+ * range [0,PI].
+ * @param v1 The other vector
+ * @return The angle in radians in the range [0,PI]
+ */
+ public final double angle(GVector v1)
+ {
+ return( Math.acos( this.dot(v1) / ( this.norm()*v1.norm() ) ) );
+ }
+
+
+ /**
+ * @deprecated Use interpolate(GVector, GVector, double) instead
+ */
+ public final void interpolate(GVector v1, GVector v2, float alpha) {
+ interpolate(v1, v2, (double)alpha);
+ }
+
+
+ /**
+ * @deprecated Use interpolate(GVector, double) instead
+ */
+ public final void interpolate(GVector v1, float alpha) {
+ interpolate(v1, (double)alpha);
+ }
+
+
+ /**
+ * Linearly interpolates between vectors v1 and v2 and places the
+ * result into this tuple: this = (1-alpha)*v1 + alpha*v2.
+ * @param v1 the first vector
+ * @param v2 the second vector
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(GVector v1, GVector v2, double alpha)
+ {
+ if( v2.length != v1.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector20"));
+
+ if( length != v1.length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector21"));
+
+ for(int i=0;i<length;i++) {
+ values[i] = (1-alpha)*v1.values[i] + alpha*v2.values[i];
+ }
+ }
+
+ /**
+ * Linearly interpolates between this vector and vector v1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*v1.
+ * @param v1 the first vector
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(GVector v1, double alpha)
+ {
+ if( v1.length != length )
+ throw new MismatchedSizeException(VecMathI18N.getString("GVector22"));
+
+ for(int i=0;i<length;i++) {
+ values[i] = (1-alpha)*values[i] + alpha*v1.values[i];
+ }
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ GVector v1 = null;
+ try {
+ v1 = (GVector)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+
+ // Also need to clone array of values
+ v1.values = new double[length];
+ for (int i = 0; i < length; i++) {
+ v1.values[i] = values[i];
+ }
+
+ return v1;
+ }
+
+}
diff --git a/src/javax/vecmath/Matrix3d.java b/src/javax/vecmath/Matrix3d.java
new file mode 100644
index 0000000..eb696b8
--- /dev/null
+++ b/src/javax/vecmath/Matrix3d.java
@@ -0,0 +1,3106 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A double precision floating point 3 by 3 matrix.
+ * Primarily to support 3D rotations.
+ *
+ */
+public class Matrix3d implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 6837536777072402710L;
+
+ /**
+ * The first matrix element in the first row.
+ */
+ public double m00;
+
+ /**
+ * The second matrix element in the first row.
+ */
+ public double m01;
+
+ /**
+ * The third matrix element in the first row.
+ */
+ public double m02;
+
+ /**
+ * The first matrix element in the second row.
+ */
+ public double m10;
+
+ /**
+ * The second matrix element in the second row.
+ */
+ public double m11;
+
+ /**
+ * The third matrix element in the second row.
+ */
+ public double m12;
+
+ /**
+ * The first matrix element in the third row.
+ */
+ public double m20;
+
+ /**
+ * The second matrix element in the third row.
+ */
+ public double m21;
+
+ /**
+ * The third matrix element in the third row.
+ */
+ public double m22;
+
+ //double[] tmp = new double[9]; // scratch matrix
+ //double[] tmp_rot = new double[9]; // scratch matrix
+ //double[] tmp_scale = new double[3]; // scratch matrix
+ private static final double EPS = 1.110223024E-16;
+ private static final double ERR_EPS = 1.0E-8;
+ private static double xin,yin,zin,xout,yout,zout;
+
+ /**
+ * Constructs and initializes a Matrix3d from the specified nine values.
+ * @param m00 the [0][0] element
+ * @param m01 the [0][1] element
+ * @param m02 the [0][2] element
+ * @param m10 the [1][0] element
+ * @param m11 the [1][1] element
+ * @param m12 the [1][2] element
+ * @param m20 the [2][0] element
+ * @param m21 the [2][1] element
+ * @param m22 the [2][2] element
+ */
+ public Matrix3d(double m00, double m01, double m02,
+ double m10, double m11, double m12,
+ double m20, double m21, double m22)
+ {
+ this.m00 = m00;
+ this.m01 = m01;
+ this.m02 = m02;
+
+ this.m10 = m10;
+ this.m11 = m11;
+ this.m12 = m12;
+
+ this.m20 = m20;
+ this.m21 = m21;
+ this.m22 = m22;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix3d from the specified nine-
+ * element array.
+ * @param v the array of length 9 containing in order
+ */
+ public Matrix3d(double[] v)
+ {
+ this.m00 = v[0];
+ this.m01 = v[1];
+ this.m02 = v[2];
+
+ this.m10 = v[3];
+ this.m11 = v[4];
+ this.m12 = v[5];
+
+ this.m20 = v[6];
+ this.m21 = v[7];
+ this.m22 = v[8];
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix3d parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix3d(Matrix3d m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix3f parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix3d(Matrix3f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix3d to all zeros.
+ */
+ public Matrix3d()
+ {
+ this.m00 = 0.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = 0.0;
+ this.m12 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 0.0;
+
+ }
+
+ /**
+ * Returns a string that contains the values of this Matrix3d.
+ * @return the String representation
+ */
+ public String toString() {
+ return
+ this.m00 + ", " + this.m01 + ", " + this.m02 + "\n" +
+ this.m10 + ", " + this.m11 + ", " + this.m12 + "\n" +
+ this.m20 + ", " + this.m21 + ", " + this.m22 + "\n";
+ }
+
+ /**
+ * Sets this Matrix3d to identity.
+ */
+ public final void setIdentity()
+ {
+ this.m00 = 1.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = 1.0;
+ this.m12 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 1.0;
+ }
+
+ /**
+ * Sets the scale component of the current matrix by factoring
+ * out the current scale (by doing an SVD) and multiplying by
+ * the new scale.
+ * @param scale the new scale amount
+ */
+ public final void setScale(double scale)
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate(tmp_scale, tmp_rot);
+
+ this.m00 = tmp_rot[0] * scale;
+ this.m01 = tmp_rot[1] * scale;
+ this.m02 = tmp_rot[2] * scale;
+
+ this.m10 = tmp_rot[3] * scale;
+ this.m11 = tmp_rot[4] * scale;
+ this.m12 = tmp_rot[5] * scale;
+
+ this.m20 = tmp_rot[6] * scale;
+ this.m21 = tmp_rot[7] * scale;
+ this.m22 = tmp_rot[8] * scale;
+ }
+
+ /**
+ * Sets the specified element of this matrix3f to the value provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param column the column number to be modified (zero indexed)
+ * @param value the new value
+ */
+ public final void setElement(int row, int column, double value)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ this.m00 = value;
+ break;
+ case 1:
+ this.m01 = value;
+ break;
+ case 2:
+ this.m02 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
+ }
+ break;
+
+ case 1:
+ switch(column)
+ {
+ case 0:
+ this.m10 = value;
+ break;
+ case 1:
+ this.m11 = value;
+ break;
+ case 2:
+ this.m12 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
+ }
+ break;
+
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ this.m20 = value;
+ break;
+ case 1:
+ this.m21 = value;
+ break;
+ case 2:
+ this.m22 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
+ }
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d0"));
+ }
+ }
+
+ /**
+ * Retrieves the value at the specified row and column of the specified
+ * matrix.
+ * @param row the row number to be retrieved (zero indexed)
+ * @param column the column number to be retrieved (zero indexed)
+ * @return the value at the indexed element.
+ */
+ public final double getElement(int row, int column)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ return(this.m00);
+ case 1:
+ return(this.m01);
+ case 2:
+ return(this.m02);
+ default:
+ break;
+ }
+ break;
+ case 1:
+ switch(column)
+ {
+ case 0:
+ return(this.m10);
+ case 1:
+ return(this.m11);
+ case 2:
+ return(this.m12);
+ default:
+ break;
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ return(this.m20);
+ case 1:
+ return(this.m21);
+ case 2:
+ return(this.m22);
+ default:
+ break;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d1"));
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the vector parameter.
+ * @param row the matrix row
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getRow(int row, Vector3d v) {
+ if( row == 0 ) {
+ v.x = m00;
+ v.y = m01;
+ v.z = m02;
+ } else if(row == 1) {
+ v.x = m10;
+ v.y = m11;
+ v.z = m12;
+ } else if(row == 2) {
+ v.x = m20;
+ v.y = m21;
+ v.z = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d2"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the array parameter.
+ * @param row the matrix row
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getRow(int row, double v[]) {
+ if( row == 0 ) {
+ v[0] = m00;
+ v[1] = m01;
+ v[2] = m02;
+ } else if(row == 1) {
+ v[0] = m10;
+ v[1] = m11;
+ v[2] = m12;
+ } else if(row == 2) {
+ v[0] = m20;
+ v[1] = m21;
+ v[2] = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d2"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the vector
+ * parameter.
+ * @param column the matrix column
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, Vector3d v) {
+ if( column == 0 ) {
+ v.x = m00;
+ v.y = m10;
+ v.z = m20;
+ } else if(column == 1) {
+ v.x = m01;
+ v.y = m11;
+ v.z = m21;
+ }else if(column == 2){
+ v.x = m02;
+ v.y = m12;
+ v.z = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d4"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the array
+ * parameter.
+ * @param column the matrix column
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, double v[]) {
+ if( column == 0 ) {
+ v[0] = m00;
+ v[1] = m10;
+ v[2] = m20;
+ } else if(column == 1) {
+ v[0] = m01;
+ v[1] = m11;
+ v[2] = m21;
+ }else if(column == 2) {
+ v[0] = m02;
+ v[1] = m12;
+ v[2] = m22;
+ }else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d4"));
+ }
+
+ }
+
+
+ /**
+ * Sets the specified row of this matrix3d to the 4 values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param x the first column element
+ * @param y the second column element
+ * @param z the third column element
+ */
+ public final void setRow(int row, double x, double y, double z)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = x;
+ this.m01 = y;
+ this.m02 = z;
+ break;
+
+ case 1:
+ this.m10 = x;
+ this.m11 = y;
+ this.m12 = z;
+ break;
+
+ case 2:
+ this.m20 = x;
+ this.m21 = y;
+ this.m22 = z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix3d to the Vector provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, Vector3d v)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v.x;
+ this.m01 = v.y;
+ this.m02 = v.z;
+ break;
+
+ case 1:
+ this.m10 = v.x;
+ this.m11 = v.y;
+ this.m12 = v.z;
+ break;
+
+ case 2:
+ this.m20 = v.x;
+ this.m21 = v.y;
+ this.m22 = v.z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix3d to the three values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, double v[])
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v[0];
+ this.m01 = v[1];
+ this.m02 = v[2];
+ break;
+
+ case 1:
+ this.m10 = v[0];
+ this.m11 = v[1];
+ this.m12 = v[2];
+ break;
+
+ case 2:
+ this.m20 = v[0];
+ this.m21 = v[1];
+ this.m22 = v[2];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d6"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3d to the three values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param x the first row element
+ * @param y the second row element
+ * @param z the third row element
+ */
+ public final void setColumn(int column, double x, double y, double z)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = x;
+ this.m10 = y;
+ this.m20 = z;
+ break;
+
+ case 1:
+ this.m01 = x;
+ this.m11 = y;
+ this.m21 = z;
+ break;
+
+ case 2:
+ this.m02 = x;
+ this.m12 = y;
+ this.m22 = z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3d to the vector provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, Vector3d v)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v.x;
+ this.m10 = v.y;
+ this.m20 = v.z;
+ break;
+
+ case 1:
+ this.m01 = v.x;
+ this.m11 = v.y;
+ this.m21 = v.z;
+ break;
+
+ case 2:
+ this.m02 = v.x;
+ this.m12 = v.y;
+ this.m22 = v.z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3d to the three values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, double v[])
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v[0];
+ this.m10 = v[1];
+ this.m20 = v[2];
+ break;
+
+ case 1:
+ this.m01 = v[0];
+ this.m11 = v[1];
+ this.m21 = v[2];
+ break;
+
+ case 2:
+ this.m02 = v[0];
+ this.m12 = v[1];
+ this.m22 = v[2];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3d9"));
+ }
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * and return the uniform scale factor. If the matrix has non-uniform
+ * scale factors, the largest of the x, y, and z scale factors will
+ * be returned. This matrix is not modified.
+ * @return the scale factor of this matrix
+ */
+ public final double getScale()
+ {
+
+ double[] tmp_scale = new double[3]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ getScaleRotate(tmp_scale, tmp_rot);
+
+ return( max3(tmp_scale) );
+
+ }
+
+ /**
+ * Adds a scalar to each component of this matrix.
+ * @param scalar the scalar adder
+ */
+ public final void add(double scalar)
+ {
+ m00 += scalar;
+ m01 += scalar;
+ m02 += scalar;
+
+ m10 += scalar;
+ m11 += scalar;
+ m12 += scalar;
+
+ m20 += scalar;
+ m21 += scalar;
+ m22 += scalar;
+
+ }
+
+ /**
+ * Adds a scalar to each component of the matrix m1 and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar adder
+ * @param m1 the original matrix values
+ */
+ public final void add(double scalar, Matrix3d m1)
+ {
+ this.m00 = m1.m00 + scalar;
+ this.m01 = m1.m01 + scalar;
+ this.m02 = m1.m02 + scalar;
+
+ this.m10 = m1.m10 + scalar;
+ this.m11 = m1.m11 + scalar;
+ this.m12 = m1.m12 + scalar;
+
+ this.m20 = m1.m20 + scalar;
+ this.m21 = m1.m21 + scalar;
+ this.m22 = m1.m22 + scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void add(Matrix3d m1, Matrix3d m2)
+ {
+ this.m00 = m1.m00 + m2.m00;
+ this.m01 = m1.m01 + m2.m01;
+ this.m02 = m1.m02 + m2.m02;
+
+ this.m10 = m1.m10 + m2.m10;
+ this.m11 = m1.m11 + m2.m11;
+ this.m12 = m1.m12 + m2.m12;
+
+ this.m20 = m1.m20 + m2.m20;
+ this.m21 = m1.m21 + m2.m21;
+ this.m22 = m1.m22 + m2.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the sum of itself and matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void add(Matrix3d m1)
+ {
+ this.m00 += m1.m00;
+ this.m01 += m1.m01;
+ this.m02 += m1.m02;
+
+ this.m10 += m1.m10;
+ this.m11 += m1.m11;
+ this.m12 += m1.m12;
+
+ this.m20 += m1.m20;
+ this.m21 += m1.m21;
+ this.m22 += m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void sub(Matrix3d m1, Matrix3d m2)
+ {
+ this.m00 = m1.m00 - m2.m00;
+ this.m01 = m1.m01 - m2.m01;
+ this.m02 = m1.m02 - m2.m02;
+
+ this.m10 = m1.m10 - m2.m10;
+ this.m11 = m1.m11 - m2.m11;
+ this.m12 = m1.m12 - m2.m12;
+
+ this.m20 = m1.m20 - m2.m20;
+ this.m21 = m1.m21 - m2.m21;
+ this.m22 = m1.m22 - m2.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference of itself and
+ * matrix m1 (this = this - m1).
+ * @param m1 the other matrix
+ */
+ public final void sub(Matrix3d m1)
+ {
+ this.m00 -= m1.m00;
+ this.m01 -= m1.m01;
+ this.m02 -= m1.m02;
+
+ this.m10 -= m1.m10;
+ this.m11 -= m1.m11;
+ this.m12 -= m1.m12;
+
+ this.m20 -= m1.m20;
+ this.m21 -= m1.m21;
+ this.m22 -= m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to its transpose.
+ */
+ public final void transpose()
+ {
+ double temp;
+
+ temp = this.m10;
+ this.m10 = this.m01;
+ this.m01 = temp;
+
+ temp = this.m20;
+ this.m20 = this.m02;
+ this.m02 = temp;
+
+ temp = this.m21;
+ this.m21 = this.m12;
+ this.m12 = temp;
+ }
+
+ /**
+ * Sets the value of this matrix to the transpose of the argument matrix.
+ * @param m1 the matrix to be transposed
+ */
+ public final void transpose(Matrix3d m1)
+ {
+ if (this != m1) {
+ this.m00 = m1.m00;
+ this.m01 = m1.m10;
+ this.m02 = m1.m20;
+
+ this.m10 = m1.m01;
+ this.m11 = m1.m11;
+ this.m12 = m1.m21;
+
+ this.m20 = m1.m02;
+ this.m21 = m1.m12;
+ this.m22 = m1.m22;
+ } else
+ this.transpose();
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * double precision quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4d q1)
+ {
+ this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * double precision axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+
+ if( mag < EPS ) {
+ m00 = 1.0;
+ m01 = 0.0;
+ m02 = 0.0;
+
+ m10 = 0.0;
+ m11 = 1.0;
+ m12 = 0.0;
+
+ m20 = 0.0;
+ m21 = 0.0;
+ m22 = 1.0;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = a1.x * a1.z;
+ double xy = a1.x * a1.y;
+ double yz = a1.y * a1.z;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * single precision quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4f q1)
+ {
+ this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * single precision axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0;
+ m01 = 0.0;
+ m02 = 0.0;
+
+ m10 = 0.0;
+ m11 = 1.0;
+ m12 = 0.0;
+
+ m20 = 0.0;
+ m21 = 0.0;
+ m22 = 1.0;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = ax * az;
+ double xy = ax * ay;
+ double yz = ay * az;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+ }
+
+ /**
+ * Sets the value of this matrix to the double value of the Matrix3f
+ * argument.
+ * @param m1 the matrix3d to be converted to double
+ */
+ public final void set(Matrix3f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the value of the Matrix3d
+ * argument.
+ * @param m1 the source matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ }
+
+ /**
+ * Sets the values in this Matrix3d equal to the row-major
+ * array parameter (ie, the first three elements of the
+ * array will be copied into the first row of this matrix, etc.).
+ * @param m the double precision array of length 9
+ */
+ public final void set(double[] m)
+ {
+ m00 = m[0];
+ m01 = m[1];
+ m02 = m[2];
+
+ m10 = m[3];
+ m11 = m[4];
+ m12 = m[5];
+
+ m20 = m[6];
+ m21 = m[7];
+ m22 = m[8];
+
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix inverse
+ * of the passed matrix m1.
+ * @param m1 the matrix to be inverted
+ */
+ public final void invert(Matrix3d m1)
+ {
+ invertGeneral( m1 );
+ }
+
+ /**
+ * Inverts this matrix in place.
+ */
+ public final void invert()
+ {
+ invertGeneral( this );
+ }
+
+ /**
+ * General invert routine. Inverts m1 and places the result in "this".
+ * Note that this routine handles both the "this" version and the
+ * non-"this" version.
+ *
+ * Also note that since this routine is slow anyway, we won't worry
+ * about allocating a little bit of garbage.
+ */
+ private final void invertGeneral(Matrix3d m1) {
+ double result[] = new double[9];
+ int row_perm[] = new int[3];
+ int i, r, c;
+ double[] tmp = new double[9]; // scratch matrix
+
+ // Use LU decomposition and backsubstitution code specifically
+ // for floating-point 3x3 matrices.
+
+ // Copy source matrix to t1tmp
+ tmp[0] = m1.m00;
+ tmp[1] = m1.m01;
+ tmp[2] = m1.m02;
+
+ tmp[3] = m1.m10;
+ tmp[4] = m1.m11;
+ tmp[5] = m1.m12;
+
+ tmp[6] = m1.m20;
+ tmp[7] = m1.m21;
+ tmp[8] = m1.m22;
+
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(tmp, row_perm)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException(VecMathI18N.getString("Matrix3d12"));
+ }
+
+ // Perform back substitution on the identity matrix
+ for(i=0;i<9;i++) result[i] = 0.0;
+ result[0] = 1.0; result[4] = 1.0; result[8] = 1.0;
+ luBacksubstitution(tmp, row_perm, result);
+
+ this.m00 = result[0];
+ this.m01 = result[1];
+ this.m02 = result[2];
+
+ this.m10 = result[3];
+ this.m11 = result[4];
+ this.m12 = result[5];
+
+ this.m20 = result[6];
+ this.m21 = result[7];
+ this.m22 = result[8];
+
+ }
+
+ /**
+ * Given a 3x3 array "matrix0", this function replaces it with the
+ * LU decomposition of a row-wise permutation of itself. The input
+ * parameters are "matrix0" and "dimen". The array "matrix0" is also
+ * an output parameter. The vector "row_perm[3]" is an output
+ * parameter that contains the row permutations resulting from partial
+ * pivoting. The output parameter "even_row_xchg" is 1 when the
+ * number of row exchanges is even, or -1 otherwise. Assumes data
+ * type is always double.
+ *
+ * This function is similar to luDecomposition, except that it
+ * is tuned specifically for 3x3 matrices.
+ *
+ * @return true if the matrix is nonsingular, or false otherwise.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 40-45.
+ //
+ static boolean luDecomposition(double[] matrix0,
+ int[] row_perm) {
+
+ double row_scale[] = new double[3];
+
+ // Determine implicit scaling information by looping over rows
+ {
+ int i, j;
+ int ptr, rs;
+ double big, temp;
+
+ ptr = 0;
+ rs = 0;
+
+ // For each row ...
+ i = 3;
+ while (i-- != 0) {
+ big = 0.0;
+
+ // For each column, find the largest element in the row
+ j = 3;
+ while (j-- != 0) {
+ temp = matrix0[ptr++];
+ temp = Math.abs(temp);
+ if (temp > big) {
+ big = temp;
+ }
+ }
+
+ // Is the matrix singular?
+ if (big == 0.0) {
+ return false;
+ }
+ row_scale[rs++] = 1.0 / big;
+ }
+ }
+
+ {
+ int j;
+ int mtx;
+
+ mtx = 0;
+
+ // For all columns, execute Crout's method
+ for (j = 0; j < 3; j++) {
+ int i, imax, k;
+ int target, p1, p2;
+ double sum, big, temp;
+
+ // Determine elements of upper diagonal matrix U
+ for (i = 0; i < j; i++) {
+ target = mtx + (3*i) + j;
+ sum = matrix0[target];
+ k = i;
+ p1 = mtx + (3*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 3;
+ }
+ matrix0[target] = sum;
+ }
+
+ // Search for largest pivot element and calculate
+ // intermediate elements of lower diagonal matrix L.
+ big = 0.0;
+ imax = -1;
+ for (i = j; i < 3; i++) {
+ target = mtx + (3*i) + j;
+ sum = matrix0[target];
+ k = j;
+ p1 = mtx + (3*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 3;
+ }
+ matrix0[target] = sum;
+
+ // Is this the best pivot so far?
+ if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
+ big = temp;
+ imax = i;
+ }
+ }
+
+ if (imax < 0) {
+ throw new RuntimeException(VecMathI18N.getString("Matrix3d13"));
+ }
+
+ // Is a row exchange necessary?
+ if (j != imax) {
+ // Yes: exchange rows
+ k = 3;
+ p1 = mtx + (3*imax);
+ p2 = mtx + (3*j);
+ while (k-- != 0) {
+ temp = matrix0[p1];
+ matrix0[p1++] = matrix0[p2];
+ matrix0[p2++] = temp;
+ }
+
+ // Record change in scale factor
+ row_scale[imax] = row_scale[j];
+ }
+
+ // Record row permutation
+ row_perm[j] = imax;
+
+ // Is the matrix singular
+ if (matrix0[(mtx + (3*j) + j)] == 0.0) {
+ return false;
+ }
+
+ // Divide elements of lower diagonal matrix L by pivot
+ if (j != (3-1)) {
+ temp = 1.0 / (matrix0[(mtx + (3*j) + j)]);
+ target = mtx + (3*(j+1)) + j;
+ i = 2 - j;
+ while (i-- != 0) {
+ matrix0[target] *= temp;
+ target += 3;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ /**
+ * Solves a set of linear equations. The input parameters "matrix1",
+ * and "row_perm" come from luDecompostionD3x3 and do not change
+ * here. The parameter "matrix2" is a set of column vectors assembled
+ * into a 3x3 matrix of floating-point values. The procedure takes each
+ * column of "matrix2" in turn and treats it as the right-hand side of the
+ * matrix equation Ax = LUx = b. The solution vector replaces the
+ * original column of the matrix.
+ *
+ * If "matrix2" is the identity matrix, the procedure replaces its contents
+ * with the inverse of the matrix from which "matrix1" was originally
+ * derived.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 44-45.
+ //
+ static void luBacksubstitution(double[] matrix1,
+ int[] row_perm,
+ double[] matrix2) {
+
+ int i, ii, ip, j, k;
+ int rp;
+ int cv, rv;
+
+ // rp = row_perm;
+ rp = 0;
+
+ // For each column vector of matrix2 ...
+ for (k = 0; k < 3; k++) {
+ // cv = &(matrix2[0][k]);
+ cv = k;
+ ii = -1;
+
+ // Forward substitution
+ for (i = 0; i < 3; i++) {
+ double sum;
+
+ ip = row_perm[rp+i];
+ sum = matrix2[cv+3*ip];
+ matrix2[cv+3*ip] = matrix2[cv+3*i];
+ if (ii >= 0) {
+ // rv = &(matrix1[i][0]);
+ rv = i*3;
+ for (j = ii; j <= i-1; j++) {
+ sum -= matrix1[rv+j] * matrix2[cv+3*j];
+ }
+ }
+ else if (sum != 0.0) {
+ ii = i;
+ }
+ matrix2[cv+3*i] = sum;
+ }
+
+ // Backsubstitution
+ // rv = &(matrix1[3][0]);
+ rv = 2*3;
+ matrix2[cv+3*2] /= matrix1[rv+2];
+
+ rv -= 3;
+ matrix2[cv+3*1] = (matrix2[cv+3*1] -
+ matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+1];
+
+ rv -= 3;
+ matrix2[cv+4*0] = (matrix2[cv+3*0] -
+ matrix1[rv+1] * matrix2[cv+3*1] -
+ matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+0];
+
+ }
+ }
+
+ /**
+ * Computes the determinant of this matrix.
+ * @return the determinant of the matrix
+ */
+ public final double determinant()
+ {
+ double total;
+
+ total = this.m00*(this.m11*this.m22 - this.m12*this.m21)
+ + this.m01*(this.m12*this.m20 - this.m10*this.m22)
+ + this.m02*(this.m10*this.m21 - this.m11*this.m20);
+ return total;
+ }
+
+ /**
+ * Sets the value of this matrix to a scale matrix with
+ * the passed scale amount.
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(double scale)
+ {
+ this.m00 = scale;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = scale;
+ this.m12 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = scale;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the x axis.
+ * @param angle the angle to rotate about the X axis in radians
+ */
+ public final void rotX(double angle)
+ {
+ double sinAngle, cosAngle;
+
+ sinAngle = Math.sin(angle);
+ cosAngle = Math.cos(angle);
+
+ this.m00 = 1.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = cosAngle;
+ this.m12 = -sinAngle;
+
+ this.m20 = 0.0;
+ this.m21 = sinAngle;
+ this.m22 = cosAngle;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the y axis.
+ * @param angle the angle to rotate about the Y axis in radians
+ */
+ public final void rotY(double angle)
+ {
+ double sinAngle, cosAngle;
+
+ sinAngle = Math.sin(angle);
+ cosAngle = Math.cos(angle);
+
+ this.m00 = cosAngle;
+ this.m01 = 0.0;
+ this.m02 = sinAngle;
+
+ this.m10 = 0.0;
+ this.m11 = 1.0;
+ this.m12 = 0.0;
+
+ this.m20 = -sinAngle;
+ this.m21 = 0.0;
+ this.m22 = cosAngle;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the z axis.
+ * @param angle the angle to rotate about the Z axis in radians
+ */
+ public final void rotZ(double angle)
+ {
+ double sinAngle, cosAngle;
+
+ sinAngle = Math.sin(angle);
+ cosAngle = Math.cos(angle);
+
+ this.m00 = cosAngle;
+ this.m01 = -sinAngle;
+ this.m02 = 0.0;
+
+ this.m10 = sinAngle;
+ this.m11 = cosAngle;
+ this.m12 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 1.0;
+ }
+
+ /**
+ * Multiplies each element of this matrix by a scalar.
+ * @param scalar The scalar multiplier.
+ */
+ public final void mul(double scalar)
+ {
+ m00 *= scalar;
+ m01 *= scalar;
+ m02 *= scalar;
+
+ m10 *= scalar;
+ m11 *= scalar;
+ m12 *= scalar;
+
+ m20 *= scalar;
+ m21 *= scalar;
+ m22 *= scalar;
+
+ }
+
+ /**
+ * Multiplies each element of matrix m1 by a scalar and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar multiplier
+ * @param m1 the original matrix
+ */
+ public final void mul(double scalar, Matrix3d m1)
+ {
+ this.m00 = scalar * m1.m00;
+ this.m01 = scalar * m1.m01;
+ this.m02 = scalar * m1.m02;
+
+ this.m10 = scalar * m1.m10;
+ this.m11 = scalar * m1.m11;
+ this.m12 = scalar * m1.m12;
+
+ this.m20 = scalar * m1.m20;
+ this.m21 = scalar * m1.m21;
+ this.m22 = scalar * m1.m22;
+
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying itself
+ * with matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void mul(Matrix3d m1)
+ {
+ double m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22;
+
+ m00 = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
+ m01 = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
+ m02 = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;
+
+ m10 = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
+ m11 = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
+ m12 = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;
+
+ m20 = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
+ m21 = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
+ m22 = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying
+ * the two argument matrices together.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void mul(Matrix3d m1, Matrix3d m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+ } else {
+ double m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Multiplies this matrix by matrix m1, does an SVD normalization
+ * of the result, and places the result back into this matrix
+ * this = SVDnorm(this*m1).
+ * @param m1 the matrix on the right hand side of the multiplication
+ */
+ public final void mulNormalize(Matrix3d m1){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
+ tmp[1] = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
+ tmp[2] = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;
+
+ tmp[3] = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
+ tmp[4] = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
+ tmp[5] = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;
+
+ tmp[6] = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
+ tmp[7] = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
+ tmp[8] = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;
+
+ compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = tmp_rot[0];
+ this.m01 = tmp_rot[1];
+ this.m02 = tmp_rot[2];
+
+ this.m10 = tmp_rot[3];
+ this.m11 = tmp_rot[4];
+ this.m12 = tmp_rot[5];
+
+ this.m20 = tmp_rot[6];
+ this.m21 = tmp_rot[7];
+ this.m22 = tmp_rot[8];
+
+ }
+
+
+ /**
+ * Multiplies matrix m1 by matrix m2, does an SVD normalization
+ * of the result, and places the result into this matrix
+ * this = SVDnorm(m1*m2).
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulNormalize(Matrix3d m1, Matrix3d m2){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ tmp[1] = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ tmp[2] = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ tmp[3] = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ tmp[4] = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ tmp[5] = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ tmp[6] = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ tmp[7] = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ tmp[8] = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+
+ compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = tmp_rot[0];
+ this.m01 = tmp_rot[1];
+ this.m02 = tmp_rot[2];
+
+ this.m10 = tmp_rot[3];
+ this.m11 = tmp_rot[4];
+ this.m12 = tmp_rot[5];
+
+ this.m20 = tmp_rot[6];
+ this.m21 = tmp_rot[7];
+ this.m22 = tmp_rot[8];
+
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times the transpose of matrix
+ * m2, and places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeBoth(Matrix3d m1, Matrix3d m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
+ this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
+ this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
+ this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
+ this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
+ this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
+ this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
+ } else {
+ double m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
+ m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
+ m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
+ m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
+ m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
+ m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
+ m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+
+ }
+
+ /**
+ * Multiplies matrix m1 times the transpose of matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeRight(Matrix3d m1, Matrix3d m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
+ this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
+ this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
+ this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
+ this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
+ this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
+ this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
+ } else {
+ double m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
+ m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
+ m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
+ m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
+ m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
+ m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
+ m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+
+ /**
+ * Multiplies the transpose of matrix m1 times matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeLeft(Matrix3d m1, Matrix3d m2) {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
+ this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
+ this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
+ this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
+ this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
+ this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
+ this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
+ } else {
+ double m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
+ m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
+ m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
+ m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
+ m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
+ m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
+ m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+
+
+ /**
+ * Performs singular value decomposition normalization of this matrix.
+ */
+ public final void normalize(){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ this.m00 = tmp_rot[0];
+ this.m01 = tmp_rot[1];
+ this.m02 = tmp_rot[2];
+
+ this.m10 = tmp_rot[3];
+ this.m11 = tmp_rot[4];
+ this.m12 = tmp_rot[5];
+
+ this.m20 = tmp_rot[6];
+ this.m21 = tmp_rot[7];
+ this.m22 = tmp_rot[8];
+
+ }
+
+
+ /**
+ * Perform singular value decomposition normalization of matrix m1 and
+ * place the normalized values into this.
+ * @param m1 Provides the matrix values to be normalized
+ */
+ public final void normalize(Matrix3d m1){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = m1.m00;
+ tmp[1] = m1.m01;
+ tmp[2] = m1.m02;
+
+ tmp[3] = m1.m10;
+ tmp[4] = m1.m11;
+ tmp[5] = m1.m12;
+
+ tmp[6] = m1.m20;
+ tmp[7] = m1.m21;
+ tmp[8] = m1.m22;
+
+ compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = tmp_rot[0];
+ this.m01 = tmp_rot[1];
+ this.m02 = tmp_rot[2];
+
+ this.m10 = tmp_rot[3];
+ this.m11 = tmp_rot[4];
+ this.m12 = tmp_rot[5];
+
+ this.m20 = tmp_rot[6];
+ this.m21 = tmp_rot[7];
+ this.m22 = tmp_rot[8];
+ }
+
+
+ /**
+ * Perform cross product normalization of this matrix.
+ */
+
+ public final void normalizeCP()
+ {
+ double mag = 1.0/Math.sqrt(m00*m00 + m10*m10 + m20*m20);
+ m00 = m00*mag;
+ m10 = m10*mag;
+ m20 = m20*mag;
+
+ mag = 1.0/Math.sqrt(m01*m01 + m11*m11 + m21*m21);
+ m01 = m01*mag;
+ m11 = m11*mag;
+ m21 = m21*mag;
+
+ m02 = m10*m21 - m11*m20;
+ m12 = m01*m20 - m00*m21;
+ m22 = m00*m11 - m01*m10;
+ }
+
+
+ /**
+ * Perform cross product normalization of matrix m1 and place the
+ * normalized values into this.
+ * @param m1 Provides the matrix values to be normalized
+ */
+ public final void normalizeCP(Matrix3d m1)
+ {
+ double mag = 1.0/Math.sqrt(m1.m00*m1.m00 + m1.m10*m1.m10 + m1.m20*m1.m20);
+ m00 = m1.m00*mag;
+ m10 = m1.m10*mag;
+ m20 = m1.m20*mag;
+
+ mag = 1.0/Math.sqrt(m1.m01*m1.m01 + m1.m11*m1.m11 + m1.m21*m1.m21);
+ m01 = m1.m01*mag;
+ m11 = m1.m11*mag;
+ m21 = m1.m21*mag;
+
+ m02 = m10*m21 - m11*m20;
+ m12 = m01*m20 - m00*m21;
+ m22 = m00*m11 - m01*m10;
+ }
+
+ /**
+ * Returns true if all of the data members of Matrix3d m1 are
+ * equal to the corresponding data members in this Matrix3d.
+ * @param m1 the matrix with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Matrix3d m1)
+ {
+ try {
+ return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02
+ && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12
+ && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22);
+ }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Matrix3d and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Matrix3d.
+ * @param t1 the matrix with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Matrix3d m2 = (Matrix3d) t1;
+ return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02
+ && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12
+ && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22);
+ }
+ catch (ClassCastException e1) { return false; }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this matrix
+ * and matrix m1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[i=0,1,2 ; j=0,1,2 ; abs(this.m(i,j) - m1.m(i,j)]
+ * @param m1 the matrix to be compared to this matrix
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(Matrix3d m1, double epsilon)
+ {
+ double diff;
+
+ diff = m00 - m1.m00;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m01 - m1.m01;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m02 - m1.m02;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m10 - m1.m10;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m11 - m1.m11;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m12 - m1.m12;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m20 - m1.m20;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m21 - m1.m21;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m22 - m1.m22;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Matrix3d objects with identical data values
+ * (i.e., Matrix3d.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + Double.doubleToLongBits(m00);
+ bits = 31L * bits + Double.doubleToLongBits(m01);
+ bits = 31L * bits + Double.doubleToLongBits(m02);
+ bits = 31L * bits + Double.doubleToLongBits(m10);
+ bits = 31L * bits + Double.doubleToLongBits(m11);
+ bits = 31L * bits + Double.doubleToLongBits(m12);
+ bits = 31L * bits + Double.doubleToLongBits(m20);
+ bits = 31L * bits + Double.doubleToLongBits(m21);
+ bits = 31L * bits + Double.doubleToLongBits(m22);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Sets this matrix to all zeros.
+ */
+ public final void setZero()
+ {
+ m00 = 0.0;
+ m01 = 0.0;
+ m02 = 0.0;
+
+ m10 = 0.0;
+ m11 = 0.0;
+ m12 = 0.0;
+
+ m20 = 0.0;
+ m21 = 0.0;
+ m22 = 0.0;
+
+ }
+
+ /**
+ * Negates the value of this matrix: this = -this.
+ */
+ public final void negate()
+ {
+ this.m00 = -this.m00;
+ this.m01 = -this.m01;
+ this.m02 = -this.m02;
+
+ this.m10 = -this.m10;
+ this.m11 = -this.m11;
+ this.m12 = -this.m12;
+
+ this.m20 = -this.m20;
+ this.m21 = -this.m21;
+ this.m22 = -this.m22;
+
+ }
+
+ /**
+ * Sets the value of this matrix equal to the negation of
+ * of the Matrix3d parameter.
+ * @param m1 the source matrix
+ */
+ public final void negate(Matrix3d m1)
+ {
+ this.m00 = -m1.m00;
+ this.m01 = -m1.m01;
+ this.m02 = -m1.m02;
+
+ this.m10 = -m1.m10;
+ this.m11 = -m1.m11;
+ this.m12 = -m1.m12;
+
+ this.m20 = -m1.m20;
+ this.m21 = -m1.m21;
+ this.m22 = -m1.m22;
+
+ }
+
+ /**
+ * Multiply this matrix by the tuple t and place the result
+ * back into the tuple (t = this*t).
+ * @param t the tuple to be multiplied by this matrix and then replaced
+ */
+ public final void transform(Tuple3d t) {
+ double x,y,z;
+ x = m00* t.x + m01*t.y + m02*t.z;
+ y = m10* t.x + m11*t.y + m12*t.z;
+ z = m20* t.x + m21*t.y + m22*t.z;
+ t.set(x,y,z);
+ }
+
+ /**
+ * Multiply this matrix by the tuple t and and place the result
+ * into the tuple "result" (result = this*t).
+ * @param t the tuple to be multiplied by this matrix
+ * @param result the tuple into which the product is placed
+ */
+ public final void transform(Tuple3d t, Tuple3d result) {
+ double x,y,z;
+ x = m00* t.x + m01*t.y + m02*t.z;
+ y = m10* t.x + m11*t.y + m12*t.z;
+ result.z = m20* t.x + m21*t.y + m22*t.z;
+ result.x = x;
+ result.y = y;
+ }
+
+ /**
+ * perform SVD (if necessary to get rotational component
+ */
+ final void getScaleRotate(double scales[], double rots[]) {
+
+ double[] tmp = new double[9]; // scratch matrix
+
+ tmp[0] = m00;
+ tmp[1] = m01;
+ tmp[2] = m02;
+
+ tmp[3] = m10;
+ tmp[4] = m11;
+ tmp[5] = m12;
+
+ tmp[6] = m20;
+ tmp[7] = m21;
+ tmp[8] = m22;
+ compute_svd( tmp, scales, rots);
+
+ return;
+ }
+
+ static void compute_svd( double[] m, double[] outScale, double[] outRot) {
+ int i,j;
+ double g,scale;
+ double[] u1 = new double[9];
+ double[] v1 = new double[9];
+ double[] t1 = new double[9];
+ double[] t2 = new double[9];
+
+ double[] tmp = t1;
+ double[] single_values = t2;
+
+ double[] rot = new double[9];
+ double[] e = new double[3];
+ double[] scales = new double[3];
+
+ int converged, negCnt=0;
+ double cs,sn;
+ double c1,c2,c3,c4;
+ double s1,s2,s3,s4;
+ double cl1,cl2,cl3;
+
+
+ for(i=0; i<9; i++)
+ rot[i] = m[i];
+
+ // u1
+
+ if( m[3]*m[3] < EPS ) {
+ u1[0] = 1.0; u1[1] = 0.0; u1[2] = 0.0;
+ u1[3] = 0.0; u1[4] = 1.0; u1[5] = 0.0;
+ u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0;
+ } else if( m[0]*m[0] < EPS ) {
+ tmp[0] = m[0];
+ tmp[1] = m[1];
+ tmp[2] = m[2];
+ m[0] = m[3];
+ m[1] = m[4];
+ m[2] = m[5];
+
+ m[3] = -tmp[0]; // zero
+ m[4] = -tmp[1];
+ m[5] = -tmp[2];
+
+ u1[0] = 0.0; u1[1] = 1.0; u1[2] = 0.0;
+ u1[3] = -1.0; u1[4] = 0.0; u1[5] = 0.0;
+ u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0;
+ } else {
+ g = 1.0/Math.sqrt(m[0]*m[0] + m[3]*m[3]);
+ c1 = m[0]*g;
+ s1 = m[3]*g;
+ tmp[0] = c1*m[0] + s1*m[3];
+ tmp[1] = c1*m[1] + s1*m[4];
+ tmp[2] = c1*m[2] + s1*m[5];
+
+ m[3] = -s1*m[0] + c1*m[3]; // zero
+ m[4] = -s1*m[1] + c1*m[4];
+ m[5] = -s1*m[2] + c1*m[5];
+
+ m[0] = tmp[0];
+ m[1] = tmp[1];
+ m[2] = tmp[2];
+ u1[0] = c1; u1[1] = s1; u1[2] = 0.0;
+ u1[3] = -s1; u1[4] = c1; u1[5] = 0.0;
+ u1[6] = 0.0; u1[7] = 0.0; u1[8] = 1.0;
+ }
+
+ // u2
+
+ if( m[6]*m[6] < EPS ) {
+ } else if( m[0]*m[0] < EPS ){
+ tmp[0] = m[0];
+ tmp[1] = m[1];
+ tmp[2] = m[2];
+ m[0] = m[6];
+ m[1] = m[7];
+ m[2] = m[8];
+
+ m[6] = -tmp[0]; // zero
+ m[7] = -tmp[1];
+ m[8] = -tmp[2];
+
+ tmp[0] = u1[0];
+ tmp[1] = u1[1];
+ tmp[2] = u1[2];
+ u1[0] = u1[6];
+ u1[1] = u1[7];
+ u1[2] = u1[8];
+
+ u1[6] = -tmp[0]; // zero
+ u1[7] = -tmp[1];
+ u1[8] = -tmp[2];
+ } else {
+ g = 1.0/Math.sqrt(m[0]*m[0] + m[6]*m[6]);
+ c2 = m[0]*g;
+ s2 = m[6]*g;
+ tmp[0] = c2*m[0] + s2*m[6];
+ tmp[1] = c2*m[1] + s2*m[7];
+ tmp[2] = c2*m[2] + s2*m[8];
+
+ m[6] = -s2*m[0] + c2*m[6];
+ m[7] = -s2*m[1] + c2*m[7];
+ m[8] = -s2*m[2] + c2*m[8];
+ m[0] = tmp[0];
+ m[1] = tmp[1];
+ m[2] = tmp[2];
+
+ tmp[0] = c2*u1[0];
+ tmp[1] = c2*u1[1];
+ u1[2] = s2;
+
+ tmp[6] = -u1[0]*s2;
+ tmp[7] = -u1[1]*s2;
+ u1[8] = c2;
+ u1[0] = tmp[0];
+ u1[1] = tmp[1];
+ u1[6] = tmp[6];
+ u1[7] = tmp[7];
+ }
+
+ // v1
+
+ if( m[2]*m[2] < EPS ) {
+ v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0;
+ v1[3] = 0.0; v1[4] = 1.0; v1[5] = 0.0;
+ v1[6] = 0.0; v1[7] = 0.0; v1[8] = 1.0;
+ } else if( m[1]*m[1] < EPS ) {
+ tmp[2] = m[2];
+ tmp[5] = m[5];
+ tmp[8] = m[8];
+ m[2] = -m[1];
+ m[5] = -m[4];
+ m[8] = -m[7];
+
+ m[1] = tmp[2]; // zero
+ m[4] = tmp[5];
+ m[7] = tmp[8];
+
+ v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0;
+ v1[3] = 0.0; v1[4] = 0.0; v1[5] =-1.0;
+ v1[6] = 0.0; v1[7] = 1.0; v1[8] = 0.0;
+ } else {
+ g = 1.0/Math.sqrt(m[1]*m[1] + m[2]*m[2]);
+ c3 = m[1]*g;
+ s3 = m[2]*g;
+ tmp[1] = c3*m[1] + s3*m[2]; // can assign to m[1]?
+ m[2] =-s3*m[1] + c3*m[2]; // zero
+ m[1] = tmp[1];
+
+ tmp[4] = c3*m[4] + s3*m[5];
+ m[5] =-s3*m[4] + c3*m[5];
+ m[4] = tmp[4];
+
+ tmp[7] = c3*m[7] + s3*m[8];
+ m[8] =-s3*m[7] + c3*m[8];
+ m[7] = tmp[7];
+
+ v1[0] = 1.0; v1[1] = 0.0; v1[2] = 0.0;
+ v1[3] = 0.0; v1[4] = c3; v1[5] = -s3;
+ v1[6] = 0.0; v1[7] = s3; v1[8] = c3;
+ }
+
+ // u3
+
+ if( m[7]*m[7] < EPS ) {
+ } else if( m[4]*m[4] < EPS ) {
+ tmp[3] = m[3];
+ tmp[4] = m[4];
+ tmp[5] = m[5];
+ m[3] = m[6]; // zero
+ m[4] = m[7];
+ m[5] = m[8];
+
+ m[6] = -tmp[3]; // zero
+ m[7] = -tmp[4]; // zero
+ m[8] = -tmp[5];
+
+ tmp[3] = u1[3];
+ tmp[4] = u1[4];
+ tmp[5] = u1[5];
+ u1[3] = u1[6];
+ u1[4] = u1[7];
+ u1[5] = u1[8];
+
+ u1[6] = -tmp[3]; // zero
+ u1[7] = -tmp[4];
+ u1[8] = -tmp[5];
+
+ } else {
+ g = 1.0/Math.sqrt(m[4]*m[4] + m[7]*m[7]);
+ c4 = m[4]*g;
+ s4 = m[7]*g;
+ tmp[3] = c4*m[3] + s4*m[6];
+ m[6] =-s4*m[3] + c4*m[6]; // zero
+ m[3] = tmp[3];
+
+ tmp[4] = c4*m[4] + s4*m[7];
+ m[7] =-s4*m[4] + c4*m[7];
+ m[4] = tmp[4];
+
+ tmp[5] = c4*m[5] + s4*m[8];
+ m[8] =-s4*m[5] + c4*m[8];
+ m[5] = tmp[5];
+
+ tmp[3] = c4*u1[3] + s4*u1[6];
+ u1[6] =-s4*u1[3] + c4*u1[6];
+ u1[3] = tmp[3];
+
+ tmp[4] = c4*u1[4] + s4*u1[7];
+ u1[7] =-s4*u1[4] + c4*u1[7];
+ u1[4] = tmp[4];
+
+ tmp[5] = c4*u1[5] + s4*u1[8];
+ u1[8] =-s4*u1[5] + c4*u1[8];
+ u1[5] = tmp[5];
+ }
+
+ single_values[0] = m[0];
+ single_values[1] = m[4];
+ single_values[2] = m[8];
+ e[0] = m[1];
+ e[1] = m[5];
+
+ if( e[0]*e[0]<EPS && e[1]*e[1]<EPS ) {
+
+ } else {
+ compute_qr( single_values, e, u1, v1);
+ }
+
+ scales[0] = single_values[0];
+ scales[1] = single_values[1];
+ scales[2] = single_values[2];
+
+
+ // Do some optimization here. If scale is unity, simply return the rotation matric.
+ if(almostEqual(Math.abs(scales[0]), 1.0) &&
+ almostEqual(Math.abs(scales[1]), 1.0) &&
+ almostEqual(Math.abs(scales[2]), 1.0)) {
+ // System.out.println("Scale components almost to 1.0");
+
+ for(i=0;i<3;i++)
+ if(scales[i]<0.0)
+ negCnt++;
+
+ if((negCnt==0)||(negCnt==2)) {
+ //System.out.println("Optimize!!");
+ outScale[0] = outScale[1] = outScale[2] = 1.0;
+ for(i=0;i<9;i++)
+ outRot[i] = rot[i];
+
+ return;
+ }
+ }
+
+
+ transpose_mat(u1, t1);
+ transpose_mat(v1, t2);
+
+ /*
+ System.out.println("t1 is \n" + t1);
+ System.out.println("t1="+t1[0]+" "+t1[1]+" "+t1[2]);
+ System.out.println("t1="+t1[3]+" "+t1[4]+" "+t1[5]);
+ System.out.println("t1="+t1[6]+" "+t1[7]+" "+t1[8]);
+
+ System.out.println("t2 is \n" + t2);
+ System.out.println("t2="+t2[0]+" "+t2[1]+" "+t2[2]);
+ System.out.println("t2="+t2[3]+" "+t2[4]+" "+t2[5]);
+ System.out.println("t2="+t2[6]+" "+t2[7]+" "+t2[8]);
+ */
+
+ svdReorder( m, t1, t2, scales, outRot, outScale);
+
+ }
+
+ static void svdReorder( double[] m, double[] t1, double[] t2, double[] scales,
+ double[] outRot, double[] outScale) {
+
+ int[] out = new int[3];
+ int[] in = new int[3];
+ int in0, in1, in2, index, i;
+ double[] mag = new double[3];
+ double[] rot = new double[9];
+
+
+ // check for rotation information in the scales
+ if(scales[0] < 0.0 ) { // move the rotation info to rotation matrix
+ scales[0] = -scales[0];
+ t2[0] = -t2[0];
+ t2[1] = -t2[1];
+ t2[2] = -t2[2];
+ }
+ if(scales[1] < 0.0 ) { // move the rotation info to rotation matrix
+ scales[1] = -scales[1];
+ t2[3] = -t2[3];
+ t2[4] = -t2[4];
+ t2[5] = -t2[5];
+ }
+ if(scales[2] < 0.0 ) { // move the rotation info to rotation matrix
+ scales[2] = -scales[2];
+ t2[6] = -t2[6];
+ t2[7] = -t2[7];
+ t2[8] = -t2[8];
+ }
+
+ mat_mul(t1,t2,rot);
+
+ // check for equal scales case and do not reorder
+ if(almostEqual(Math.abs(scales[0]), Math.abs(scales[1])) &&
+ almostEqual(Math.abs(scales[1]), Math.abs(scales[2])) ){
+ for(i=0;i<9;i++){
+ outRot[i] = rot[i];
+ }
+ for(i=0;i<3;i++){
+ outScale[i] = scales[i];
+ }
+
+ }else {
+
+ // sort the order of the results of SVD
+ if( scales[0] > scales[1]) {
+ if( scales[0] > scales[2] ) {
+ if( scales[2] > scales[1] ) {
+ out[0] = 0; out[1] = 2; out[2] = 1; // xzy
+ } else {
+ out[0] = 0; out[1] = 1; out[2] = 2; // xyz
+ }
+ } else {
+ out[0] = 2; out[1] = 0; out[2] = 1; // zxy
+ }
+ } else { // y > x
+ if( scales[1] > scales[2] ) {
+ if( scales[2] > scales[0] ) {
+ out[0] = 1; out[1] = 2; out[2] = 0; // yzx
+ } else {
+ out[0] = 1; out[1] = 0; out[2] = 2; // yxz
+ }
+ } else {
+ out[0] = 2; out[1] = 1; out[2] = 0; // zyx
+ }
+ }
+
+ /*
+ System.out.println("\nscales="+scales[0]+" "+scales[1]+" "+scales[2]);
+ System.out.println("\nrot="+rot[0]+" "+rot[1]+" "+rot[2]);
+ System.out.println("rot="+rot[3]+" "+rot[4]+" "+rot[5]);
+ System.out.println("rot="+rot[6]+" "+rot[7]+" "+rot[8]);
+ */
+
+ // sort the order of the input matrix
+ mag[0] = (m[0]*m[0] + m[1]*m[1] + m[2]*m[2]);
+ mag[1] = (m[3]*m[3] + m[4]*m[4] + m[5]*m[5]);
+ mag[2] = (m[6]*m[6] + m[7]*m[7] + m[8]*m[8]);
+
+ if( mag[0] > mag[1]) {
+ if( mag[0] > mag[2] ) {
+ if( mag[2] > mag[1] ) {
+ // 0 - 2 - 1
+ in0 = 0; in2 = 1; in1 = 2;// xzy
+ } else {
+ // 0 - 1 - 2
+ in0 = 0; in1 = 1; in2 = 2; // xyz
+ }
+ } else {
+ // 2 - 0 - 1
+ in2 = 0; in0 = 1; in1 = 2; // zxy
+ }
+ } else { // y > x 1>0
+ if( mag[1] > mag[2] ) {
+ if( mag[2] > mag[0] ) {
+ // 1 - 2 - 0
+ in1 = 0; in2 = 1; in0 = 2; // yzx
+ } else {
+ // 1 - 0 - 2
+ in1 = 0; in0 = 1; in2 = 2; // yxz
+ }
+ } else {
+ // 2 - 1 - 0
+ in2 = 0; in1 = 1; in0 = 2; // zyx
+ }
+ }
+
+
+ index = out[in0];
+ outScale[0] = scales[index];
+
+ index = out[in1];
+ outScale[1] = scales[index];
+
+ index = out[in2];
+ outScale[2] = scales[index];
+
+
+ index = out[in0];
+ outRot[0] = rot[index];
+
+ index = out[in0]+3;
+ outRot[0+3] = rot[index];
+
+ index = out[in0]+6;
+ outRot[0+6] = rot[index];
+
+ index = out[in1];
+ outRot[1] = rot[index];
+
+ index = out[in1]+3;
+ outRot[1+3] = rot[index];
+
+ index = out[in1]+6;
+ outRot[1+6] = rot[index];
+
+ index = out[in2];
+ outRot[2] = rot[index];
+
+ index = out[in2]+3;
+ outRot[2+3] = rot[index];
+
+ index = out[in2]+6;
+ outRot[2+6] = rot[index];
+ }
+ }
+
+ static int compute_qr( double[] s, double[] e, double[] u, double[] v) {
+
+ int i,j,k;
+ boolean converged;
+ double shift,ssmin,ssmax,r;
+ double[] cosl = new double[2];
+ double[] cosr = new double[2];
+ double[] sinl = new double[2];
+ double[] sinr = new double[2];
+ double[] m = new double[9];
+
+ double utemp,vtemp;
+ double f,g;
+
+ final int MAX_INTERATIONS = 10;
+ final double CONVERGE_TOL = 4.89E-15;
+
+ double c_b48 = 1.;
+ double c_b71 = -1.;
+ int first;
+ converged = false;
+
+
+ first = 1;
+
+ if( Math.abs(e[1]) < CONVERGE_TOL || Math.abs(e[0]) < CONVERGE_TOL) converged = true;
+
+ for(k=0;k<MAX_INTERATIONS && !converged;k++) {
+ shift = compute_shift( s[1], e[1], s[2]);
+ f = (Math.abs(s[0]) - shift) * (d_sign(c_b48, s[0]) + shift/s[0]);
+ g = e[0];
+ r = compute_rot(f, g, sinr, cosr, 0, first);
+ f = cosr[0] * s[0] + sinr[0] * e[0];
+ e[0] = cosr[0] * e[0] - sinr[0] * s[0];
+ g = sinr[0] * s[1];
+ s[1] = cosr[0] * s[1];
+
+ r = compute_rot(f, g, sinl, cosl, 0, first);
+ first = 0;
+ s[0] = r;
+ f = cosl[0] * e[0] + sinl[0] * s[1];
+ s[1] = cosl[0] * s[1] - sinl[0] * e[0];
+ g = sinl[0] * e[1];
+ e[1] = cosl[0] * e[1];
+
+ r = compute_rot(f, g, sinr, cosr, 1, first);
+ e[0] = r;
+ f = cosr[1] * s[1] + sinr[1] * e[1];
+ e[1] = cosr[1] * e[1] - sinr[1] * s[1];
+ g = sinr[1] * s[2];
+ s[2] = cosr[1] * s[2];
+
+ r = compute_rot(f, g, sinl, cosl, 1, first);
+ s[1] = r;
+ f = cosl[1] * e[1] + sinl[1] * s[2];
+ s[2] = cosl[1] * s[2] - sinl[1] * e[1];
+ e[1] = f;
+
+ // update u matrices
+ utemp = u[0];
+ u[0] = cosl[0]*utemp + sinl[0]*u[3];
+ u[3] = -sinl[0]*utemp + cosl[0]*u[3];
+ utemp = u[1];
+ u[1] = cosl[0]*utemp + sinl[0]*u[4];
+ u[4] = -sinl[0]*utemp + cosl[0]*u[4];
+ utemp = u[2];
+ u[2] = cosl[0]*utemp + sinl[0]*u[5];
+ u[5] = -sinl[0]*utemp + cosl[0]*u[5];
+
+ utemp = u[3];
+ u[3] = cosl[1]*utemp + sinl[1]*u[6];
+ u[6] = -sinl[1]*utemp + cosl[1]*u[6];
+ utemp = u[4];
+ u[4] = cosl[1]*utemp + sinl[1]*u[7];
+ u[7] = -sinl[1]*utemp + cosl[1]*u[7];
+ utemp = u[5];
+ u[5] = cosl[1]*utemp + sinl[1]*u[8];
+ u[8] = -sinl[1]*utemp + cosl[1]*u[8];
+
+ // update v matrices
+
+ vtemp = v[0];
+ v[0] = cosr[0]*vtemp + sinr[0]*v[1];
+ v[1] = -sinr[0]*vtemp + cosr[0]*v[1];
+ vtemp = v[3];
+ v[3] = cosr[0]*vtemp + sinr[0]*v[4];
+ v[4] = -sinr[0]*vtemp + cosr[0]*v[4];
+ vtemp = v[6];
+ v[6] = cosr[0]*vtemp + sinr[0]*v[7];
+ v[7] = -sinr[0]*vtemp + cosr[0]*v[7];
+
+ vtemp = v[1];
+ v[1] = cosr[1]*vtemp + sinr[1]*v[2];
+ v[2] = -sinr[1]*vtemp + cosr[1]*v[2];
+ vtemp = v[4];
+ v[4] = cosr[1]*vtemp + sinr[1]*v[5];
+ v[5] = -sinr[1]*vtemp + cosr[1]*v[5];
+ vtemp = v[7];
+ v[7] = cosr[1]*vtemp + sinr[1]*v[8];
+ v[8] = -sinr[1]*vtemp + cosr[1]*v[8];
+
+
+ m[0] = s[0]; m[1] = e[0]; m[2] = 0.0;
+ m[3] = 0.0; m[4] = s[1]; m[5] =e[1];
+ m[6] = 0.0; m[7] = 0.0; m[8] =s[2];
+
+ if( Math.abs(e[1]) < CONVERGE_TOL || Math.abs(e[0]) < CONVERGE_TOL) converged = true;
+ }
+
+ if( Math.abs(e[1]) < CONVERGE_TOL ) {
+ compute_2X2( s[0],e[0],s[1],s,sinl,cosl,sinr,cosr, 0);
+
+ utemp = u[0];
+ u[0] = cosl[0]*utemp + sinl[0]*u[3];
+ u[3] = -sinl[0]*utemp + cosl[0]*u[3];
+ utemp = u[1];
+ u[1] = cosl[0]*utemp + sinl[0]*u[4];
+ u[4] = -sinl[0]*utemp + cosl[0]*u[4];
+ utemp = u[2];
+ u[2] = cosl[0]*utemp + sinl[0]*u[5];
+ u[5] = -sinl[0]*utemp + cosl[0]*u[5];
+
+ // update v matrices
+
+ vtemp = v[0];
+ v[0] = cosr[0]*vtemp + sinr[0]*v[1];
+ v[1] = -sinr[0]*vtemp + cosr[0]*v[1];
+ vtemp = v[3];
+ v[3] = cosr[0]*vtemp + sinr[0]*v[4];
+ v[4] = -sinr[0]*vtemp + cosr[0]*v[4];
+ vtemp = v[6];
+ v[6] = cosr[0]*vtemp + sinr[0]*v[7];
+ v[7] = -sinr[0]*vtemp + cosr[0]*v[7];
+ } else {
+ compute_2X2( s[1],e[1],s[2],s,sinl,cosl,sinr,cosr,1);
+
+ utemp = u[3];
+ u[3] = cosl[0]*utemp + sinl[0]*u[6];
+ u[6] = -sinl[0]*utemp + cosl[0]*u[6];
+ utemp = u[4];
+ u[4] = cosl[0]*utemp + sinl[0]*u[7];
+ u[7] = -sinl[0]*utemp + cosl[0]*u[7];
+ utemp = u[5];
+ u[5] = cosl[0]*utemp + sinl[0]*u[8];
+ u[8] = -sinl[0]*utemp + cosl[0]*u[8];
+
+ // update v matrices
+
+ vtemp = v[1];
+ v[1] = cosr[0]*vtemp + sinr[0]*v[2];
+ v[2] = -sinr[0]*vtemp + cosr[0]*v[2];
+ vtemp = v[4];
+ v[4] = cosr[0]*vtemp + sinr[0]*v[5];
+ v[5] = -sinr[0]*vtemp + cosr[0]*v[5];
+ vtemp = v[7];
+ v[7] = cosr[0]*vtemp + sinr[0]*v[8];
+ v[8] = -sinr[0]*vtemp + cosr[0]*v[8];
+ }
+
+ return(0);
+}
+static double max( double a, double b) {
+ if( a > b)
+ return( a);
+ else
+ return( b);
+}
+static double min( double a, double b) {
+ if( a < b)
+ return( a);
+ else
+ return( b);
+}
+static double d_sign(double a, double b) {
+double x;
+x = (a >= 0 ? a : - a);
+return( b >= 0 ? x : -x);
+}
+
+static double compute_shift( double f, double g, double h) {
+ double d__1, d__2;
+ double fhmn, fhmx, c, fa, ga, ha, as, at, au;
+ double ssmin;
+
+ fa = Math.abs(f);
+ ga = Math.abs(g);
+ ha = Math.abs(h);
+ fhmn = min(fa,ha);
+ fhmx = max(fa,ha);
+ if (fhmn == 0.) {
+ ssmin = 0.;
+ if (fhmx == 0.) {
+ } else {
+ d__1 = min(fhmx,ga) / max(fhmx,ga);
+ }
+ } else {
+ if (ga < fhmx) {
+ as = fhmn / fhmx + 1.;
+ at = (fhmx - fhmn) / fhmx;
+ d__1 = ga / fhmx;
+ au = d__1 * d__1;
+ c = 2. / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au));
+ ssmin = fhmn * c;
+ } else {
+ au = fhmx / ga;
+ if (au == 0.) {
+ ssmin = fhmn * fhmx / ga;
+ } else {
+ as = fhmn / fhmx + 1.;
+ at = (fhmx - fhmn) / fhmx;
+ d__1 = as * au;
+ d__2 = at * au;
+ c = 1. / (Math.sqrt(d__1 * d__1 + 1.) + Math.sqrt(d__2 * d__2 + 1.));
+ ssmin = fhmn * c * au;
+ ssmin += ssmin;
+ }
+ }
+ }
+
+ return(ssmin);
+}
+static int compute_2X2( double f, double g, double h, double[] single_values,
+ double[] snl, double[] csl, double[] snr, double[] csr, int index) {
+
+ double c_b3 = 2.;
+ double c_b4 = 1.;
+
+ double d__1;
+ int pmax;
+ double temp;
+ boolean swap;
+ double a, d, l, m, r, s, t, tsign, fa, ga, ha;
+ double ft, gt, ht, mm;
+ boolean gasmal;
+ double tt, clt, crt, slt, srt;
+ double ssmin,ssmax;
+
+ ssmax = single_values[0];
+ ssmin = single_values[1];
+ clt = 0.0;
+ crt = 0.0;
+ slt = 0.0;
+ srt = 0.0;
+ tsign = 0.0;
+
+ ft = f;
+ fa = Math.abs(ft);
+ ht = h;
+ ha = Math.abs(h);
+
+ pmax = 1;
+ if( ha > fa)
+ swap = true;
+ else
+ swap = false;
+
+ if (swap) {
+ pmax = 3;
+ temp = ft;
+ ft = ht;
+ ht = temp;
+ temp = fa;
+ fa = ha;
+ ha = temp;
+
+ }
+ gt = g;
+ ga = Math.abs(gt);
+ if (ga == 0.) {
+
+ single_values[1] = ha;
+ single_values[0] = fa;
+ clt = 1.;
+ crt = 1.;
+ slt = 0.;
+ srt = 0.;
+ } else {
+ gasmal = true;
+
+ if (ga > fa) {
+ pmax = 2;
+ if (fa / ga < EPS) {
+
+ gasmal = false;
+ ssmax = ga;
+ if (ha > 1.) {
+ ssmin = fa / (ga / ha);
+ } else {
+ ssmin = fa / ga * ha;
+ }
+ clt = 1.;
+ slt = ht / gt;
+ srt = 1.;
+ crt = ft / gt;
+ }
+ }
+ if (gasmal) {
+
+ d = fa - ha;
+ if (d == fa) {
+
+ l = 1.;
+ } else {
+ l = d / fa;
+ }
+
+ m = gt / ft;
+
+ t = 2. - l;
+
+ mm = m * m;
+ tt = t * t;
+ s = Math.sqrt(tt + mm);
+
+ if (l == 0.) {
+ r = Math.abs(m);
+ } else {
+ r = Math.sqrt(l * l + mm);
+ }
+
+ a = (s + r) * .5;
+
+ if (ga > fa) {
+ pmax = 2;
+ if (fa / ga < EPS) {
+
+ gasmal = false;
+ ssmax = ga;
+ if (ha > 1.) {
+ ssmin = fa / (ga / ha);
+ } else {
+ ssmin = fa / ga * ha;
+ }
+ clt = 1.;
+ slt = ht / gt;
+ srt = 1.;
+ crt = ft / gt;
+ }
+ }
+ if (gasmal) {
+
+ d = fa - ha;
+ if (d == fa) {
+
+ l = 1.;
+ } else {
+ l = d / fa;
+ }
+
+ m = gt / ft;
+
+ t = 2. - l;
+
+ mm = m * m;
+ tt = t * t;
+ s = Math.sqrt(tt + mm);
+
+ if (l == 0.) {
+ r = Math.abs(m);
+ } else {
+ r = Math.sqrt(l * l + mm);
+ }
+
+ a = (s + r) * .5;
+
+
+ ssmin = ha / a;
+ ssmax = fa * a;
+ if (mm == 0.) {
+
+ if (l == 0.) {
+ t = d_sign(c_b3, ft) * d_sign(c_b4, gt);
+ } else {
+ t = gt / d_sign(d, ft) + m / t;
+ }
+ } else {
+ t = (m / (s + t) + m / (r + l)) * (a + 1.);
+ }
+ l = Math.sqrt(t * t + 4.);
+ crt = 2. / l;
+ srt = t / l;
+ clt = (crt + srt * m) / a;
+ slt = ht / ft * srt / a;
+ }
+ }
+ if (swap) {
+ csl[0] = srt;
+ snl[0] = crt;
+ csr[0] = slt;
+ snr[0] = clt;
+ } else {
+ csl[0] = clt;
+ snl[0] = slt;
+ csr[0] = crt;
+ snr[0] = srt;
+ }
+
+ if (pmax == 1) {
+ tsign = d_sign(c_b4, csr[0]) * d_sign(c_b4, csl[0]) * d_sign(c_b4, f);
+ }
+ if (pmax == 2) {
+ tsign = d_sign(c_b4, snr[0]) * d_sign(c_b4, csl[0]) * d_sign(c_b4, g);
+ }
+ if (pmax == 3) {
+ tsign = d_sign(c_b4, snr[0]) * d_sign(c_b4, snl[0]) * d_sign(c_b4, h);
+ }
+ single_values[index] = d_sign(ssmax, tsign);
+ d__1 = tsign * d_sign(c_b4, f) * d_sign(c_b4, h);
+ single_values[index+1] = d_sign(ssmin, d__1);
+
+
+ }
+ return 0;
+ }
+ static double compute_rot( double f, double g, double[] sin, double[] cos, int index, int first) {
+ int i__1;
+ double d__1, d__2;
+ double cs,sn;
+ int i;
+ double scale;
+ int count;
+ double f1, g1;
+ double r;
+ final double safmn2 = 2.002083095183101E-146;
+ final double safmx2 = 4.994797680505588E+145;
+
+ if (g == 0.) {
+ cs = 1.;
+ sn = 0.;
+ r = f;
+ } else if (f == 0.) {
+ cs = 0.;
+ sn = 1.;
+ r = g;
+ } else {
+ f1 = f;
+ g1 = g;
+ scale = max(Math.abs(f1),Math.abs(g1));
+ if (scale >= safmx2) {
+ count = 0;
+ while(scale >= safmx2) {
+ ++count;
+ f1 *= safmn2;
+ g1 *= safmn2;
+ scale = max(Math.abs(f1),Math.abs(g1));
+ }
+ r = Math.sqrt(f1*f1 + g1*g1);
+ cs = f1 / r;
+ sn = g1 / r;
+ i__1 = count;
+ for (i = 1; i <= count; ++i) {
+ r *= safmx2;
+ }
+ } else if (scale <= safmn2) {
+ count = 0;
+ while(scale <= safmn2) {
+ ++count;
+ f1 *= safmx2;
+ g1 *= safmx2;
+ scale = max(Math.abs(f1),Math.abs(g1));
+ }
+ r = Math.sqrt(f1*f1 + g1*g1);
+ cs = f1 / r;
+ sn = g1 / r;
+ i__1 = count;
+ for (i = 1; i <= count; ++i) {
+ r *= safmn2;
+ }
+ } else {
+ r = Math.sqrt(f1*f1 + g1*g1);
+ cs = f1 / r;
+ sn = g1 / r;
+ }
+ if (Math.abs(f) > Math.abs(g) && cs < 0.) {
+ cs = -cs;
+ sn = -sn;
+ r = -r;
+ }
+ }
+ sin[index] = sn;
+ cos[index] = cs;
+ return r;
+
+ }
+static void print_mat( double[] mat) {
+int i;
+ for(i=0;i<3;i++){
+ System.out.println(mat[i*3+0]+" "+mat[i*3+1]+" "+mat[i*3+2]+"\n");
+ }
+
+}
+static void print_det( double[] mat) {
+double det;
+
+ det = mat[0]*mat[4]*mat[8] +
+ mat[1]*mat[5]*mat[6] +
+ mat[2]*mat[3]*mat[7] -
+ mat[2]*mat[4]*mat[6] -
+ mat[0]*mat[5]*mat[7] -
+ mat[1]*mat[3]*mat[8];
+ System.out.println("det= "+det);
+}
+static void mat_mul(double[] m1, double[] m2, double[] m3) {
+ int i;
+ double[] tmp = new double[9];
+
+ tmp[0] = m1[0]*m2[0] + m1[1]*m2[3] + m1[2]*m2[6];
+ tmp[1] = m1[0]*m2[1] + m1[1]*m2[4] + m1[2]*m2[7];
+ tmp[2] = m1[0]*m2[2] + m1[1]*m2[5] + m1[2]*m2[8];
+
+ tmp[3] = m1[3]*m2[0] + m1[4]*m2[3] + m1[5]*m2[6];
+ tmp[4] = m1[3]*m2[1] + m1[4]*m2[4] + m1[5]*m2[7];
+ tmp[5] = m1[3]*m2[2] + m1[4]*m2[5] + m1[5]*m2[8];
+
+ tmp[6] = m1[6]*m2[0] + m1[7]*m2[3] + m1[8]*m2[6];
+ tmp[7] = m1[6]*m2[1] + m1[7]*m2[4] + m1[8]*m2[7];
+ tmp[8] = m1[6]*m2[2] + m1[7]*m2[5] + m1[8]*m2[8];
+
+ for(i=0;i<9;i++) {
+ m3[i] = tmp[i];
+ }
+}
+static void transpose_mat(double[] in, double[] out) {
+ out[0] = in[0];
+ out[1] = in[3];
+ out[2] = in[6];
+
+ out[3] = in[1];
+ out[4] = in[4];
+ out[5] = in[7];
+
+ out[6] = in[2];
+ out[7] = in[5];
+ out[8] = in[8];
+}
+static double max3( double[] values) {
+ if( values[0] > values[1] ) {
+ if( values[0] > values[2] )
+ return(values[0]);
+ else
+ return(values[2]);
+ } else {
+ if( values[1] > values[2] )
+ return(values[1]);
+ else
+ return(values[2]);
+ }
+ }
+
+ private static final boolean almostEqual(double a, double b) {
+ if (a == b)
+ return true;
+
+ final double EPSILON_ABSOLUTE = 1.0e-6;
+ final double EPSILON_RELATIVE = 1.0e-4;
+ double diff = Math.abs(a-b);
+ double absA = Math.abs(a);
+ double absB = Math.abs(b);
+ double max = (absA >= absB) ? absA : absB;
+
+ if (diff < EPSILON_ABSOLUTE)
+ return true;
+
+ if ((diff / max) < EPSILON_RELATIVE)
+ return true;
+
+ return false;
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ Matrix3d m1 = null;
+ try {
+ m1 = (Matrix3d)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+
+ // Also need to create new tmp arrays (no need to actually clone them)
+ return m1;
+ }
+
+}
diff --git a/src/javax/vecmath/Matrix3f.java b/src/javax/vecmath/Matrix3f.java
new file mode 100644
index 0000000..155d5e1
--- /dev/null
+++ b/src/javax/vecmath/Matrix3f.java
@@ -0,0 +1,2096 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A single precision floating point 3 by 3 matrix.
+ * Primarily to support 3D rotations.
+ *
+ */
+public class Matrix3f implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 329697160112089834L;
+
+ /**
+ * The first matrix element in the first row.
+ */
+ public float m00;
+
+ /**
+ * The second matrix element in the first row.
+ */
+ public float m01;
+
+ /**
+ * The third matrix element in the first row.
+ */
+ public float m02;
+
+ /**
+ * The first matrix element in the second row.
+ */
+ public float m10;
+
+ /**
+ * The second matrix element in the second row.
+ */
+ public float m11;
+
+ /**
+ * The third matrix element in the second row.
+ */
+ public float m12;
+
+ /**
+ * The first matrix element in the third row.
+ */
+ public float m20;
+
+ /**
+ * The second matrix element in the third row.
+ */
+ public float m21;
+
+ /**
+ * The third matrix element in the third row.
+ */
+ public float m22;
+ /*
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ */
+ private static final double EPS = 1.0E-8;
+
+
+
+ /**
+ * Constructs and initializes a Matrix3f from the specified nine values.
+ * @param m00 the [0][0] element
+ * @param m01 the [0][1] element
+ * @param m02 the [0][2] element
+ * @param m10 the [1][0] element
+ * @param m11 the [1][1] element
+ * @param m12 the [1][2] element
+ * @param m20 the [2][0] element
+ * @param m21 the [2][1] element
+ * @param m22 the [2][2] element
+ */
+ public Matrix3f(float m00, float m01, float m02,
+ float m10, float m11, float m12,
+ float m20, float m21, float m22)
+ {
+ this.m00 = m00;
+ this.m01 = m01;
+ this.m02 = m02;
+
+ this.m10 = m10;
+ this.m11 = m11;
+ this.m12 = m12;
+
+ this.m20 = m20;
+ this.m21 = m21;
+ this.m22 = m22;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix3f from the specified
+ * nine-element array. this.m00 =v[0], this.m01=v[1], etc.
+ * @param v the array of length 9 containing in order
+ */
+ public Matrix3f(float[] v)
+ {
+ this.m00 = v[ 0];
+ this.m01 = v[ 1];
+ this.m02 = v[ 2];
+
+ this.m10 = v[ 3];
+ this.m11 = v[ 4];
+ this.m12 = v[ 5];
+
+ this.m20 = v[ 6];
+ this.m21 = v[ 7];
+ this.m22 = v[ 8];
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix3d parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix3f(Matrix3d m1)
+ {
+ this.m00 = (float)m1.m00;
+ this.m01 = (float)m1.m01;
+ this.m02 = (float)m1.m02;
+
+ this.m10 = (float)m1.m10;
+ this.m11 = (float)m1.m11;
+ this.m12 = (float)m1.m12;
+
+ this.m20 = (float)m1.m20;
+ this.m21 = (float)m1.m21;
+ this.m22 = (float)m1.m22;
+
+ }
+
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix3f parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix3f(Matrix3f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Matrix3f to all zeros.
+ */
+ public Matrix3f()
+ {
+ this.m00 = (float) 0.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 0.0;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 0.0;
+
+ }
+
+ /**
+ * Returns a string that contains the values of this Matrix3f.
+ * @return the String representation
+ */
+ public String toString() {
+ return
+ this.m00 + ", " + this.m01 + ", " + this.m02 + "\n" +
+ this.m10 + ", " + this.m11 + ", " + this.m12 + "\n" +
+ this.m20 + ", " + this.m21 + ", " + this.m22 + "\n";
+ }
+
+ /**
+ * Sets this Matrix3f to identity.
+ */
+ public final void setIdentity()
+ {
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ }
+
+ /**
+ * Sets the scale component of the current matrix by factoring
+ * out the current scale (by doing an SVD) and multiplying by
+ * the new scale.
+ * @param scale the new scale amount
+ */
+ public final void setScale(float scale)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ this.m00 = (float)(tmp_rot[0] * scale);
+ this.m01 = (float)(tmp_rot[1] * scale);
+ this.m02 = (float)(tmp_rot[2] * scale);
+
+ this.m10 = (float)(tmp_rot[3] * scale);
+ this.m11 = (float)(tmp_rot[4] * scale);
+ this.m12 = (float)(tmp_rot[5] * scale);
+
+ this.m20 = (float)(tmp_rot[6] * scale);
+ this.m21 = (float)(tmp_rot[7] * scale);
+ this.m22 = (float)(tmp_rot[8] * scale);
+
+ }
+
+ /**
+ * Sets the specified element of this matrix3f to the value provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param column the column number to be modified (zero indexed)
+ * @param value the new value
+ */
+ public final void setElement(int row, int column, float value)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ this.m00 = value;
+ break;
+ case 1:
+ this.m01 = value;
+ break;
+ case 2:
+ this.m02 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ break;
+
+ case 1:
+ switch(column)
+ {
+ case 0:
+ this.m10 = value;
+ break;
+ case 1:
+ this.m11 = value;
+ break;
+ case 2:
+ this.m12 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ this.m20 = value;
+ break;
+ case 1:
+ this.m21 = value;
+ break;
+ case 2:
+ this.m22 = value;
+ break;
+ default:
+
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0"));
+ }
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the vector parameter.
+ * @param row the matrix row
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getRow(int row, Vector3f v) {
+ if( row == 0 ) {
+ v.x = m00;
+ v.y = m01;
+ v.z = m02;
+ } else if(row == 1) {
+ v.x = m10;
+ v.y = m11;
+ v.z = m12;
+ } else if(row == 2) {
+ v.x = m20;
+ v.y = m21;
+ v.z = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f1"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the array parameter.
+ * @param row the matrix row
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getRow(int row, float v[]) {
+ if( row == 0 ) {
+ v[0] = m00;
+ v[1] = m01;
+ v[2] = m02;
+ } else if(row == 1) {
+ v[0] = m10;
+ v[1] = m11;
+ v[2] = m12;
+ } else if(row == 2) {
+ v[0] = m20;
+ v[1] = m21;
+ v[2] = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f1"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the vector
+ * parameter.
+ * @param column the matrix column
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, Vector3f v) {
+ if( column == 0 ) {
+ v.x = m00;
+ v.y = m10;
+ v.z = m20;
+ } else if(column == 1) {
+ v.x = m01;
+ v.y = m11;
+ v.z = m21;
+ }else if(column == 2){
+ v.x = m02;
+ v.y = m12;
+ v.z = m22;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f3"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the array
+ * parameter.
+ * @param column the matrix column
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, float v[]) {
+ if( column == 0 ) {
+ v[0] = m00;
+ v[1] = m10;
+ v[2] = m20;
+ } else if(column == 1) {
+ v[0] = m01;
+ v[1] = m11;
+ v[2] = m21;
+ }else if(column == 2) {
+ v[0] = m02;
+ v[1] = m12;
+ v[2] = m22;
+ }else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f3"));
+ }
+ }
+
+ /**
+ * Retrieves the value at the specified row and column of this
+ * matrix.
+ * @param row the row number to be retrieved (zero indexed)
+ * @param column the column number to be retrieved (zero indexed)
+ * @return the value at the indexed element.
+ */
+ public final float getElement(int row, int column)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ return(this.m00);
+ case 1:
+ return(this.m01);
+ case 2:
+ return(this.m02);
+ default:
+ break;
+ }
+ break;
+ case 1:
+ switch(column)
+ {
+ case 0:
+ return(this.m10);
+ case 1:
+ return(this.m11);
+ case 2:
+ return(this.m12);
+ default:
+ break;
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ return(this.m20);
+ case 1:
+ return(this.m21);
+ case 2:
+ return(this.m22);
+ default:
+ break;
+ }
+ break;
+
+ default:
+ break;
+ }
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f5"));
+ }
+
+ /**
+ * Sets the specified row of this matrix3f to the three values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param x the first column element
+ * @param y the second column element
+ * @param z the third column element
+ */
+ public final void setRow(int row, float x, float y, float z)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = x;
+ this.m01 = y;
+ this.m02 = z;
+ break;
+
+ case 1:
+ this.m10 = x;
+ this.m11 = y;
+ this.m12 = z;
+ break;
+
+ case 2:
+ this.m20 = x;
+ this.m21 = y;
+ this.m22 = z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix3f to the Vector provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, Vector3f v)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v.x;
+ this.m01 = v.y;
+ this.m02 = v.z;
+ break;
+
+ case 1:
+ this.m10 = v.x;
+ this.m11 = v.y;
+ this.m12 = v.z;
+ break;
+
+ case 2:
+ this.m20 = v.x;
+ this.m21 = v.y;
+ this.m22 = v.z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix3f to the three values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, float v[])
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v[0];
+ this.m01 = v[1];
+ this.m02 = v[2];
+ break;
+
+ case 1:
+ this.m10 = v[0];
+ this.m11 = v[1];
+ this.m12 = v[2];
+ break;
+
+ case 2:
+ this.m20 = v[0];
+ this.m21 = v[1];
+ this.m22 = v[2];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3f to the three values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param x the first row element
+ * @param y the second row element
+ * @param z the third row element
+ */
+ public final void setColumn(int column, float x, float y, float z)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = x;
+ this.m10 = y;
+ this.m20 = z;
+ break;
+
+ case 1:
+ this.m01 = x;
+ this.m11 = y;
+ this.m21 = z;
+ break;
+
+ case 2:
+ this.m02 = x;
+ this.m12 = y;
+ this.m22 = z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3f to the vector provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, Vector3f v)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v.x;
+ this.m10 = v.y;
+ this.m20 = v.z;
+ break;
+
+ case 1:
+ this.m01 = v.x;
+ this.m11 = v.y;
+ this.m21 = v.z;
+ break;
+
+ case 2:
+ this.m02 = v.x;
+ this.m12 = v.y;
+ this.m22 = v.z;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix3f to the three values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, float v[])
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v[0];
+ this.m10 = v[1];
+ this.m20 = v[2];
+ break;
+
+ case 1:
+ this.m01 = v[0];
+ this.m11 = v[1];
+ this.m21 = v[2];
+ break;
+
+ case 2:
+ this.m02 = v[0];
+ this.m12 = v[1];
+ this.m22 = v[2];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9"));
+ }
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * and return the uniform scale factor. If the matrix has non-uniform
+ * scale factors, the largest of the x, y, and z scale factors will
+ * be returned. This matrix is not modified.
+ * @return the scale factor of this matrix
+ */
+ public final float getScale()
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate(tmp_scale, tmp_rot);
+
+ return( (float)Matrix3d.max3(tmp_scale ));
+
+ }
+
+ /**
+ * Adds a scalar to each component of this matrix.
+ * @param scalar the scalar adder
+ */
+ public final void add(float scalar)
+ {
+ m00 += scalar;
+ m01 += scalar;
+ m02 += scalar;
+ m10 += scalar;
+ m11 += scalar;
+ m12 += scalar;
+ m20 += scalar;
+ m21 += scalar;
+ m22 += scalar;
+ }
+
+ /**
+ * Adds a scalar to each component of the matrix m1 and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar adder.
+ * @param m1 the original matrix values
+ */
+ public final void add(float scalar, Matrix3f m1)
+ {
+ this.m00 = m1.m00 + scalar;
+ this.m01 = m1.m01 + scalar;
+ this.m02 = m1.m02 + scalar;
+ this.m10 = m1.m10 + scalar;
+ this.m11 = m1.m11 + scalar;
+ this.m12 = m1.m12 + scalar;
+ this.m20 = m1.m20 + scalar;
+ this.m21 = m1.m21 + scalar;
+ this.m22 = m1.m22 + scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void add(Matrix3f m1, Matrix3f m2)
+ {
+ this.m00 = m1.m00 + m2.m00;
+ this.m01 = m1.m01 + m2.m01;
+ this.m02 = m1.m02 + m2.m02;
+
+ this.m10 = m1.m10 + m2.m10;
+ this.m11 = m1.m11 + m2.m11;
+ this.m12 = m1.m12 + m2.m12;
+
+ this.m20 = m1.m20 + m2.m20;
+ this.m21 = m1.m21 + m2.m21;
+ this.m22 = m1.m22 + m2.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of itself and
+ * matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void add(Matrix3f m1)
+ {
+ this.m00 += m1.m00;
+ this.m01 += m1.m01;
+ this.m02 += m1.m02;
+
+ this.m10 += m1.m10;
+ this.m11 += m1.m11;
+ this.m12 += m1.m12;
+
+ this.m20 += m1.m20;
+ this.m21 += m1.m21;
+ this.m22 += m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void sub(Matrix3f m1, Matrix3f m2)
+ {
+ this.m00 = m1.m00 - m2.m00;
+ this.m01 = m1.m01 - m2.m01;
+ this.m02 = m1.m02 - m2.m02;
+
+ this.m10 = m1.m10 - m2.m10;
+ this.m11 = m1.m11 - m2.m11;
+ this.m12 = m1.m12 - m2.m12;
+
+ this.m20 = m1.m20 - m2.m20;
+ this.m21 = m1.m21 - m2.m21;
+ this.m22 = m1.m22 - m2.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of itself and matrix m1 (this = this - m1).
+ * @param m1 the other matrix
+ */
+ public final void sub(Matrix3f m1)
+ {
+ this.m00 -= m1.m00;
+ this.m01 -= m1.m01;
+ this.m02 -= m1.m02;
+
+ this.m10 -= m1.m10;
+ this.m11 -= m1.m11;
+ this.m12 -= m1.m12;
+
+ this.m20 -= m1.m20;
+ this.m21 -= m1.m21;
+ this.m22 -= m1.m22;
+ }
+
+ /**
+ * Sets the value of this matrix to its transpose.
+ */
+ public final void transpose()
+ {
+ float temp;
+
+ temp = this.m10;
+ this.m10 = this.m01;
+ this.m01 = temp;
+
+ temp = this.m20;
+ this.m20 = this.m02;
+ this.m02 = temp;
+
+ temp = this.m21;
+ this.m21 = this.m12;
+ this.m12 = temp;
+ }
+
+ /**
+ * Sets the value of this matrix to the transpose of the argument matrix.
+ * @param m1 the matrix to be transposed
+ */
+ public final void transpose(Matrix3f m1)
+ {
+ if (this != m1) {
+ this.m00 = m1.m00;
+ this.m01 = m1.m10;
+ this.m02 = m1.m20;
+
+ this.m10 = m1.m01;
+ this.m11 = m1.m11;
+ this.m12 = m1.m21;
+
+ this.m20 = m1.m02;
+ this.m21 = m1.m12;
+ this.m22 = m1.m22;
+ } else
+ this.transpose();
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4f q1)
+ {
+ this.m00 = 1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z;
+ this.m10 = 2.0f*(q1.x*q1.y + q1.w*q1.z);
+ this.m20 = 2.0f*(q1.x*q1.z - q1.w*q1.y);
+
+ this.m01 = 2.0f*(q1.x*q1.y - q1.w*q1.z);
+ this.m11 = 1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z;
+ this.m21 = 2.0f*(q1.y*q1.z + q1.w*q1.x);
+
+ this.m02 = 2.0f*(q1.x*q1.z + q1.w*q1.y);
+ this.m12 = 2.0f*(q1.y*q1.z - q1.w*q1.x);
+ this.m22 = 1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ float mag = (float)Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0f/mag;
+ float ax = a1.x*mag;
+ float ay = a1.y*mag;
+ float az = a1.z*mag;
+
+ float sinTheta = (float)Math.sin((float)a1.angle);
+ float cosTheta = (float)Math.cos((float)a1.angle);
+ float t = (float)1.0 - cosTheta;
+
+ float xz = ax * az;
+ float xy = ax * ay;
+ float yz = ay * az;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (double precision) axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = ax * az;
+ double xy = ax * ay;
+ double yz = ay * az;
+
+ m00 = (float)(t * ax * ax + cosTheta);
+ m01 = (float)(t * xy - sinTheta * az);
+ m02 = (float)(t * xz + sinTheta * ay);
+
+ m10 = (float)(t * xy + sinTheta * az);
+ m11 = (float)(t * ay * ay + cosTheta);
+ m12 = (float)(t * yz - sinTheta * ax);
+
+ m20 = (float)(t * xz - sinTheta * ay);
+ m21 = (float)(t * yz + sinTheta * ax);
+ m22 = (float)(t * az * az + cosTheta);
+ }
+
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4d q1)
+ {
+ this.m00 = (float) (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (float) (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (float) (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (float) (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (float) (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (float) (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (float) (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+ }
+
+ /**
+ * Sets the values in this Matrix3f equal to the row-major
+ * array parameter (ie, the first three elements of the
+ * array will be copied into the first row of this matrix, etc.).
+ * @param m the single precision array of length 9
+ */
+ public final void set(float[] m)
+ {
+ m00 = m[0];
+ m01 = m[1];
+ m02 = m[2];
+
+ m10 = m[3];
+ m11 = m[4];
+ m12 = m[5];
+
+ m20 = m[6];
+ m21 = m[7];
+ m22 = m[8];
+
+
+ }
+
+ /**
+ * Sets the value of this matrix to the value of the Matrix3f
+ * argument.
+ * @param m1 the source matrix3f
+ */
+ public final void set(Matrix3f m1) {
+
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+
+ }
+
+
+ /**
+ * Sets the value of this matrix to the float value of the Matrix3d
+ * argument.
+ * @param m1 the source matrix3d
+ */
+ public final void set(Matrix3d m1) {
+
+ this.m00 = (float)m1.m00;
+ this.m01 = (float)m1.m01;
+ this.m02 = (float)m1.m02;
+
+ this.m10 = (float)m1.m10;
+ this.m11 = (float)m1.m11;
+ this.m12 = (float)m1.m12;
+
+ this.m20 = (float)m1.m20;
+ this.m21 = (float)m1.m21;
+ this.m22 = (float)m1.m22;
+
+ }
+
+
+ /**
+ * Sets the value of this matrix to the matrix inverse
+ * of the passed matrix m1.
+ * @param m1 the matrix to be inverted
+ */
+ public final void invert(Matrix3f m1)
+ {
+ invertGeneral( m1);
+ }
+
+ /**
+ * Inverts this matrix in place.
+ */
+ public final void invert()
+ {
+ invertGeneral( this );
+ }
+
+ /**
+ * General invert routine. Inverts m1 and places the result in "this".
+ * Note that this routine handles both the "this" version and the
+ * non-"this" version.
+ *
+ * Also note that since this routine is slow anyway, we won't worry
+ * about allocating a little bit of garbage.
+ */
+ private final void invertGeneral(Matrix3f m1) {
+ double temp[] = new double[9];
+ double result[] = new double[9];
+ int row_perm[] = new int[3];
+ int i, r, c;
+
+ // Use LU decomposition and backsubstitution code specifically
+ // for floating-point 3x3 matrices.
+
+ // Copy source matrix to t1tmp
+ temp[0] = (double)m1.m00;
+ temp[1] = (double)m1.m01;
+ temp[2] = (double)m1.m02;
+
+ temp[3] = (double)m1.m10;
+ temp[4] = (double)m1.m11;
+ temp[5] = (double)m1.m12;
+
+ temp[6] = (double)m1.m20;
+ temp[7] = (double)m1.m21;
+ temp[8] = (double)m1.m22;
+
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(temp, row_perm)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException(VecMathI18N.getString("Matrix3f12"));
+ }
+
+ // Perform back substitution on the identity matrix
+ for(i=0;i<9;i++) result[i] = 0.0;
+ result[0] = 1.0; result[4] = 1.0; result[8] = 1.0;
+ luBacksubstitution(temp, row_perm, result);
+
+ this.m00 = (float)result[0];
+ this.m01 = (float)result[1];
+ this.m02 = (float)result[2];
+
+ this.m10 = (float)result[3];
+ this.m11 = (float)result[4];
+ this.m12 = (float)result[5];
+
+ this.m20 = (float)result[6];
+ this.m21 = (float)result[7];
+ this.m22 = (float)result[8];
+
+ }
+
+ /**
+ * Given a 3x3 array "matrix0", this function replaces it with the
+ * LU decomposition of a row-wise permutation of itself. The input
+ * parameters are "matrix0" and "dimen". The array "matrix0" is also
+ * an output parameter. The vector "row_perm[3]" is an output
+ * parameter that contains the row permutations resulting from partial
+ * pivoting. The output parameter "even_row_xchg" is 1 when the
+ * number of row exchanges is even, or -1 otherwise. Assumes data
+ * type is always double.
+ *
+ * This function is similar to luDecomposition, except that it
+ * is tuned specifically for 3x3 matrices.
+ *
+ * @return true if the matrix is nonsingular, or false otherwise.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 40-45.
+ //
+ static boolean luDecomposition(double[] matrix0,
+ int[] row_perm) {
+
+ double row_scale[] = new double[3];
+
+ // Determine implicit scaling information by looping over rows
+ {
+ int i, j;
+ int ptr, rs;
+ double big, temp;
+
+ ptr = 0;
+ rs = 0;
+
+ // For each row ...
+ i = 3;
+ while (i-- != 0) {
+ big = 0.0;
+
+ // For each column, find the largest element in the row
+ j = 3;
+ while (j-- != 0) {
+ temp = matrix0[ptr++];
+ temp = Math.abs(temp);
+ if (temp > big) {
+ big = temp;
+ }
+ }
+
+ // Is the matrix singular?
+ if (big == 0.0) {
+ return false;
+ }
+ row_scale[rs++] = 1.0 / big;
+ }
+ }
+
+ {
+ int j;
+ int mtx;
+
+ mtx = 0;
+
+ // For all columns, execute Crout's method
+ for (j = 0; j < 3; j++) {
+ int i, imax, k;
+ int target, p1, p2;
+ double sum, big, temp;
+
+ // Determine elements of upper diagonal matrix U
+ for (i = 0; i < j; i++) {
+ target = mtx + (3*i) + j;
+ sum = matrix0[target];
+ k = i;
+ p1 = mtx + (3*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 3;
+ }
+ matrix0[target] = sum;
+ }
+
+ // Search for largest pivot element and calculate
+ // intermediate elements of lower diagonal matrix L.
+ big = 0.0;
+ imax = -1;
+ for (i = j; i < 3; i++) {
+ target = mtx + (3*i) + j;
+ sum = matrix0[target];
+ k = j;
+ p1 = mtx + (3*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 3;
+ }
+ matrix0[target] = sum;
+
+ // Is this the best pivot so far?
+ if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
+ big = temp;
+ imax = i;
+ }
+ }
+
+ if (imax < 0) {
+ throw new RuntimeException(VecMathI18N.getString("Matrix3f13"));
+ }
+
+ // Is a row exchange necessary?
+ if (j != imax) {
+ // Yes: exchange rows
+ k = 3;
+ p1 = mtx + (3*imax);
+ p2 = mtx + (3*j);
+ while (k-- != 0) {
+ temp = matrix0[p1];
+ matrix0[p1++] = matrix0[p2];
+ matrix0[p2++] = temp;
+ }
+
+ // Record change in scale factor
+ row_scale[imax] = row_scale[j];
+ }
+
+ // Record row permutation
+ row_perm[j] = imax;
+
+ // Is the matrix singular
+ if (matrix0[(mtx + (3*j) + j)] == 0.0) {
+ return false;
+ }
+
+ // Divide elements of lower diagonal matrix L by pivot
+ if (j != (3-1)) {
+ temp = 1.0 / (matrix0[(mtx + (3*j) + j)]);
+ target = mtx + (3*(j+1)) + j;
+ i = 2 - j;
+ while (i-- != 0) {
+ matrix0[target] *= temp;
+ target += 3;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ /**
+ * Solves a set of linear equations. The input parameters "matrix1",
+ * and "row_perm" come from luDecompostionD3x3 and do not change
+ * here. The parameter "matrix2" is a set of column vectors assembled
+ * into a 3x3 matrix of floating-point values. The procedure takes each
+ * column of "matrix2" in turn and treats it as the right-hand side of the
+ * matrix equation Ax = LUx = b. The solution vector replaces the
+ * original column of the matrix.
+ *
+ * If "matrix2" is the identity matrix, the procedure replaces its contents
+ * with the inverse of the matrix from which "matrix1" was originally
+ * derived.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 44-45.
+ //
+ static void luBacksubstitution(double[] matrix1,
+ int[] row_perm,
+ double[] matrix2) {
+
+ int i, ii, ip, j, k;
+ int rp;
+ int cv, rv;
+
+ // rp = row_perm;
+ rp = 0;
+
+ // For each column vector of matrix2 ...
+ for (k = 0; k < 3; k++) {
+ // cv = &(matrix2[0][k]);
+ cv = k;
+ ii = -1;
+
+ // Forward substitution
+ for (i = 0; i < 3; i++) {
+ double sum;
+
+ ip = row_perm[rp+i];
+ sum = matrix2[cv+3*ip];
+ matrix2[cv+3*ip] = matrix2[cv+3*i];
+ if (ii >= 0) {
+ // rv = &(matrix1[i][0]);
+ rv = i*3;
+ for (j = ii; j <= i-1; j++) {
+ sum -= matrix1[rv+j] * matrix2[cv+3*j];
+ }
+ }
+ else if (sum != 0.0) {
+ ii = i;
+ }
+ matrix2[cv+3*i] = sum;
+ }
+
+ // Backsubstitution
+ // rv = &(matrix1[3][0]);
+ rv = 2*3;
+ matrix2[cv+3*2] /= matrix1[rv+2];
+
+ rv -= 3;
+ matrix2[cv+3*1] = (matrix2[cv+3*1] -
+ matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+1];
+
+ rv -= 3;
+ matrix2[cv+4*0] = (matrix2[cv+3*0] -
+ matrix1[rv+1] * matrix2[cv+3*1] -
+ matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+0];
+
+ }
+ }
+ /**
+ * Computes the determinant of this matrix.
+ * @return the determinant of this matrix
+ */
+ public final float determinant()
+ {
+ float total;
+ total = this.m00*(this.m11*this.m22 - this.m12*this.m21)
+ + this.m01*(this.m12*this.m20 - this.m10*this.m22)
+ + this.m02*(this.m10*this.m21 - this.m11*this.m20);
+ return total;
+ }
+
+ /**
+ * Sets the value of this matrix to a scale matrix with
+ * the passed scale amount.
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(float scale)
+ {
+ this.m00 = scale;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = scale;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = scale;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the x axis.
+ * @param angle the angle to rotate about the X axis in radians
+ */
+ public final void rotX(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = cosAngle;
+ this.m12 = -sinAngle;
+
+ this.m20 = (float) 0.0;
+ this.m21 = sinAngle;
+ this.m22 = cosAngle;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the y axis.
+ * @param angle the angle to rotate about the Y axis in radians
+ */
+ public final void rotY(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = cosAngle;
+ this.m01 = (float) 0.0;
+ this.m02 = sinAngle;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+
+ this.m20 = -sinAngle;
+ this.m21 = (float) 0.0;
+ this.m22 = cosAngle;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the z axis.
+ * @param angle the angle to rotate about the Z axis in radians
+ */
+ public final void rotZ(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = cosAngle;
+ this.m01 = -sinAngle;
+ this.m02 = (float) 0.0;
+
+ this.m10 = sinAngle;
+ this.m11 = cosAngle;
+ this.m12 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ }
+
+ /**
+ * Multiplies each element of this matrix by a scalar.
+ * @param scalar the scalar multiplier
+ */
+ public final void mul(float scalar)
+ {
+ m00 *= scalar;
+ m01 *= scalar;
+ m02 *= scalar;
+
+ m10 *= scalar;
+ m11 *= scalar;
+ m12 *= scalar;
+
+ m20 *= scalar;
+ m21 *= scalar;
+ m22 *= scalar;
+ }
+
+ /**
+ * Multiplies each element of matrix m1 by a scalar and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar multiplier
+ * @param m1 the original matrix
+ */
+ public final void mul(float scalar, Matrix3f m1)
+ {
+ this.m00 = scalar * m1.m00;
+ this.m01 = scalar * m1.m01;
+ this.m02 = scalar * m1.m02;
+
+ this.m10 = scalar * m1.m10;
+ this.m11 = scalar * m1.m11;
+ this.m12 = scalar * m1.m12;
+
+ this.m20 = scalar * m1.m20;
+ this.m21 = scalar * m1.m21;
+ this.m22 = scalar * m1.m22;
+
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying itself
+ * with matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void mul(Matrix3f m1)
+ {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22;
+
+ m00 = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
+ m01 = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
+ m02 = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;
+
+ m10 = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
+ m11 = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
+ m12 = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;
+
+ m20 = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
+ m21 = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
+ m22 = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying
+ * the two argument matrices together.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void mul(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22;
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Multiplies this matrix by matrix m1, does an SVD normalization
+ * of the result, and places the result back into this matrix.
+ * this = SVDnorm(this*m1).
+ * @param m1 the matrix on the right hand side of the multiplication
+ */
+ public final void mulNormalize(Matrix3f m1){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20;
+ tmp[1] = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21;
+ tmp[2] = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22;
+
+ tmp[3] = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20;
+ tmp[4] = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21;
+ tmp[5] = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22;
+
+ tmp[6] = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20;
+ tmp[7] = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21;
+ tmp[8] = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22;
+
+ Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = (float)(tmp_rot[0]);
+ this.m01 = (float)(tmp_rot[1]);
+ this.m02 = (float)(tmp_rot[2]);
+
+ this.m10 = (float)(tmp_rot[3]);
+ this.m11 = (float)(tmp_rot[4]);
+ this.m12 = (float)(tmp_rot[5]);
+
+ this.m20 = (float)(tmp_rot[6]);
+ this.m21 = (float)(tmp_rot[7]);
+ this.m22 = (float)(tmp_rot[8]);
+
+ }
+
+ /**
+ * Multiplies matrix m1 by matrix m2, does an SVD normalization
+ * of the result, and places the result into this matrix.
+ * this = SVDnorm(m1*m2).
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulNormalize(Matrix3f m1, Matrix3f m2){
+
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+
+ tmp[0] = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20;
+ tmp[1] = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21;
+ tmp[2] = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22;
+
+ tmp[3] = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20;
+ tmp[4] = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21;
+ tmp[5] = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22;
+
+ tmp[6] = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20;
+ tmp[7] = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21;
+ tmp[8] = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22;
+
+ Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot);
+
+ this.m00 = (float)(tmp_rot[0]);
+ this.m01 = (float)(tmp_rot[1]);
+ this.m02 = (float)(tmp_rot[2]);
+
+ this.m10 = (float)(tmp_rot[3]);
+ this.m11 = (float)(tmp_rot[4]);
+ this.m12 = (float)(tmp_rot[5]);
+
+ this.m20 = (float)(tmp_rot[6]);
+ this.m21 = (float)(tmp_rot[7]);
+ this.m22 = (float)(tmp_rot[8]);
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times the transpose of matrix
+ * m2, and places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeBoth(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
+ this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
+ this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
+ this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
+ this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
+ this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
+ this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02;
+ m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12;
+ m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02;
+ m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12;
+ m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02;
+ m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12;
+ m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+
+ }
+
+
+ /**
+ * Multiplies matrix m1 times the transpose of matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeRight(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
+ this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
+ this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
+ this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
+ this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
+ this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
+ this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02;
+ m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12;
+ m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02;
+ m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12;
+ m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02;
+ m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12;
+ m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeLeft(Matrix3f m1, Matrix3f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
+ this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
+ this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
+ this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
+ this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
+ this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
+ this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
+ } else {
+ float m00, m01, m02,
+ m10, m11, m12,
+ m20, m21, m22; // vars for temp result matrix
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20;
+ m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21;
+ m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20;
+ m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21;
+ m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20;
+ m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21;
+ m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22;
+ }
+ }
+
+ /**
+ * Performs singular value decomposition normalization of this matrix.
+ */
+ public final void normalize(){
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ this.m00 = (float)tmp_rot[0];
+ this.m01 = (float)tmp_rot[1];
+ this.m02 = (float)tmp_rot[2];
+
+ this.m10 = (float)tmp_rot[3];
+ this.m11 = (float)tmp_rot[4];
+ this.m12 = (float)tmp_rot[5];
+
+ this.m20 = (float)tmp_rot[6];
+ this.m21 = (float)tmp_rot[7];
+ this.m22 = (float)tmp_rot[8];
+
+ }
+
+ /**
+ * Perform singular value decomposition normalization of matrix m1
+ * and place the normalized values into this.
+ * @param m1 the matrix values to be normalized
+ */
+ public final void normalize(Matrix3f m1){
+ double[] tmp = new double[9]; // scratch matrix
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ tmp[0] = m1.m00;
+ tmp[1] = m1.m01;
+ tmp[2] = m1.m02;
+
+ tmp[3] = m1.m10;
+ tmp[4] = m1.m11;
+ tmp[5] = m1.m12;
+
+ tmp[6] = m1.m20;
+ tmp[7] = m1.m21;
+ tmp[8] = m1.m22;
+
+ Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot );
+
+ this.m00 = (float)(tmp_rot[0]);
+ this.m01 = (float)(tmp_rot[1]);
+ this.m02 = (float)(tmp_rot[2]);
+
+ this.m10 = (float)(tmp_rot[3]);
+ this.m11 = (float)(tmp_rot[4]);
+ this.m12 = (float)(tmp_rot[5]);
+
+ this.m20 = (float)(tmp_rot[6]);
+ this.m21 = (float)(tmp_rot[7]);
+ this.m22 = (float)(tmp_rot[8]);
+
+ }
+
+ /**
+ * Perform cross product normalization of this matrix.
+ */
+ public final void normalizeCP()
+ {
+ float mag = 1.0f/(float)Math.sqrt(m00*m00 + m10*m10 + m20*m20);
+ m00 = m00*mag;
+ m10 = m10*mag;
+ m20 = m20*mag;
+
+ mag = 1.0f/(float)Math.sqrt(m01*m01 + m11*m11 + m21*m21);
+ m01 = m01*mag;
+ m11 = m11*mag;
+ m21 = m21*mag;
+
+ m02 = m10*m21 - m11*m20;
+ m12 = m01*m20 - m00*m21;
+ m22 = m00*m11 - m01*m10;
+
+ }
+
+ /**
+ * Perform cross product normalization of matrix m1 and place the
+ * normalized values into this.
+ * @param m1 Provides the matrix values to be normalized
+ */
+ public final void normalizeCP(Matrix3f m1)
+ {
+ float mag = 1.0f/(float)Math.sqrt(m1.m00*m1.m00 + m1.m10*m1.m10 + m1.m20*m1.m20);
+ m00 = m1.m00*mag;
+ m10 = m1.m10*mag;
+ m20 = m1.m20*mag;
+
+ mag = 1.0f/(float)Math.sqrt(m1.m01*m1.m01 + m1.m11*m1.m11 + m1.m21*m1.m21);
+ m01 = m1.m01*mag;
+ m11 = m1.m11*mag;
+ m21 = m1.m21*mag;
+
+ m02 = m10*m21 - m11*m20;
+ m12 = m01*m20 - m00*m21;
+ m22 = m00*m11 - m01*m10;
+
+ }
+
+ /**
+ * Returns true if all of the data members of Matrix3f m1 are
+ * equal to the corresponding data members in this Matrix3f.
+ * @param m1 the matrix with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Matrix3f m1)
+ {
+ try {
+
+ return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02
+ && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12
+ && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22);
+ }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the Object o1 is of type Matrix3f and all of the
+ * data members of o1 are equal to the corresponding data members in
+ * this Matrix3f.
+ * @param o1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object o1)
+ {
+ try {
+
+ Matrix3f m2 = (Matrix3f) o1;
+ return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02
+ && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12
+ && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22);
+ }
+ catch (ClassCastException e1) { return false; }
+ catch (NullPointerException e2) { return false; }
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this matrix
+ * and matrix m1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[i=0,1,2 ; j=0,1,2 ; abs(this.m(i,j) - m1.m(i,j)]
+ * @param m1 the matrix to be compared to this matrix
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(Matrix3f m1, float epsilon)
+ {
+ boolean status = true;
+
+ if( Math.abs( this.m00 - m1.m00) > epsilon) status = false;
+ if( Math.abs( this.m01 - m1.m01) > epsilon) status = false;
+ if( Math.abs( this.m02 - m1.m02) > epsilon) status = false;
+
+ if( Math.abs( this.m10 - m1.m10) > epsilon) status = false;
+ if( Math.abs( this.m11 - m1.m11) > epsilon) status = false;
+ if( Math.abs( this.m12 - m1.m12) > epsilon) status = false;
+
+ if( Math.abs( this.m20 - m1.m20) > epsilon) status = false;
+ if( Math.abs( this.m21 - m1.m21) > epsilon) status = false;
+ if( Math.abs( this.m22 - m1.m22) > epsilon) status = false;
+
+ return( status );
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Matrix3f objects with identical data values
+ * (i.e., Matrix3f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)Float.floatToIntBits(m00);
+ bits = 31L * bits + (long)Float.floatToIntBits(m01);
+ bits = 31L * bits + (long)Float.floatToIntBits(m02);
+ bits = 31L * bits + (long)Float.floatToIntBits(m10);
+ bits = 31L * bits + (long)Float.floatToIntBits(m11);
+ bits = 31L * bits + (long)Float.floatToIntBits(m12);
+ bits = 31L * bits + (long)Float.floatToIntBits(m20);
+ bits = 31L * bits + (long)Float.floatToIntBits(m21);
+ bits = 31L * bits + (long)Float.floatToIntBits(m22);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Sets this matrix to all zeros.
+ */
+ public final void setZero()
+ {
+ m00 = 0.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 0.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 0.0f;
+
+ }
+
+ /**
+ * Negates the value of this matrix: this = -this.
+ */
+ public final void negate()
+ {
+ this.m00 = -this.m00;
+ this.m01 = -this.m01;
+ this.m02 = -this.m02;
+
+ this.m10 = -this.m10;
+ this.m11 = -this.m11;
+ this.m12 = -this.m12;
+
+ this.m20 = -this.m20;
+ this.m21 = -this.m21;
+ this.m22 = -this.m22;
+
+ }
+
+ /**
+ * Sets the value of this matrix equal to the negation of
+ * of the Matrix3f parameter.
+ * @param m1 the source matrix
+ */
+ public final void negate(Matrix3f m1)
+ {
+ this.m00 = -m1.m00;
+ this.m01 = -m1.m01;
+ this.m02 = -m1.m02;
+
+ this.m10 = -m1.m10;
+ this.m11 = -m1.m11;
+ this.m12 = -m1.m12;
+
+ this.m20 = -m1.m20;
+ this.m21 = -m1.m21;
+ this.m22 = -m1.m22;
+
+ }
+
+ /**
+ * Multiply this matrix by the tuple t and place the result
+ * back into the tuple (t = this*t).
+ * @param t the tuple to be multiplied by this matrix and then replaced
+ */
+ public final void transform(Tuple3f t) {
+ float x,y,z;
+ x = m00* t.x + m01*t.y + m02*t.z;
+ y = m10* t.x + m11*t.y + m12*t.z;
+ z = m20* t.x + m21*t.y + m22*t.z;
+ t.set(x,y,z);
+ }
+
+ /**
+ * Multiply this matrix by the tuple t and and place the result
+ * into the tuple "result" (result = this*t).
+ * @param t the tuple to be multiplied by this matrix
+ * @param result the tuple into which the product is placed
+ */
+ public final void transform(Tuple3f t, Tuple3f result) {
+ float x,y,z;
+ x = m00* t.x + m01*t.y + m02*t.z;
+ y = m10* t.x + m11*t.y + m12*t.z;
+ result.z = m20* t.x + m21*t.y + m22*t.z;
+ result.x = x;
+ result.y = y;
+ }
+
+ /**
+ * perform SVD (if necessary to get rotational component
+ */
+ void getScaleRotate( double[] scales, double[] rot ) {
+
+ double[] tmp = new double[9]; // scratch matrix
+ tmp[0] = m00;
+ tmp[1] = m01;
+ tmp[2] = m02;
+ tmp[3] = m10;
+ tmp[4] = m11;
+ tmp[5] = m12;
+ tmp[6] = m20;
+ tmp[7] = m21;
+ tmp[8] = m22;
+ Matrix3d.compute_svd(tmp, scales, rot);
+
+ return;
+
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ Matrix3f m1 = null;
+ try {
+ m1 = (Matrix3f)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ return m1;
+ }
+
+}
diff --git a/src/javax/vecmath/Matrix4d.java b/src/javax/vecmath/Matrix4d.java
new file mode 100644
index 0000000..0aa353b
--- /dev/null
+++ b/src/javax/vecmath/Matrix4d.java
@@ -0,0 +1,3585 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A double precision floating point 4 by 4 matrix.
+ * Primarily to support 3D rotations.
+ *
+ */
+public class Matrix4d implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 8223903484171633710L;
+
+ /**
+ * The first element of the first row.
+ */
+ public double m00;
+
+ /**
+ * The second element of the first row.
+ */
+ public double m01;
+
+ /**
+ * The third element of the first row.
+ */
+ public double m02;
+
+ /**
+ * The fourth element of the first row.
+ */
+ public double m03;
+
+ /**
+ * The first element of the second row.
+ */
+ public double m10;
+
+ /**
+ * The second element of the second row.
+ */
+ public double m11;
+
+ /**
+ * The third element of the second row.
+ */
+ public double m12;
+
+ /**
+ * The fourth element of the second row.
+ */
+ public double m13;
+
+ /**
+ * The first element of the third row.
+ */
+ public double m20;
+
+ /**
+ * The second element of the third row.
+ */
+ public double m21;
+
+ /**
+ * The third element of the third row.
+ */
+ public double m22;
+
+ /**
+ * The fourth element of the third row.
+ */
+ public double m23;
+
+ /**
+ * The first element of the fourth row.
+ */
+ public double m30;
+
+ /**
+ * The second element of the fourth row.
+ */
+ public double m31;
+
+ /**
+ * The third element of the fourth row.
+ */
+ public double m32;
+
+ /**
+ * The fourth element of the fourth row.
+ */
+ public double m33;
+ /*
+ double[] tmp = new double[16];
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ */
+ private static final double EPS = 1.0E-10;
+
+
+ /**
+ * Constructs and initializes a Matrix4d from the specified 16 values.
+ * @param m00 the [0][0] element
+ * @param m01 the [0][1] element
+ * @param m02 the [0][2] element
+ * @param m03 the [0][3] element
+ * @param m10 the [1][0] element
+ * @param m11 the [1][1] element
+ * @param m12 the [1][2] element
+ * @param m13 the [1][3] element
+ * @param m20 the [2][0] element
+ * @param m21 the [2][1] element
+ * @param m22 the [2][2] element
+ * @param m23 the [2][3] element
+ * @param m30 the [3][0] element
+ * @param m31 the [3][1] element
+ * @param m32 the [3][2] element
+ * @param m33 the [3][3] element
+ */
+ public Matrix4d(double m00, double m01, double m02, double m03,
+ double m10, double m11, double m12, double m13,
+ double m20, double m21, double m22, double m23,
+ double m30, double m31, double m32, double m33)
+ {
+ this.m00 = m00;
+ this.m01 = m01;
+ this.m02 = m02;
+ this.m03 = m03;
+
+ this.m10 = m10;
+ this.m11 = m11;
+ this.m12 = m12;
+ this.m13 = m13;
+
+ this.m20 = m20;
+ this.m21 = m21;
+ this.m22 = m22;
+ this.m23 = m23;
+
+ this.m30 = m30;
+ this.m31 = m31;
+ this.m32 = m32;
+ this.m33 = m33;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4d from the specified 16
+ * element array. this.m00 =v[0], this.m01=v[1], etc.
+ * @param v the array of length 16 containing in order
+ */
+ public Matrix4d(double[] v)
+ {
+ this.m00 = v[ 0];
+ this.m01 = v[ 1];
+ this.m02 = v[ 2];
+ this.m03 = v[ 3];
+
+ this.m10 = v[ 4];
+ this.m11 = v[ 5];
+ this.m12 = v[ 6];
+ this.m13 = v[ 7];
+
+ this.m20 = v[ 8];
+ this.m21 = v[ 9];
+ this.m22 = v[10];
+ this.m23 = v[11];
+
+ this.m30 = v[12];
+ this.m31 = v[13];
+ this.m32 = v[14];
+ this.m33 = v[15];
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4d from the quaternion,
+ * translation, and scale values; the scale is applied only to the
+ * rotational components of the matrix (upper 3x3) and not to the
+ * translational components.
+ * @param q1 the quaternion value representing the rotational component
+ * @param t1 the translational component of the matrix
+ * @param s the scale value applied to the rotational components
+ */
+ public Matrix4d(Quat4d q1, Vector3d t1, double s)
+ {
+ m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z));
+ m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z));
+ m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y));
+ m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x));
+ m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ m03 = t1.x;
+ m13 = t1.y;
+ m23 = t1.z;
+
+ m30 = 0.0;
+ m31 = 0.0;
+ m32 = 0.0;
+ m33 = 1.0;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4d from the quaternion,
+ * translation, and scale values; the scale is applied only to the
+ * rotational components of the matrix (upper 3x3) and not to the
+ * translational components.
+ * @param q1 the quaternion value representing the rotational component
+ * @param t1 the translational component of the matrix
+ * @param s the scale value applied to the rotational components
+ */
+ public Matrix4d(Quat4f q1, Vector3d t1, double s)
+ {
+ m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z));
+ m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z));
+ m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y));
+ m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x));
+ m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ m03 = t1.x;
+ m13 = t1.y;
+ m23 = t1.z;
+
+ m30 = 0.0;
+ m31 = 0.0;
+ m32 = 0.0;
+ m33 = 1.0;
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix4d parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix4d(Matrix4d m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+ this.m03 = m1.m03;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+ this.m13 = m1.m13;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ this.m23 = m1.m23;
+
+ this.m30 = m1.m30;
+ this.m31 = m1.m31;
+ this.m32 = m1.m32;
+ this.m33 = m1.m33;
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix4f parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix4d(Matrix4f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+ this.m03 = m1.m03;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+ this.m13 = m1.m13;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ this.m23 = m1.m23;
+
+ this.m30 = m1.m30;
+ this.m31 = m1.m31;
+ this.m32 = m1.m32;
+ this.m33 = m1.m33;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4d from the rotation matrix,
+ * translation, and scale values; the scale is applied only to the
+ * rotational components of the matrix (upper 3x3) and not to the
+ * translational components of the matrix.
+ * @param m1 the rotation matrix representing the rotational components
+ * @param t1 the translational components of the matrix
+ * @param s the scale value applied to the rotational components
+ */
+ public Matrix4d(Matrix3f m1, Vector3d t1, double s)
+ {
+ this.m00 = m1.m00*s;
+ this.m01 = m1.m01*s;
+ this.m02 = m1.m02*s;
+ this.m03 = t1.x;
+
+ this.m10 = m1.m10*s;
+ this.m11 = m1.m11*s;
+ this.m12 = m1.m12*s;
+ this.m13 = t1.y;
+
+ this.m20 = m1.m20*s;
+ this.m21 = m1.m21*s;
+ this.m22 = m1.m22*s;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4f from the rotation matrix,
+ * translation, and scale values; the scale is applied only to the
+ * rotational components of the matrix (upper 3x3) and not to the
+ * translational components of the matrix.
+ * @param m1 the rotation matrix representing the rotational components
+ * @param t1 the translational components of the matrix
+ * @param s the scale value applied to the rotational components
+ */
+ public Matrix4d(Matrix3d m1, Vector3d t1, double s)
+ {
+ this.m00 = m1.m00*s;
+ this.m01 = m1.m01*s;
+ this.m02 = m1.m02*s;
+ this.m03 = t1.x;
+
+ this.m10 = m1.m10*s;
+ this.m11 = m1.m11*s;
+ this.m12 = m1.m12*s;
+ this.m13 = t1.y;
+
+ this.m20 = m1.m20*s;
+ this.m21 = m1.m21*s;
+ this.m22 = m1.m22*s;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4d to all zeros.
+ */
+ public Matrix4d()
+ {
+ this.m00 = 0.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = 0.0;
+ this.m12 = 0.0;
+ this.m13 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 0.0;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 0.0;
+
+ }
+
+ /**
+ * Returns a string that contains the values of this Matrix4d.
+ * @return the String representation
+ */
+ public String toString() {
+ return
+ this.m00 + ", " + this.m01 + ", " + this.m02 + ", " + this.m03 + "\n" +
+ this.m10 + ", " + this.m11 + ", " + this.m12 + ", " + this.m13 + "\n" +
+ this.m20 + ", " + this.m21 + ", " + this.m22 + ", " + this.m23 + "\n" +
+ this.m30 + ", " + this.m31 + ", " + this.m32 + ", " + this.m33 + "\n";
+ }
+
+ /**
+ * Sets this Matrix4d to identity.
+ */
+ public final void setIdentity()
+ {
+ this.m00 = 1.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = 1.0;
+ this.m12 = 0.0;
+ this.m13 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 1.0;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the specified element of this matrix4f to the value provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param column the column number to be modified (zero indexed)
+ * @param value the new value
+ */
+ public final void setElement(int row, int column, double value)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ this.m00 = value;
+ break;
+ case 1:
+ this.m01 = value;
+ break;
+ case 2:
+ this.m02 = value;
+ break;
+ case 3:
+ this.m03 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0"));
+ }
+ break;
+
+ case 1:
+ switch(column)
+ {
+ case 0:
+ this.m10 = value;
+ break;
+ case 1:
+ this.m11 = value;
+ break;
+ case 2:
+ this.m12 = value;
+ break;
+ case 3:
+ this.m13 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0"));
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ this.m20 = value;
+ break;
+ case 1:
+ this.m21 = value;
+ break;
+ case 2:
+ this.m22 = value;
+ break;
+ case 3:
+ this.m23 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0"));
+ }
+ break;
+
+ case 3:
+ switch(column)
+ {
+ case 0:
+ this.m30 = value;
+ break;
+ case 1:
+ this.m31 = value;
+ break;
+ case 2:
+ this.m32 = value;
+ break;
+ case 3:
+ this.m33 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0"));
+ }
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0"));
+ }
+ }
+
+ /**
+ * Retrieves the value at the specified row and column of this matrix.
+ * @param row the row number to be retrieved (zero indexed)
+ * @param column the column number to be retrieved (zero indexed)
+ * @return the value at the indexed element
+ */
+ public final double getElement(int row, int column)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ return(this.m00);
+ case 1:
+ return(this.m01);
+ case 2:
+ return(this.m02);
+ case 3:
+ return(this.m03);
+ default:
+ break;
+ }
+ break;
+ case 1:
+ switch(column)
+ {
+ case 0:
+ return(this.m10);
+ case 1:
+ return(this.m11);
+ case 2:
+ return(this.m12);
+ case 3:
+ return(this.m13);
+ default:
+ break;
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ return(this.m20);
+ case 1:
+ return(this.m21);
+ case 2:
+ return(this.m22);
+ case 3:
+ return(this.m23);
+ default:
+ break;
+ }
+ break;
+
+ case 3:
+ switch(column)
+ {
+ case 0:
+ return(this.m30);
+ case 1:
+ return(this.m31);
+ case 2:
+ return(this.m32);
+ case 3:
+ return(this.m33);
+ default:
+ break;
+ }
+ break;
+
+ default:
+ break;
+ }
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d1"));
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the vector parameter.
+ * @param row the matrix row
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getRow(int row, Vector4d v) {
+ if( row == 0 ) {
+ v.x = m00;
+ v.y = m01;
+ v.z = m02;
+ v.w = m03;
+ } else if(row == 1) {
+ v.x = m10;
+ v.y = m11;
+ v.z = m12;
+ v.w = m13;
+ } else if(row == 2) {
+ v.x = m20;
+ v.y = m21;
+ v.z = m22;
+ v.w = m23;
+ } else if(row == 3) {
+ v.x = m30;
+ v.y = m31;
+ v.z = m32;
+ v.w = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d2"));
+ }
+ }
+
+
+ /**
+ * Copies the matrix values in the specified row into the array parameter.
+ * @param row the matrix row
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getRow(int row, double v[]) {
+ if( row == 0 ) {
+ v[0] = m00;
+ v[1] = m01;
+ v[2] = m02;
+ v[3] = m03;
+ } else if(row == 1) {
+ v[0] = m10;
+ v[1] = m11;
+ v[2] = m12;
+ v[3] = m13;
+ } else if(row == 2) {
+ v[0] = m20;
+ v[1] = m21;
+ v[2] = m22;
+ v[3] = m23;
+ } else if(row == 3) {
+ v[0] = m30;
+ v[1] = m31;
+ v[2] = m32;
+ v[3] = m33;
+ } else {
+
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d2"));
+ }
+ }
+
+
+
+ /**
+ * Copies the matrix values in the specified column into the vector
+ * parameter.
+ * @param column the matrix column
+ * @param v the vector into which the matrix column values will be copied
+ */
+ public final void getColumn(int column, Vector4d v) {
+ if( column == 0 ) {
+ v.x = m00;
+ v.y = m10;
+ v.z = m20;
+ v.w = m30;
+ } else if(column == 1) {
+ v.x = m01;
+ v.y = m11;
+ v.z = m21;
+ v.w = m31;
+ } else if(column == 2) {
+ v.x = m02;
+ v.y = m12;
+ v.z = m22;
+ v.w = m32;
+ } else if(column == 3) {
+ v.x = m03;
+ v.y = m13;
+ v.z = m23;
+ v.w = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d3"));
+
+ }
+
+ }
+
+
+
+ /**
+ * Copies the matrix values in the specified column into the array
+ * parameter.
+ * @param column the matrix column
+ * @param v the array into which the matrix column values will be copied
+ */
+ public final void getColumn(int column, double v[]) {
+ if( column == 0 ) {
+ v[0] = m00;
+ v[1] = m10;
+ v[2] = m20;
+ v[3] = m30;
+ } else if(column == 1) {
+ v[0] = m01;
+ v[1] = m11;
+ v[2] = m21;
+ v[3] = m31;
+ } else if(column == 2) {
+ v[0] = m02;
+ v[1] = m12;
+ v[2] = m22;
+ v[3] = m32;
+ } else if(column == 3) {
+ v[0] = m03;
+ v[1] = m13;
+ v[2] = m23;
+ v[3] = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d3"));
+
+ }
+
+ }
+
+
+ /**
+ * Performs an SVD normalization of this matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Matrix3d parameter.
+ * @param m1 the matrix into which the rotational component is placed
+ */
+ public final void get(Matrix3d m1)
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = tmp_rot[0];
+ m1.m01 = tmp_rot[1];
+ m1.m02 = tmp_rot[2];
+
+ m1.m10 = tmp_rot[3];
+ m1.m11 = tmp_rot[4];
+ m1.m12 = tmp_rot[5];
+
+ m1.m20 = tmp_rot[6];
+ m1.m21 = tmp_rot[7];
+ m1.m22 = tmp_rot[8];
+
+ }
+
+
+ /**
+ * Performs an SVD normalization of this matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Matrix3f parameter.
+ * @param m1 the matrix into which the rotational component is placed
+ */
+ public final void get(Matrix3f m1)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = (float)tmp_rot[0];
+ m1.m01 = (float)tmp_rot[1];
+ m1.m02 = (float)tmp_rot[2];
+
+ m1.m10 = (float)tmp_rot[3];
+ m1.m11 = (float)tmp_rot[4];
+ m1.m12 = (float)tmp_rot[5];
+
+ m1.m20 = (float)tmp_rot[6];
+ m1.m21 = (float)tmp_rot[7];
+ m1.m22 = (float)tmp_rot[8];
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * the rotation as a 3x3 matrix, the translation, and the scale.
+ * None of the matrix values are modified.
+ * @param m1 the normalized matrix representing the rotation
+ * @param t1 the translation component
+ * @return the scale component of this transform
+ */
+ public final double get(Matrix3d m1, Vector3d t1)
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = tmp_rot[0];
+ m1.m01 = tmp_rot[1];
+ m1.m02 = tmp_rot[2];
+
+ m1.m10 = tmp_rot[3];
+ m1.m11 = tmp_rot[4];
+ m1.m12 = tmp_rot[5];
+
+ m1.m20 = tmp_rot[6];
+ m1.m21 = tmp_rot[7];
+ m1.m22 = tmp_rot[8];
+
+ t1.x = m03;
+ t1.y = m13;
+ t1.z = m23;
+
+ return( Matrix3d.max3( tmp_scale ));
+
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * the rotation as a 3x3 matrix, the translation, and the scale.
+ * None of the matrix values are modified.
+ * @param m1 the normalized matrix representing the rotation
+ * @param t1 the translation component
+ * @return the scale component of this transform
+ */
+ public final double get(Matrix3f m1, Vector3d t1){
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = (float)tmp_rot[0];
+ m1.m01 = (float)tmp_rot[1];
+ m1.m02 = (float)tmp_rot[2];
+
+ m1.m10 = (float)tmp_rot[3];
+ m1.m11 = (float)tmp_rot[4];
+ m1.m12 = (float)tmp_rot[5];
+
+ m1.m20 = (float)tmp_rot[6];
+ m1.m21 = (float)tmp_rot[7];
+ m1.m22 = (float)tmp_rot[8];
+
+ t1.x = m03;
+ t1.y = m13;
+ t1.z = m23;
+
+ return( Matrix3d.max3( tmp_scale ));
+
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Quat4f parameter.
+ * @param q1 quaternion into which the rotation component is placed
+ */
+ public final void get(Quat4f q1)
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ double ww;
+
+ ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.w = (float)Math.sqrt(ww);
+ ww = 0.25/q1.w;
+ q1.x = (float)((tmp_rot[7] - tmp_rot[5])*ww);
+ q1.y = (float)((tmp_rot[2] - tmp_rot[6])*ww);
+ q1.z = (float)((tmp_rot[3] - tmp_rot[1])*ww);
+ return;
+ }
+
+ q1.w = 0.0f;
+ ww = -0.5*(tmp_rot[4] + tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.x = (float)Math.sqrt(ww);
+ ww = 0.5/q1.x;
+ q1.y = (float)(tmp_rot[3]*ww);
+ q1.z = (float)(tmp_rot[6]*ww);
+ return;
+ }
+
+ q1.x = 0.0f;
+ ww = 0.5*(1.0 - tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.y = (float)(Math.sqrt(ww));
+ q1.z = (float)(tmp_rot[7]/(2.0*q1.y));
+ return;
+ }
+
+ q1.y = 0.0f;
+ q1.z = 1.0f;
+
+ }
+
+ /**
+ * Performs an SVD normalization of q1 matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Quat4d parameter.
+ * @param q1 the quaternion into which the rotation component is placed
+ */
+ public final void get(Quat4d q1)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ double ww;
+
+ ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.w = Math.sqrt(ww);
+ ww = 0.25/q1.w;
+ q1.x = (tmp_rot[7] - tmp_rot[5])*ww;
+ q1.y = (tmp_rot[2] - tmp_rot[6])*ww;
+ q1.z = (tmp_rot[3] - tmp_rot[1])*ww;
+ return;
+ }
+
+ q1.w = 0.0f;
+ ww = -0.5*(tmp_rot[4] + tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.x = Math.sqrt(ww);
+ ww = 0.5/q1.x;
+ q1.y = tmp_rot[3]*ww;
+ q1.z = tmp_rot[6]*ww;
+ return;
+ }
+
+ q1.x = 0.0;
+ ww = 0.5*(1.0 - tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.y = Math.sqrt(ww);
+ q1.z = tmp_rot[7]/(2.0*q1.y);
+ return;
+ }
+
+ q1.y = 0.0;
+ q1.z = 1.0;
+ }
+
+ /**
+ * Retrieves the translational components of this matrix.
+ * @param trans the vector that will receive the translational component
+ */
+ public final void get(Vector3d trans)
+ {
+ trans.x = m03;
+ trans.y = m13;
+ trans.z = m23;
+ }
+
+ /**
+ * Gets the upper 3x3 values of this matrix and places them into
+ * the matrix m1.
+ * @param m1 the matrix that will hold the values
+ */
+ public final void getRotationScale(Matrix3f m1)
+ {
+ m1.m00 = (float)m00; m1.m01 = (float)m01; m1.m02 = (float)m02;
+ m1.m10 = (float)m10; m1.m11 = (float)m11; m1.m12 = (float)m12;
+ m1.m20 = (float)m20; m1.m21 = (float)m21; m1.m22 = (float)m22;
+ }
+
+ /**
+ * Gets the upper 3x3 values of this matrix and places them into
+ * the matrix m1.
+ * @param m1 the matrix that will hold the values
+ */
+ public final void getRotationScale(Matrix3d m1)
+ {
+ m1.m00 = m00; m1.m01 = m01; m1.m02 = m02;
+ m1.m10 = m10; m1.m11 = m11; m1.m12 = m12;
+ m1.m20 = m20; m1.m21 = m21; m1.m22 = m22;
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * and return the uniform scale factor. If the matrix has non-uniform
+ * scale factors, the largest of the x, y, and z scale factors will
+ * be returned. This matrix is not modified.
+ * @return the scale factor of this matrix
+ */
+ public final double getScale()
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ return( Matrix3d.max3( tmp_scale ));
+
+ }
+
+ /**
+ * Replaces the upper 3x3 matrix values of this matrix with the
+ * values in the matrix m1.
+ * @param m1 the matrix that will be the new upper 3x3
+ */
+ public final void setRotationScale(Matrix3d m1)
+ {
+ m00 = m1.m00; m01 = m1.m01; m02 = m1.m02;
+ m10 = m1.m10; m11 = m1.m11; m12 = m1.m12;
+ m20 = m1.m20; m21 = m1.m21; m22 = m1.m22;
+ }
+
+ /**
+ * Replaces the upper 3x3 matrix values of this matrix with the
+ * values in the matrix m1.
+ * @param m1 the matrix that will be the new upper 3x3
+ */
+ public final void setRotationScale(Matrix3f m1)
+ {
+ m00 = m1.m00; m01 = m1.m01; m02 = m1.m02;
+ m10 = m1.m10; m11 = m1.m11; m12 = m1.m12;
+ m20 = m1.m20; m21 = m1.m21; m22 = m1.m22;
+ }
+
+ /**
+ * Sets the scale component of the current matrix by factoring
+ * out the current scale (by doing an SVD) from the rotational
+ * component and multiplying by the new scale.
+ * @param scale the new scale amount
+ */
+ public final void setScale(double scale)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = tmp_rot[0]*scale;
+ m01 = tmp_rot[1]*scale;
+ m02 = tmp_rot[2]*scale;
+
+ m10 = tmp_rot[3]*scale;
+ m11 = tmp_rot[4]*scale;
+ m12 = tmp_rot[5]*scale;
+
+ m20 = tmp_rot[6]*scale;
+ m21 = tmp_rot[7]*scale;
+ m22 = tmp_rot[8]*scale;
+
+ }
+
+ /**
+ * Sets the specified row of this matrix4d to the four values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param x the first column element
+ * @param y the second column element
+ * @param z the third column element
+ * @param w the fourth column element
+ */
+ public final void setRow(int row, double x, double y, double z, double w)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = x;
+ this.m01 = y;
+ this.m02 = z;
+ this.m03 = w;
+ break;
+
+ case 1:
+ this.m10 = x;
+ this.m11 = y;
+ this.m12 = z;
+ this.m13 = w;
+ break;
+
+ case 2:
+ this.m20 = x;
+ this.m21 = y;
+ this.m22 = z;
+ this.m23 = w;
+ break;
+
+ case 3:
+ this.m30 = x;
+ this.m31 = y;
+ this.m32 = z;
+ this.m33 = w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4"));
+
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix4d to the Vector provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, Vector4d v)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v.x;
+ this.m01 = v.y;
+ this.m02 = v.z;
+ this.m03 = v.w;
+ break;
+
+ case 1:
+ this.m10 = v.x;
+ this.m11 = v.y;
+ this.m12 = v.z;
+ this.m13 = v.w;
+ break;
+
+ case 2:
+ this.m20 = v.x;
+ this.m21 = v.y;
+ this.m22 = v.z;
+ this.m23 = v.w;
+ break;
+
+ case 3:
+ this.m30 = v.x;
+ this.m31 = v.y;
+ this.m32 = v.z;
+ this.m33 = v.w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix4d to the four values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, double v[])
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v[0];
+ this.m01 = v[1];
+ this.m02 = v[2];
+ this.m03 = v[3];
+ break;
+
+ case 1:
+ this.m10 = v[0];
+ this.m11 = v[1];
+ this.m12 = v[2];
+ this.m13 = v[3];
+ break;
+
+ case 2:
+ this.m20 = v[0];
+ this.m21 = v[1];
+ this.m22 = v[2];
+ this.m23 = v[3];
+ break;
+
+ case 3:
+ this.m30 = v[0];
+ this.m31 = v[1];
+ this.m32 = v[2];
+ this.m33 = v[3];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix4d to the four values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param x the first row element
+ * @param y the second row element
+ * @param z the third row element
+ * @param w the fourth row element
+ */
+ public final void setColumn(int column, double x, double y, double z, double w)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = x;
+ this.m10 = y;
+ this.m20 = z;
+ this.m30 = w;
+ break;
+
+ case 1:
+ this.m01 = x;
+ this.m11 = y;
+ this.m21 = z;
+ this.m31 = w;
+ break;
+
+ case 2:
+ this.m02 = x;
+ this.m12 = y;
+ this.m22 = z;
+ this.m32 = w;
+ break;
+
+ case 3:
+ this.m03 = x;
+ this.m13 = y;
+ this.m23 = z;
+ this.m33 = w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix4d to the vector provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, Vector4d v)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v.x;
+ this.m10 = v.y;
+ this.m20 = v.z;
+ this.m30 = v.w;
+ break;
+
+ case 1:
+ this.m01 = v.x;
+ this.m11 = v.y;
+ this.m21 = v.z;
+ this.m31 = v.w;
+ break;
+
+ case 2:
+ this.m02 = v.x;
+ this.m12 = v.y;
+ this.m22 = v.z;
+ this.m32 = v.w;
+ break;
+
+ case 3:
+ this.m03 = v.x;
+ this.m13 = v.y;
+ this.m23 = v.z;
+ this.m33 = v.w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix4d to the four values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, double v[])
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v[0];
+ this.m10 = v[1];
+ this.m20 = v[2];
+ this.m30 = v[3];
+ break;
+
+ case 1:
+ this.m01 = v[0];
+ this.m11 = v[1];
+ this.m21 = v[2];
+ this.m31 = v[3];
+ break;
+
+ case 2:
+ this.m02 = v[0];
+ this.m12 = v[1];
+ this.m22 = v[2];
+ this.m32 = v[3];
+ break;
+
+ case 3:
+ this.m03 = v[0];
+ this.m13 = v[1];
+ this.m23 = v[2];
+ this.m33 = v[3];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7"));
+ }
+ }
+
+ /**
+ * Adds a scalar to each component of this matrix.
+ * @param scalar the scalar adder
+ */
+ public final void add(double scalar)
+ {
+ m00 += scalar;
+ m01 += scalar;
+ m02 += scalar;
+ m03 += scalar;
+ m10 += scalar;
+ m11 += scalar;
+ m12 += scalar;
+ m13 += scalar;
+ m20 += scalar;
+ m21 += scalar;
+ m22 += scalar;
+ m23 += scalar;
+ m30 += scalar;
+ m31 += scalar;
+ m32 += scalar;
+ m33 += scalar;
+ }
+
+ /**
+ * Adds a scalar to each component of the matrix m1 and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar adder
+ * @param m1 the original matrix values
+ */
+ public final void add(double scalar, Matrix4d m1)
+ {
+ this.m00 = m1.m00 + scalar;
+ this.m01 = m1.m01 + scalar;
+ this.m02 = m1.m02 + scalar;
+ this.m03 = m1.m03 + scalar;
+ this.m10 = m1.m10 + scalar;
+ this.m11 = m1.m11 + scalar;
+ this.m12 = m1.m12 + scalar;
+ this.m13 = m1.m13 + scalar;
+ this.m20 = m1.m20 + scalar;
+ this.m21 = m1.m21 + scalar;
+ this.m22 = m1.m22 + scalar;
+ this.m23 = m1.m23 + scalar;
+ this.m30 = m1.m30 + scalar;
+ this.m31 = m1.m31 + scalar;
+ this.m32 = m1.m32 + scalar;
+ this.m33 = m1.m33 + scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void add(Matrix4d m1, Matrix4d m2)
+ {
+ this.m00 = m1.m00 + m2.m00;
+ this.m01 = m1.m01 + m2.m01;
+ this.m02 = m1.m02 + m2.m02;
+ this.m03 = m1.m03 + m2.m03;
+
+ this.m10 = m1.m10 + m2.m10;
+ this.m11 = m1.m11 + m2.m11;
+ this.m12 = m1.m12 + m2.m12;
+ this.m13 = m1.m13 + m2.m13;
+
+ this.m20 = m1.m20 + m2.m20;
+ this.m21 = m1.m21 + m2.m21;
+ this.m22 = m1.m22 + m2.m22;
+ this.m23 = m1.m23 + m2.m23;
+
+ this.m30 = m1.m30 + m2.m30;
+ this.m31 = m1.m31 + m2.m31;
+ this.m32 = m1.m32 + m2.m32;
+ this.m33 = m1.m33 + m2.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to sum of itself and matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void add(Matrix4d m1)
+ {
+ this.m00 += m1.m00;
+ this.m01 += m1.m01;
+ this.m02 += m1.m02;
+ this.m03 += m1.m03;
+
+ this.m10 += m1.m10;
+ this.m11 += m1.m11;
+ this.m12 += m1.m12;
+ this.m13 += m1.m13;
+
+ this.m20 += m1.m20;
+ this.m21 += m1.m21;
+ this.m22 += m1.m22;
+ this.m23 += m1.m23;
+
+ this.m30 += m1.m30;
+ this.m31 += m1.m31;
+ this.m32 += m1.m32;
+ this.m33 += m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix difference
+ * of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void sub(Matrix4d m1, Matrix4d m2)
+ {
+ this.m00 = m1.m00 - m2.m00;
+ this.m01 = m1.m01 - m2.m01;
+ this.m02 = m1.m02 - m2.m02;
+ this.m03 = m1.m03 - m2.m03;
+
+ this.m10 = m1.m10 - m2.m10;
+ this.m11 = m1.m11 - m2.m11;
+ this.m12 = m1.m12 - m2.m12;
+ this.m13 = m1.m13 - m2.m13;
+
+ this.m20 = m1.m20 - m2.m20;
+ this.m21 = m1.m21 - m2.m21;
+ this.m22 = m1.m22 - m2.m22;
+ this.m23 = m1.m23 - m2.m23;
+
+ this.m30 = m1.m30 - m2.m30;
+ this.m31 = m1.m31 - m2.m31;
+ this.m32 = m1.m32 - m2.m32;
+ this.m33 = m1.m33 - m2.m33;
+ }
+
+
+ /**
+ * Sets the value of this matrix to the matrix difference of itself
+ * and matrix m1 (this = this - m1).
+ * @param m1 the other matrix
+ */
+ public final void sub(Matrix4d m1)
+ {
+ this.m00 -= m1.m00;
+ this.m01 -= m1.m01;
+ this.m02 -= m1.m02;
+ this.m03 -= m1.m03;
+
+ this.m10 -= m1.m10;
+ this.m11 -= m1.m11;
+ this.m12 -= m1.m12;
+ this.m13 -= m1.m13;
+
+ this.m20 -= m1.m20;
+ this.m21 -= m1.m21;
+ this.m22 -= m1.m22;
+ this.m23 -= m1.m23;
+
+ this.m30 -= m1.m30;
+ this.m31 -= m1.m31;
+ this.m32 -= m1.m32;
+ this.m33 -= m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to its transpose.
+ */
+ public final void transpose()
+ {
+ double temp;
+
+ temp = this.m10;
+ this.m10 = this.m01;
+ this.m01 = temp;
+
+ temp = this.m20;
+ this.m20 = this.m02;
+ this.m02 = temp;
+
+ temp = this.m30;
+ this.m30 = this.m03;
+ this.m03 = temp;
+
+ temp = this.m21;
+ this.m21 = this.m12;
+ this.m12 = temp;
+
+ temp = this.m31;
+ this.m31 = this.m13;
+ this.m13 = temp;
+
+ temp = this.m32;
+ this.m32 = this.m23;
+ this.m23 = temp;
+ }
+
+ /**
+ * Sets the value of this matrix to the transpose of the argument matrix
+ * @param m1 the matrix to be transposed
+ */
+ public final void transpose(Matrix4d m1)
+ {
+ if (this != m1) {
+ this.m00 = m1.m00;
+ this.m01 = m1.m10;
+ this.m02 = m1.m20;
+ this.m03 = m1.m30;
+
+ this.m10 = m1.m01;
+ this.m11 = m1.m11;
+ this.m12 = m1.m21;
+ this.m13 = m1.m31;
+
+ this.m20 = m1.m02;
+ this.m21 = m1.m12;
+ this.m22 = m1.m22;
+ this.m23 = m1.m32;
+
+ this.m30 = m1.m03;
+ this.m31 = m1.m13;
+ this.m32 = m1.m23;
+ this.m33 = m1.m33;
+ } else
+ this.transpose();
+ }
+
+ /**
+ * Sets the values in this Matrix4d equal to the row-major
+ * array parameter (ie, the first four elements of the
+ * array will be copied into the first row of this matrix, etc.).
+ * @param m the double precision array of length 16
+ */
+ public final void set(double[] m)
+ {
+ m00 = m[0];
+ m01 = m[1];
+ m02 = m[2];
+ m03 = m[3];
+ m10 = m[4];
+ m11 = m[5];
+ m12 = m[6];
+ m13 = m[7];
+ m20 = m[8];
+ m21 = m[9];
+ m22 = m[10];
+ m23 = m[11];
+ m30 = m[12];
+ m31 = m[13];
+ m32 = m[14];
+ m33 = m[15];
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the single precision Matrix3f argument; the other
+ * elements of this matrix are initialized as if this were an identity
+ * matrix (i.e., affine matrix with no translational component).
+ * @param m1 the double precision 3x3 matrix
+ */
+ public final void set(Matrix3f m1)
+ {
+ m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0;
+ m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0;
+ m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0;
+ m30 = 0.0; m31 = 0.0 ; m32 = 0.0 ; m33 = 1.0;
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the double precision Matrix3d argument; the other
+ * elements of this matrix are initialized as if this were an identity
+ * matrix (i.e., affine matrix with no translational component).
+ * @param m1 the double precision 3x3 matrix
+ */
+ public final void set(Matrix3d m1)
+ {
+ m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0;
+ m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0;
+ m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0;
+ m30 = 0.0; m31 = 0.0 ; m32 = 0.0 ; m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (double precision) quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4d q1)
+ {
+ this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ this.m03 = 0.0;
+ this.m13 = 0.0;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * double precision axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+
+ if( mag < EPS ) {
+ m00 = 1.0;
+ m01 = 0.0;
+ m02 = 0.0;
+
+ m10 = 0.0;
+ m11 = 1.0;
+ m12 = 0.0;
+
+ m20 = 0.0;
+ m21 = 0.0;
+ m22 = 1.0;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = ax * az;
+ double xy = ax * ay;
+ double yz = ay * az;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+
+ m03 = 0.0;
+ m13 = 0.0;
+ m23 = 0.0;
+
+ m30 = 0.0;
+ m31 = 0.0;
+ m32 = 0.0;
+ m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * single precision quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4f q1)
+ {
+ this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ this.m03 = 0.0;
+ this.m13 = 0.0;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * single precision axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+
+ if( mag < EPS ) {
+ m00 = 1.0;
+ m01 = 0.0;
+ m02 = 0.0;
+
+ m10 = 0.0;
+ m11 = 1.0;
+ m12 = 0.0;
+
+ m20 = 0.0;
+ m21 = 0.0;
+ m22 = 1.0;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin((double)a1.angle);
+ double cosTheta = Math.cos((double)a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = ax * az;
+ double xy = ax * ay;
+ double yz = ay * az;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+ m03 = 0.0;
+ m13 = 0.0;
+ m23 = 0.0;
+
+ m30 = 0.0;
+ m31 = 0.0;
+ m32 = 0.0;
+ m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed
+ * by the quaternion q1, the translation t1, and the scale s.
+ * @param q1 the rotation expressed as a quaternion
+ * @param t1 the translation
+ * @param s the scale value
+ */
+ public final void set(Quat4d q1, Vector3d t1, double s)
+ {
+ this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ this.m03 = t1.x;
+ this.m13 = t1.y;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed
+ * by the quaternion q1, the translation t1, and the scale s.
+ * @param q1 the rotation expressed as a quaternion
+ * @param t1 the translation
+ * @param s the scale value
+ */
+ public final void set(Quat4f q1, Vector3d t1, double s)
+ {
+ this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ this.m03 = t1.x;
+ this.m13 = t1.y;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed
+ * by the quaternion q1, the translation t1, and the scale s.
+ * @param q1 the rotation expressed as a quaternion
+ * @param t1 the translation
+ * @param s the scale value
+ */
+ public final void set(Quat4f q1, Vector3f t1, float s)
+ {
+ this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ this.m03 = t1.x;
+ this.m13 = t1.y;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to a copy of the
+ * passed matrix m1.
+ * @param m1 the matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+ this.m03 = m1.m03;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+ this.m13 = m1.m13;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ this.m23 = m1.m23;
+
+ this.m30 = m1.m30;
+ this.m31 = m1.m31;
+ this.m32 = m1.m32;
+ this.m33 = m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to a copy of the
+ * passed matrix m1.
+ * @param m1 the matrix to be copied
+ */
+ public final void set(Matrix4d m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+ this.m03 = m1.m03;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+ this.m13 = m1.m13;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ this.m23 = m1.m23;
+
+ this.m30 = m1.m30;
+ this.m31 = m1.m31;
+ this.m32 = m1.m32;
+ this.m33 = m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix inverse
+ * of the passed (user declared) matrix m1.
+ * @param m1 the matrix to be inverted
+ */
+ public final void invert(Matrix4d m1)
+ {
+
+ invertGeneral( m1);
+ }
+
+ /**
+ * Inverts this matrix in place.
+ */
+ public final void invert()
+ {
+ invertGeneral( this );
+ }
+
+ /**
+ * General invert routine. Inverts m1 and places the result in "this".
+ * Note that this routine handles both the "this" version and the
+ * non-"this" version.
+ *
+ * Also note that since this routine is slow anyway, we won't worry
+ * about allocating a little bit of garbage.
+ */
+ final void invertGeneral(Matrix4d m1) {
+ double result[] = new double[16];
+ int row_perm[] = new int[4];
+ int i, r, c;
+
+ // Use LU decomposition and backsubstitution code specifically
+ // for floating-point 4x4 matrices.
+ double[] tmp = new double[16]; // scratch matrix
+ // Copy source matrix to t1tmp
+ tmp[0] = m1.m00;
+ tmp[1] = m1.m01;
+ tmp[2] = m1.m02;
+ tmp[3] = m1.m03;
+
+ tmp[4] = m1.m10;
+ tmp[5] = m1.m11;
+ tmp[6] = m1.m12;
+ tmp[7] = m1.m13;
+
+ tmp[8] = m1.m20;
+ tmp[9] = m1.m21;
+ tmp[10] = m1.m22;
+ tmp[11] = m1.m23;
+
+ tmp[12] = m1.m30;
+ tmp[13] = m1.m31;
+ tmp[14] = m1.m32;
+ tmp[15] = m1.m33;
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(tmp, row_perm)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException(VecMathI18N.getString("Matrix4d10"));
+ }
+
+ // Perform back substitution on the identity matrix
+ for(i=0;i<16;i++) result[i] = 0.0;
+ result[0] = 1.0; result[5] = 1.0; result[10] = 1.0; result[15] = 1.0;
+ luBacksubstitution(tmp, row_perm, result);
+
+ this.m00 = result[0];
+ this.m01 = result[1];
+ this.m02 = result[2];
+ this.m03 = result[3];
+
+ this.m10 = result[4];
+ this.m11 = result[5];
+ this.m12 = result[6];
+ this.m13 = result[7];
+
+ this.m20 = result[8];
+ this.m21 = result[9];
+ this.m22 = result[10];
+ this.m23 = result[11];
+
+ this.m30 = result[12];
+ this.m31 = result[13];
+ this.m32 = result[14];
+ this.m33 = result[15];
+
+ }
+
+ /**
+ * Given a 4x4 array "matrix0", this function replaces it with the
+ * LU decomposition of a row-wise permutation of itself. The input
+ * parameters are "matrix0" and "dimen". The array "matrix0" is also
+ * an output parameter. The vector "row_perm[4]" is an output
+ * parameter that contains the row permutations resulting from partial
+ * pivoting. The output parameter "even_row_xchg" is 1 when the
+ * number of row exchanges is even, or -1 otherwise. Assumes data
+ * type is always double.
+ *
+ * This function is similar to luDecomposition, except that it
+ * is tuned specifically for 4x4 matrices.
+ *
+ * @return true if the matrix is nonsingular, or false otherwise.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 40-45.
+ //
+ static boolean luDecomposition(double[] matrix0,
+ int[] row_perm) {
+
+ double row_scale[] = new double[4];
+
+ // Determine implicit scaling information by looping over rows
+ {
+ int i, j;
+ int ptr, rs;
+ double big, temp;
+
+ ptr = 0;
+ rs = 0;
+
+ // For each row ...
+ i = 4;
+ while (i-- != 0) {
+ big = 0.0;
+
+ // For each column, find the largest element in the row
+ j = 4;
+ while (j-- != 0) {
+ temp = matrix0[ptr++];
+ temp = Math.abs(temp);
+ if (temp > big) {
+ big = temp;
+ }
+ }
+
+ // Is the matrix singular?
+ if (big == 0.0) {
+ return false;
+ }
+ row_scale[rs++] = 1.0 / big;
+ }
+ }
+
+ {
+ int j;
+ int mtx;
+
+ mtx = 0;
+
+ // For all columns, execute Crout's method
+ for (j = 0; j < 4; j++) {
+ int i, imax, k;
+ int target, p1, p2;
+ double sum, big, temp;
+
+ // Determine elements of upper diagonal matrix U
+ for (i = 0; i < j; i++) {
+ target = mtx + (4*i) + j;
+ sum = matrix0[target];
+ k = i;
+ p1 = mtx + (4*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 4;
+ }
+ matrix0[target] = sum;
+ }
+
+ // Search for largest pivot element and calculate
+ // intermediate elements of lower diagonal matrix L.
+ big = 0.0;
+ imax = -1;
+ for (i = j; i < 4; i++) {
+ target = mtx + (4*i) + j;
+ sum = matrix0[target];
+ k = j;
+ p1 = mtx + (4*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 4;
+ }
+ matrix0[target] = sum;
+
+ // Is this the best pivot so far?
+ if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
+ big = temp;
+ imax = i;
+ }
+ }
+
+ if (imax < 0) {
+ throw new RuntimeException(VecMathI18N.getString("Matrix4d11"));
+ }
+
+ // Is a row exchange necessary?
+ if (j != imax) {
+ // Yes: exchange rows
+ k = 4;
+ p1 = mtx + (4*imax);
+ p2 = mtx + (4*j);
+ while (k-- != 0) {
+ temp = matrix0[p1];
+ matrix0[p1++] = matrix0[p2];
+ matrix0[p2++] = temp;
+ }
+
+ // Record change in scale factor
+ row_scale[imax] = row_scale[j];
+ }
+
+ // Record row permutation
+ row_perm[j] = imax;
+
+ // Is the matrix singular
+ if (matrix0[(mtx + (4*j) + j)] == 0.0) {
+ return false;
+ }
+
+ // Divide elements of lower diagonal matrix L by pivot
+ if (j != (4-1)) {
+ temp = 1.0 / (matrix0[(mtx + (4*j) + j)]);
+ target = mtx + (4*(j+1)) + j;
+ i = 3 - j;
+ while (i-- != 0) {
+ matrix0[target] *= temp;
+ target += 4;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ /**
+ * Solves a set of linear equations. The input parameters "matrix1",
+ * and "row_perm" come from luDecompostionD4x4 and do not change
+ * here. The parameter "matrix2" is a set of column vectors assembled
+ * into a 4x4 matrix of floating-point values. The procedure takes each
+ * column of "matrix2" in turn and treats it as the right-hand side of the
+ * matrix equation Ax = LUx = b. The solution vector replaces the
+ * original column of the matrix.
+ *
+ * If "matrix2" is the identity matrix, the procedure replaces its contents
+ * with the inverse of the matrix from which "matrix1" was originally
+ * derived.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 44-45.
+ //
+ static void luBacksubstitution(double[] matrix1,
+ int[] row_perm,
+ double[] matrix2) {
+
+ int i, ii, ip, j, k;
+ int rp;
+ int cv, rv;
+
+ // rp = row_perm;
+ rp = 0;
+
+ // For each column vector of matrix2 ...
+ for (k = 0; k < 4; k++) {
+ // cv = &(matrix2[0][k]);
+ cv = k;
+ ii = -1;
+
+ // Forward substitution
+ for (i = 0; i < 4; i++) {
+ double sum;
+
+ ip = row_perm[rp+i];
+ sum = matrix2[cv+4*ip];
+ matrix2[cv+4*ip] = matrix2[cv+4*i];
+ if (ii >= 0) {
+ // rv = &(matrix1[i][0]);
+ rv = i*4;
+ for (j = ii; j <= i-1; j++) {
+ sum -= matrix1[rv+j] * matrix2[cv+4*j];
+ }
+ }
+ else if (sum != 0.0) {
+ ii = i;
+ }
+ matrix2[cv+4*i] = sum;
+ }
+
+ // Backsubstitution
+ // rv = &(matrix1[3][0]);
+ rv = 3*4;
+ matrix2[cv+4*3] /= matrix1[rv+3];
+
+ rv -= 4;
+ matrix2[cv+4*2] = (matrix2[cv+4*2] -
+ matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2];
+
+ rv -= 4;
+ matrix2[cv+4*1] = (matrix2[cv+4*1] -
+ matrix1[rv+2] * matrix2[cv+4*2] -
+ matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1];
+
+ rv -= 4;
+ matrix2[cv+4*0] = (matrix2[cv+4*0] -
+ matrix1[rv+1] * matrix2[cv+4*1] -
+ matrix1[rv+2] * matrix2[cv+4*2] -
+ matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0];
+ }
+ }
+
+ /**
+ * Computes the determinant of this matrix.
+ * @return the determinant of the matrix
+ */
+ public final double determinant()
+ {
+ double det;
+
+ // cofactor exapainsion along first row
+
+ det = m00*(m11*m22*m33+ m12*m23*m31 + m13*m21*m32
+ - m13*m22*m31 -m11*m23*m32 - m12*m21*m33);
+ det -= m01*(m10*m22*m33+ m12*m23*m30 + m13*m20*m32
+ - m13*m22*m30 -m10*m23*m32 - m12*m20*m33);
+ det += m02*(m10*m21*m33+ m11*m23*m30 + m13*m20*m31
+ - m13*m21*m30 -m10*m23*m31 - m11*m20*m33);
+ det -= m03*(m10*m21*m32+ m11*m22*m30 + m12*m20*m31
+ - m12*m21*m30 -m10*m22*m31 - m11*m20*m32);
+
+ return( det );
+ }
+
+ /**
+ * Sets the value of this matrix to a scale matrix with the
+ * passed scale amount.
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(double scale)
+ {
+ this.m00 = scale;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = scale;
+ this.m12 = 0.0;
+ this.m13 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = scale;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to a translate matrix by the
+ * passed translation value.
+ * @param v1 the translation amount
+ */
+ public final void set(Vector3d v1)
+ {
+ this.m00 = 1.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = v1.x;
+
+ this.m10 = 0.0;
+ this.m11 = 1.0;
+ this.m12 = 0.0;
+ this.m13 = v1.y;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 1.0;
+ this.m23 = v1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this transform to a scale and translation matrix;
+ * the scale is not applied to the translation and all of the matrix
+ * values are modified.
+ * @param scale the scale factor for the matrix
+ * @param v1 the translation amount
+ */
+ public final void set(double scale, Vector3d v1)
+ {
+ this.m00 = scale;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = v1.x;
+
+ this.m10 = 0.0;
+ this.m11 = scale;
+ this.m12 = 0.0;
+ this.m13 = v1.y;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = scale;
+ this.m23 = v1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this transform to a scale and translation matrix;
+ * the translation is scaled by the scale factor and all of the matrix
+ * values are modified.
+ * @param v1 the translation amount
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(Vector3d v1, double scale)
+ {
+ this.m00 = scale;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = scale*v1.x;
+
+ this.m10 = 0.0;
+ this.m11 = scale;
+ this.m12 = 0.0;
+ this.m13 = scale*v1.y;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = scale;
+ this.m23 = scale*v1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed by
+ * the rotation matrix m1, the translation t1, and the scale factor.
+ * The translation is not modified by the scale.
+ * @param m1 the rotation component
+ * @param t1 the translation component
+ * @param scale the scale component
+ */
+ public final void set(Matrix3f m1, Vector3f t1, float scale)
+ {
+ this.m00 = m1.m00*scale;
+ this.m01 = m1.m01*scale;
+ this.m02 = m1.m02*scale;
+ this.m03 = t1.x;
+
+ this.m10 = m1.m10*scale;
+ this.m11 = m1.m11*scale;
+ this.m12 = m1.m12*scale;
+ this.m13 = t1.y;
+
+ this.m20 = m1.m20*scale;
+ this.m21 = m1.m21*scale;
+ this.m22 = m1.m22*scale;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+
+ /**
+ * Sets the value of this matrix from the rotation expressed by
+ * the rotation matrix m1, the translation t1, and the scale factor.
+ * The translation is not modified by the scale.
+ * @param m1 the rotation component
+ * @param t1 the translation component
+ * @param scale the scale component
+ */
+ public final void set(Matrix3d m1, Vector3d t1, double scale)
+ {
+ this.m00 = m1.m00*scale;
+ this.m01 = m1.m01*scale;
+ this.m02 = m1.m02*scale;
+ this.m03 = t1.x;
+
+ this.m10 = m1.m10*scale;
+ this.m11 = m1.m11*scale;
+ this.m12 = m1.m12*scale;
+ this.m13 = t1.y;
+
+ this.m20 = m1.m20*scale;
+ this.m21 = m1.m21*scale;
+ this.m22 = m1.m22*scale;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Modifies the translational components of this matrix to the values
+ * of the Vector3d argument; the other values of this matrix are not
+ * modified.
+ * @param trans the translational component
+ */
+ public final void setTranslation(Vector3d trans)
+ {
+ m03 = trans.x;
+ m13 = trans.y;
+ m23 = trans.z;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter-clockwise rotation
+ * about the x axis.
+ * @param angle the angle to rotate about the X axis in radians
+ */
+ public final void rotX(double angle)
+ {
+ double sinAngle, cosAngle;
+
+ sinAngle = Math.sin(angle);
+ cosAngle = Math.cos(angle);
+
+ this.m00 = 1.0;
+ this.m01 = 0.0;
+ this.m02 = 0.0;
+ this.m03 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = cosAngle;
+ this.m12 = -sinAngle;
+ this.m13 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = sinAngle;
+ this.m22 = cosAngle;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter-clockwise rotation
+ * about the y axis.
+ * @param angle the angle to rotate about the Y axis in radians
+ */
+ public final void rotY(double angle)
+ {
+ double sinAngle, cosAngle;
+
+ sinAngle = Math.sin(angle);
+ cosAngle = Math.cos(angle);
+
+ this.m00 = cosAngle;
+ this.m01 = 0.0;
+ this.m02 = sinAngle;
+ this.m03 = 0.0;
+
+ this.m10 = 0.0;
+ this.m11 = 1.0;
+ this.m12 = 0.0;
+ this.m13 = 0.0;
+
+ this.m20 = -sinAngle;
+ this.m21 = 0.0;
+ this.m22 = cosAngle;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter-clockwise rotation
+ * about the z axis.
+ * @param angle the angle to rotate about the Z axis in radians
+ */
+ public final void rotZ(double angle)
+ {
+ double sinAngle, cosAngle;
+
+ sinAngle = Math.sin(angle);
+ cosAngle = Math.cos(angle);
+
+ this.m00 = cosAngle;
+ this.m01 = -sinAngle;
+ this.m02 = 0.0;
+ this.m03 = 0.0;
+
+ this.m10 = sinAngle;
+ this.m11 = cosAngle;
+ this.m12 = 0.0;
+ this.m13 = 0.0;
+
+ this.m20 = 0.0;
+ this.m21 = 0.0;
+ this.m22 = 1.0;
+ this.m23 = 0.0;
+
+ this.m30 = 0.0;
+ this.m31 = 0.0;
+ this.m32 = 0.0;
+ this.m33 = 1.0;
+ }
+
+ /**
+ * Multiplies each element of this matrix by a scalar.
+ * @param scalar the scalar multiplier.
+ */
+ public final void mul(double scalar)
+ {
+ m00 *= scalar;
+ m01 *= scalar;
+ m02 *= scalar;
+ m03 *= scalar;
+ m10 *= scalar;
+ m11 *= scalar;
+ m12 *= scalar;
+ m13 *= scalar;
+ m20 *= scalar;
+ m21 *= scalar;
+ m22 *= scalar;
+ m23 *= scalar;
+ m30 *= scalar;
+ m31 *= scalar;
+ m32 *= scalar;
+ m33 *= scalar;
+ }
+
+ /**
+ * Multiplies each element of matrix m1 by a scalar and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar multiplier
+ * @param m1 the original matrix
+ */
+ public final void mul(double scalar, Matrix4d m1)
+ {
+ this.m00 = m1.m00 * scalar;
+ this.m01 = m1.m01 * scalar;
+ this.m02 = m1.m02 * scalar;
+ this.m03 = m1.m03 * scalar;
+ this.m10 = m1.m10 * scalar;
+ this.m11 = m1.m11 * scalar;
+ this.m12 = m1.m12 * scalar;
+ this.m13 = m1.m13 * scalar;
+ this.m20 = m1.m20 * scalar;
+ this.m21 = m1.m21 * scalar;
+ this.m22 = m1.m22 * scalar;
+ this.m23 = m1.m23 * scalar;
+ this.m30 = m1.m30 * scalar;
+ this.m31 = m1.m31 * scalar;
+ this.m32 = m1.m32 * scalar;
+ this.m33 = m1.m33 * scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying itself
+ * with matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void mul(Matrix4d m1)
+ {
+ double m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23,
+ m30, m31, m32, m33; // vars for temp result matrix
+
+ m00 = this.m00*m1.m00 + this.m01*m1.m10 +
+ this.m02*m1.m20 + this.m03*m1.m30;
+ m01 = this.m00*m1.m01 + this.m01*m1.m11 +
+ this.m02*m1.m21 + this.m03*m1.m31;
+ m02 = this.m00*m1.m02 + this.m01*m1.m12 +
+ this.m02*m1.m22 + this.m03*m1.m32;
+ m03 = this.m00*m1.m03 + this.m01*m1.m13 +
+ this.m02*m1.m23 + this.m03*m1.m33;
+
+ m10 = this.m10*m1.m00 + this.m11*m1.m10 +
+ this.m12*m1.m20 + this.m13*m1.m30;
+ m11 = this.m10*m1.m01 + this.m11*m1.m11 +
+ this.m12*m1.m21 + this.m13*m1.m31;
+ m12 = this.m10*m1.m02 + this.m11*m1.m12 +
+ this.m12*m1.m22 + this.m13*m1.m32;
+ m13 = this.m10*m1.m03 + this.m11*m1.m13 +
+ this.m12*m1.m23 + this.m13*m1.m33;
+
+ m20 = this.m20*m1.m00 + this.m21*m1.m10 +
+ this.m22*m1.m20 + this.m23*m1.m30;
+ m21 = this.m20*m1.m01 + this.m21*m1.m11 +
+ this.m22*m1.m21 + this.m23*m1.m31;
+ m22 = this.m20*m1.m02 + this.m21*m1.m12 +
+ this.m22*m1.m22 + this.m23*m1.m32;
+ m23 = this.m20*m1.m03 + this.m21*m1.m13 +
+ this.m22*m1.m23 + this.m23*m1.m33;
+
+ m30 = this.m30*m1.m00 + this.m31*m1.m10 +
+ this.m32*m1.m20 + this.m33*m1.m30;
+ m31 = this.m30*m1.m01 + this.m31*m1.m11 +
+ this.m32*m1.m21 + this.m33*m1.m31;
+ m32 = this.m30*m1.m02 + this.m31*m1.m12 +
+ this.m32*m1.m22 + this.m33*m1.m32;
+ m33 = this.m30*m1.m03 + this.m31*m1.m13 +
+ this.m32*m1.m23 + this.m33*m1.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying
+ * the two argument matrices together.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void mul(Matrix4d m1, Matrix4d m2)
+ {
+ if (this != m1 && this != m2) {
+ // code for mat mul
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 +
+ m1.m02*m2.m20 + m1.m03*m2.m30;
+ this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 +
+ m1.m02*m2.m21 + m1.m03*m2.m31;
+ this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 +
+ m1.m02*m2.m22 + m1.m03*m2.m32;
+ this.m03 = m1.m00*m2.m03 + m1.m01*m2.m13 +
+ m1.m02*m2.m23 + m1.m03*m2.m33;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 +
+ m1.m12*m2.m20 + m1.m13*m2.m30;
+ this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 +
+ m1.m12*m2.m21 + m1.m13*m2.m31;
+ this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 +
+ m1.m12*m2.m22 + m1.m13*m2.m32;
+ this.m13 = m1.m10*m2.m03 + m1.m11*m2.m13 +
+ m1.m12*m2.m23 + m1.m13*m2.m33;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 +
+ m1.m22*m2.m20 + m1.m23*m2.m30;
+ this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 +
+ m1.m22*m2.m21 + m1.m23*m2.m31;
+ this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 +
+ m1.m22*m2.m22 + m1.m23*m2.m32;
+ this.m23 = m1.m20*m2.m03 + m1.m21*m2.m13 +
+ m1.m22*m2.m23 + m1.m23*m2.m33;
+
+ this.m30 = m1.m30*m2.m00 + m1.m31*m2.m10 +
+ m1.m32*m2.m20 + m1.m33*m2.m30;
+ this.m31 = m1.m30*m2.m01 + m1.m31*m2.m11 +
+ m1.m32*m2.m21 + m1.m33*m2.m31;
+ this.m32 = m1.m30*m2.m02 + m1.m31*m2.m12 +
+ m1.m32*m2.m22 + m1.m33*m2.m32;
+ this.m33 = m1.m30*m2.m03 + m1.m31*m2.m13 +
+ m1.m32*m2.m23 + m1.m33*m2.m33;
+ } else {
+ double m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23,
+ m30, m31, m32, m33; // vars for temp result matrix
+
+ // code for mat mul
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20 + m1.m03*m2.m30;
+ m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21 + m1.m03*m2.m31;
+ m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22 + m1.m03*m2.m32;
+ m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + m1.m02*m2.m23 + m1.m03*m2.m33;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20 + m1.m13*m2.m30;
+ m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21 + m1.m13*m2.m31;
+ m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22 + m1.m13*m2.m32;
+ m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + m1.m12*m2.m23 + m1.m13*m2.m33;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20 + m1.m23*m2.m30;
+ m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21 + m1.m23*m2.m31;
+ m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22 + m1.m23*m2.m32;
+ m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + m1.m22*m2.m23 + m1.m23*m2.m33;
+
+ m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + m1.m32*m2.m20 + m1.m33*m2.m30;
+ m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + m1.m32*m2.m21 + m1.m33*m2.m31;
+ m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + m1.m32*m2.m22 + m1.m33*m2.m32;
+ m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + m1.m32*m2.m23 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+
+ }
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times the transpose of matrix
+ * m2, and places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeBoth(Matrix4d m1, Matrix4d m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03;
+ this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13;
+ this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23;
+ this.m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03;
+ this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13;
+ this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23;
+ this.m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03;
+ this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13;
+ this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23;
+ this.m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33;
+
+ this.m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03;
+ this.m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13;
+ this.m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23;
+ this.m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33;
+ } else {
+ double m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23, // vars for temp result matrix
+ m30, m31, m32, m33;
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03;
+ m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13;
+ m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23;
+ m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03;
+ m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13;
+ m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23;
+ m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03;
+ m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13;
+ m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23;
+ m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33;
+
+ m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03;
+ m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13;
+ m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23;
+ m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ }
+
+
+
+ /**
+ * Multiplies matrix m1 times the transpose of matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeRight(Matrix4d m1, Matrix4d m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03;
+ this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13;
+ this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23;
+ this.m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03;
+ this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13;
+ this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23;
+ this.m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03;
+ this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13;
+ this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23;
+ this.m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33;
+
+ this.m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03;
+ this.m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13;
+ this.m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23;
+ this.m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33;
+ } else {
+ double m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23, // vars for temp result matrix
+ m30, m31, m32, m33;
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03;
+ m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13;
+ m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23;
+ m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03;
+ m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13;
+ m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23;
+ m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03;
+ m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13;
+ m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23;
+ m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33;
+
+ m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03;
+ m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13;
+ m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23;
+ m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+}
+
+
+ /**
+ * Multiplies the transpose of matrix m1 times matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeLeft(Matrix4d m1, Matrix4d m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30;
+ this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31;
+ this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32;
+ this.m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30;
+ this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31;
+ this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32;
+ this.m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30;
+ this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31;
+ this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32;
+ this.m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33;
+
+ this.m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30;
+ this.m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31;
+ this.m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32;
+ this.m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33;
+ } else {
+ double m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23, // vars for temp result matrix
+ m30, m31, m32, m33;
+
+
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30;
+ m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31;
+ m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32;
+ m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30;
+ m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31;
+ m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32;
+ m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30;
+ m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31;
+ m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32;
+ m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33;
+
+ m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30;
+ m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31;
+ m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32;
+ m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ }
+
+
+ /**
+ * Returns true if all of the data members of Matrix4d m1 are
+ * equal to the corresponding data members in this Matrix4d.
+ * @param m1 the matrix with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Matrix4d m1)
+ {
+ try {
+ return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02
+ && this.m03 == m1.m03 && this.m10 == m1.m10 && this.m11 == m1.m11
+ && this.m12 == m1.m12 && this.m13 == m1.m13 && this.m20 == m1.m20
+ && this.m21 == m1.m21 && this.m22 == m1.m22 && this.m23 == m1.m23
+ && this.m30 == m1.m30 && this.m31 == m1.m31 && this.m32 == m1.m32
+ && this.m33 == m1.m33);
+ }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Matrix4d and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Matrix4d.
+ * @param t1 the matrix with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Matrix4d m2 = (Matrix4d) t1;
+ return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02
+ && this.m03 == m2.m03 && this.m10 == m2.m10 && this.m11 == m2.m11
+ && this.m12 == m2.m12 && this.m13 == m2.m13 && this.m20 == m2.m20
+ && this.m21 == m2.m21 && this.m22 == m2.m22 && this.m23 == m2.m23
+ && this.m30 == m2.m30 && this.m31 == m2.m31 && this.m32 == m2.m32
+ && this.m33 == m2.m33);
+ }
+ catch (ClassCastException e1) { return false; }
+ catch (NullPointerException e2) { return false; }
+ }
+
+ /**
+ * @deprecated Use epsilonEquals(Matrix4d,double) instead
+ */
+ public boolean epsilonEquals(Matrix4d m1, float epsilon) {
+ return epsilonEquals(m1, (double)epsilon);
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this matrix
+ * and matrix m1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs(this.m(i,j) - m1.m(i,j)]
+ * @param m1 the matrix to be compared to this matrix
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(Matrix4d m1, double epsilon) {
+ double diff;
+
+ diff = m00 - m1.m00;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m01 - m1.m01;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m02 - m1.m02;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m03 - m1.m03;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m10 - m1.m10;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m11 - m1.m11;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m12 - m1.m12;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m13 - m1.m13;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m20 - m1.m20;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m21 - m1.m21;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m22 - m1.m22;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m23 - m1.m23;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m30 - m1.m30;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m31 - m1.m31;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m32 - m1.m32;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = m33 - m1.m33;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+ }
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Matrix4d objects with identical data values
+ * (i.e., Matrix4d.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + Double.doubleToLongBits(m00);
+ bits = 31L * bits + Double.doubleToLongBits(m01);
+ bits = 31L * bits + Double.doubleToLongBits(m02);
+ bits = 31L * bits + Double.doubleToLongBits(m03);
+ bits = 31L * bits + Double.doubleToLongBits(m10);
+ bits = 31L * bits + Double.doubleToLongBits(m11);
+ bits = 31L * bits + Double.doubleToLongBits(m12);
+ bits = 31L * bits + Double.doubleToLongBits(m13);
+ bits = 31L * bits + Double.doubleToLongBits(m20);
+ bits = 31L * bits + Double.doubleToLongBits(m21);
+ bits = 31L * bits + Double.doubleToLongBits(m22);
+ bits = 31L * bits + Double.doubleToLongBits(m23);
+ bits = 31L * bits + Double.doubleToLongBits(m30);
+ bits = 31L * bits + Double.doubleToLongBits(m31);
+ bits = 31L * bits + Double.doubleToLongBits(m32);
+ bits = 31L * bits + Double.doubleToLongBits(m33);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Transform the vector vec using this Matrix4d and place the
+ * result into vecOut.
+ * @param vec the double precision vector to be transformed
+ * @param vecOut the vector into which the transformed values are placed
+ */
+ public final void transform(Tuple4d vec, Tuple4d vecOut)
+ {
+ double x,y,z,w;
+ x = (m00*vec.x + m01*vec.y
+ + m02*vec.z + m03*vec.w);
+ y = (m10*vec.x + m11*vec.y
+ + m12*vec.z + m13*vec.w);
+ z = (m20*vec.x + m21*vec.y
+ + m22*vec.z + m23*vec.w);
+ vecOut.w = (m30*vec.x + m31*vec.y
+ + m32*vec.z + m33*vec.w);
+ vecOut.x = x;
+ vecOut.y = y;
+ vecOut.z = z;
+ }
+
+ /**
+ * Transform the vector vec using this Matrix4d and place the
+ * result back into vec.
+ * @param vec the double precision vector to be transformed
+ */
+ public final void transform(Tuple4d vec)
+ {
+ double x,y,z;
+
+ x = (m00*vec.x + m01*vec.y
+ + m02*vec.z + m03*vec.w);
+ y = (m10*vec.x + m11*vec.y
+ + m12*vec.z + m13*vec.w);
+ z = (m20*vec.x + m21*vec.y
+ + m22*vec.z + m23*vec.w);
+ vec.w = (m30*vec.x + m31*vec.y
+ + m32*vec.z + m33*vec.w);
+ vec.x = x;
+ vec.y = y;
+ vec.z = z;
+ }
+
+ /**
+ * Transform the vector vec using this Matrix4d and place the
+ * result into vecOut.
+ * @param vec the single precision vector to be transformed
+ * @param vecOut the vector into which the transformed values are placed
+ */
+ public final void transform(Tuple4f vec, Tuple4f vecOut)
+ {
+ float x,y,z;
+ x = (float) (m00*vec.x + m01*vec.y
+ + m02*vec.z + m03*vec.w);
+ y = (float) (m10*vec.x + m11*vec.y
+ + m12*vec.z + m13*vec.w);
+ z = (float) (m20*vec.x + m21*vec.y
+ + m22*vec.z + m23*vec.w);
+ vecOut.w = (float) (m30*vec.x + m31*vec.y
+ + m32*vec.z + m33*vec.w);
+ vecOut.x = x;
+ vecOut.y = y;
+ vecOut.z = z;
+ }
+
+ /**
+ * Transform the vector vec using this Transform and place the
+ * result back into vec.
+ * @param vec the single precision vector to be transformed
+ */
+ public final void transform(Tuple4f vec)
+ {
+ float x,y,z;
+
+ x = (float) (m00*vec.x + m01*vec.y
+ + m02*vec.z + m03*vec.w);
+ y = (float) (m10*vec.x + m11*vec.y
+ + m12*vec.z + m13*vec.w);
+ z = (float) (m20*vec.x + m21*vec.y
+ + m22*vec.z + m23*vec.w);
+ vec.w = (float) (m30*vec.x + m31*vec.y
+ + m32*vec.z + m33*vec.w);
+ vec.x = x;
+ vec.y = y;
+ vec.z = z;
+ }
+
+
+ /**
+ * Transforms the point parameter with this Matrix4d and
+ * places the result into pointOut. The fourth element of the
+ * point input parameter is assumed to be one.
+ * @param point the input point to be transformed.
+ * @param pointOut the transformed point
+ */
+ public final void transform(Point3d point, Point3d pointOut)
+ {
+ double x,y;
+ x = m00*point.x + m01*point.y + m02*point.z + m03;
+ y = m10*point.x + m11*point.y + m12*point.z + m13;
+ pointOut.z = m20*point.x + m21*point.y + m22*point.z + m23;
+ pointOut.x = x;
+ pointOut.y = y;
+
+ }
+
+
+ /**
+ * Transforms the point parameter with this Matrix4d and
+ * places the result back into point. The fourth element of the
+ * point input parameter is assumed to be one.
+ * @param point the input point to be transformed.
+ */
+ public final void transform(Point3d point)
+ {
+ double x, y;
+ x = m00*point.x + m01*point.y + m02*point.z + m03;
+ y = m10*point.x + m11*point.y + m12*point.z + m13;
+ point.z = m20*point.x + m21*point.y + m22*point.z + m23;
+ point.x = x;
+ point.y = y;
+ }
+
+
+ /**
+ * Transforms the point parameter with this Matrix4d and
+ * places the result into pointOut. The fourth element of the
+ * point input parameter is assumed to be one.
+ * @param point the input point to be transformed.
+ * @param pointOut the transformed point
+ */
+ public final void transform(Point3f point, Point3f pointOut)
+ {
+ float x,y;
+
+ x = (float) (m00*point.x + m01*point.y + m02*point.z + m03);
+ y = (float) (m10*point.x + m11*point.y + m12*point.z + m13);
+ pointOut.z = (float) (m20*point.x + m21*point.y + m22*point.z + m23);
+ pointOut.x = x;
+ pointOut.y = y;
+ }
+
+
+ /**
+ * Transforms the point parameter with this Matrix4d and
+ * places the result back into point. The fourth element of the
+ * point input parameter is assumed to be one.
+ * @param point the input point to be transformed.
+ */
+ public final void transform(Point3f point)
+ {
+ float x, y;
+ x = (float) (m00*point.x + m01*point.y + m02*point.z + m03);
+ y = (float) (m10*point.x + m11*point.y + m12*point.z + m13);
+ point.z = (float) (m20*point.x + m21*point.y + m22*point.z + m23);
+ point.x = x;
+ point.y = y;
+ }
+
+
+ /**
+ * Transforms the normal parameter by this Matrix4d and places the value
+ * into normalOut. The fourth element of the normal is assumed to be zero.
+ * @param normal the input normal to be transformed.
+ * @param normalOut the transformed normal
+ */
+ public final void transform(Vector3d normal, Vector3d normalOut)
+ {
+ double x,y;
+ x = m00*normal.x + m01*normal.y + m02*normal.z;
+ y = m10*normal.x + m11*normal.y + m12*normal.z;
+ normalOut.z = m20*normal.x + m21*normal.y + m22*normal.z;
+ normalOut.x = x;
+ normalOut.y = y;
+ }
+
+
+ /**
+ * Transforms the normal parameter by this transform and places the value
+ * back into normal. The fourth element of the normal is assumed to be zero.
+ * @param normal the input normal to be transformed.
+ */
+ public final void transform(Vector3d normal)
+ {
+ double x, y;
+
+ x = m00*normal.x + m01*normal.y + m02*normal.z;
+ y = m10*normal.x + m11*normal.y + m12*normal.z;
+ normal.z = m20*normal.x + m21*normal.y + m22*normal.z;
+ normal.x = x;
+ normal.y = y;
+ }
+
+
+ /**
+ * Transforms the normal parameter by this Matrix4d and places the value
+ * into normalOut. The fourth element of the normal is assumed to be zero.
+ * @param normal the input normal to be transformed.
+ * @param normalOut the transformed normal
+ */
+ public final void transform(Vector3f normal, Vector3f normalOut)
+ {
+ float x,y;
+ x = (float) (m00*normal.x + m01*normal.y + m02*normal.z);
+ y = (float) (m10*normal.x + m11*normal.y + m12*normal.z);
+ normalOut.z = (float) (m20*normal.x + m21*normal.y + m22*normal.z);
+ normalOut.x = x;
+ normalOut.y = y;
+ }
+
+
+ /**
+ * Transforms the normal parameter by this transform and places the value
+ * back into normal. The fourth element of the normal is assumed to be zero.
+ * @param normal the input normal to be transformed.
+ */
+ public final void transform(Vector3f normal)
+ {
+ float x, y;
+
+ x = (float) (m00*normal.x + m01*normal.y + m02*normal.z);
+ y = (float) (m10*normal.x + m11*normal.y + m12*normal.z);
+ normal.z = (float) (m20*normal.x + m21*normal.y + m22*normal.z);
+ normal.x = x;
+ normal.y = y;
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the double precision Matrix3d argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the passed rotation components,
+ * and then the scale is reapplied to the rotational components.
+ * @param m1 double precision 3x3 matrix
+ */
+ public final void setRotation( Matrix3d m1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = m1.m00*tmp_scale[0];
+ m01 = m1.m01*tmp_scale[1];
+ m02 = m1.m02*tmp_scale[2];
+
+ m10 = m1.m10*tmp_scale[0];
+ m11 = m1.m11*tmp_scale[1];
+ m12 = m1.m12*tmp_scale[2];
+
+ m20 = m1.m20*tmp_scale[0];
+ m21 = m1.m21*tmp_scale[1];
+ m22 = m1.m22*tmp_scale[2];
+
+ }
+
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the single precision Matrix3f argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the passed rotation components,
+ * and then the scale is reapplied to the rotational components.
+ * @param m1 single precision 3x3 matrix
+ */
+ public final void setRotation( Matrix3f m1)
+ {
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = m1.m00*tmp_scale[0];
+ m01 = m1.m01*tmp_scale[1];
+ m02 = m1.m02*tmp_scale[2];
+
+ m10 = m1.m10*tmp_scale[0];
+ m11 = m1.m11*tmp_scale[1];
+ m12 = m1.m12*tmp_scale[2];
+
+ m20 = m1.m20*tmp_scale[0];
+ m21 = m1.m21*tmp_scale[1];
+ m22 = m1.m22*tmp_scale[2];
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix equivalent values of the quaternion argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the matrix equivalent of the quaternion,
+ * and then the scale is reapplied to the rotational components.
+ * @param q1 the quaternion that specifies the rotation
+ */
+ public final void setRotation(Quat4f q1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (1.0 - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0];
+ m10 = (2.0*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0];
+ m20 = (2.0*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0];
+
+ m01 = (2.0*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1];
+ m11 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1];
+ m21 = (2.0*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1];
+
+ m02 = (2.0*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2];
+ m12 = (2.0*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2];
+ m22 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2];
+
+ }
+
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix equivalent values of the quaternion argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the matrix equivalent of the quaternion,
+ * and then the scale is reapplied to the rotational components.
+ * @param q1 the quaternion that specifies the rotation
+ */
+ public final void setRotation(Quat4d q1){
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (1.0 - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0];
+ m10 = (2.0*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0];
+ m20 = (2.0*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0];
+
+ m01 = (2.0*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1];
+ m11 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1];
+ m21 = (2.0*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1];
+
+ m02 = (2.0*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2];
+ m12 = (2.0*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2];
+ m22 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2];
+
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix equivalent values of the axis-angle argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the matrix equivalent of the axis-angle,
+ * and then the scale is reapplied to the rotational components.
+ * @param a1 the axis-angle to be converted (x, y, z, angle)
+ */
+ public final void setRotation(AxisAngle4d a1)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ double mag = 1.0/Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = a1.x * a1.z;
+ double xy = a1.x * a1.y;
+ double yz = a1.y * a1.z;
+
+ m00 = (t * ax * ax + cosTheta)*tmp_scale[0];
+ m01 = (t * xy - sinTheta * az)*tmp_scale[1];
+ m02 = (t * xz + sinTheta * ay)*tmp_scale[2];
+
+ m10 = (t * xy + sinTheta * az)*tmp_scale[0];
+ m11 = (t * ay * ay + cosTheta)*tmp_scale[1];
+ m12 = (t * yz - sinTheta * ax)*tmp_scale[2];
+
+ m20 = (t * xz - sinTheta * ay)*tmp_scale[0];
+ m21 = (t * yz + sinTheta * ax)*tmp_scale[1];
+ m22 = (t * az * az + cosTheta)*tmp_scale[2];
+
+ }
+
+ /**
+ * Sets this matrix to all zeros.
+ */
+ public final void setZero()
+ {
+ m00 = 0.0;
+ m01 = 0.0;
+ m02 = 0.0;
+ m03 = 0.0;
+ m10 = 0.0;
+ m11 = 0.0;
+ m12 = 0.0;
+ m13 = 0.0;
+ m20 = 0.0;
+ m21 = 0.0;
+ m22 = 0.0;
+ m23 = 0.0;
+ m30 = 0.0;
+ m31 = 0.0;
+ m32 = 0.0;
+ m33 = 0.0;
+ }
+
+ /**
+ * Negates the value of this matrix: this = -this.
+ */
+ public final void negate()
+ {
+ m00 = -m00;
+ m01 = -m01;
+ m02 = -m02;
+ m03 = -m03;
+ m10 = -m10;
+ m11 = -m11;
+ m12 = -m12;
+ m13 = -m13;
+ m20 = -m20;
+ m21 = -m21;
+ m22 = -m22;
+ m23 = -m23;
+ m30 = -m30;
+ m31 = -m31;
+ m32 = -m32;
+ m33 = -m33;
+ }
+
+ /**
+ * Sets the value of this matrix equal to the negation of
+ * of the Matrix4d parameter.
+ * @param m1 the source matrix
+ */
+ public final void negate(Matrix4d m1)
+ {
+ this.m00 = -m1.m00;
+ this.m01 = -m1.m01;
+ this.m02 = -m1.m02;
+ this.m03 = -m1.m03;
+ this.m10 = -m1.m10;
+ this.m11 = -m1.m11;
+ this.m12 = -m1.m12;
+ this.m13 = -m1.m13;
+ this.m20 = -m1.m20;
+ this.m21 = -m1.m21;
+ this.m22 = -m1.m22;
+ this.m23 = -m1.m23;
+ this.m30 = -m1.m30;
+ this.m31 = -m1.m31;
+ this.m32 = -m1.m32;
+ this.m33 = -m1.m33;
+ }
+ private final void getScaleRotate(double scales[], double rots[]) {
+ double[] tmp = new double[9]; // scratch matrix
+ tmp[0] = m00;
+ tmp[1] = m01;
+ tmp[2] = m02;
+
+ tmp[3] = m10;
+ tmp[4] = m11;
+ tmp[5] = m12;
+
+ tmp[6] = m20;
+ tmp[7] = m21;
+ tmp[8] = m22;
+
+ Matrix3d.compute_svd( tmp, scales, rots);
+
+ return;
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ Matrix4d m1 = null;
+ try {
+ m1 = (Matrix4d)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+
+ return m1;
+ }
+
+}
diff --git a/src/javax/vecmath/Matrix4f.java b/src/javax/vecmath/Matrix4f.java
new file mode 100644
index 0000000..395d209
--- /dev/null
+++ b/src/javax/vecmath/Matrix4f.java
@@ -0,0 +1,3245 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A single precision floating point 4 by 4 matrix.
+ * Primarily to support 3D rotations.
+ *
+ */
+public class Matrix4f implements java.io.Serializable, Cloneable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = -8405036035410109353L;
+
+ /**
+ * The first element of the first row.
+ */
+ public float m00;
+
+ /**
+ * The second element of the first row.
+ */
+ public float m01;
+
+ /**
+ * The third element of the first row.
+ */
+ public float m02;
+
+ /**
+ * The fourth element of the first row.
+ */
+ public float m03;
+
+ /**
+ * The first element of the second row.
+ */
+ public float m10;
+
+ /**
+ * The second element of the second row.
+ */
+ public float m11;
+
+ /**
+ * The third element of the second row.
+ */
+ public float m12;
+
+ /**
+ * The fourth element of the second row.
+ */
+ public float m13;
+
+ /**
+ * The first element of the third row.
+ */
+ public float m20;
+
+ /**
+ * The second element of the third row.
+ */
+ public float m21;
+
+ /**
+ * The third element of the third row.
+ */
+ public float m22;
+
+ /**
+ * The fourth element of the third row.
+ */
+ public float m23;
+
+ /**
+ * The first element of the fourth row.
+ */
+ public float m30;
+
+ /**
+ * The second element of the fourth row.
+ */
+ public float m31;
+
+ /**
+ * The third element of the fourth row.
+ */
+ public float m32;
+
+ /**
+ * The fourth element of the fourth row.
+ */
+ public float m33;
+ /*
+ double[] tmp = new double[9];
+ double[] tmp_scale = new double[3];
+ double[] tmp_rot = new double[9];
+ */
+ private static final double EPS = 1.0E-8;
+
+ /**
+ * Constructs and initializes a Matrix4f from the specified 16 values.
+ * @param m00 the [0][0] element
+ * @param m01 the [0][1] element
+ * @param m02 the [0][2] element
+ * @param m03 the [0][3] element
+ * @param m10 the [1][0] element
+ * @param m11 the [1][1] element
+ * @param m12 the [1][2] element
+ * @param m13 the [1][3] element
+ * @param m20 the [2][0] element
+ * @param m21 the [2][1] element
+ * @param m22 the [2][2] element
+ * @param m23 the [2][3] element
+ * @param m30 the [3][0] element
+ * @param m31 the [3][1] element
+ * @param m32 the [3][2] element
+ * @param m33 the [3][3] element
+ */
+ public Matrix4f(float m00, float m01, float m02, float m03,
+ float m10, float m11, float m12, float m13,
+ float m20, float m21, float m22, float m23,
+ float m30, float m31, float m32, float m33)
+ {
+ this.m00 = m00;
+ this.m01 = m01;
+ this.m02 = m02;
+ this.m03 = m03;
+
+ this.m10 = m10;
+ this.m11 = m11;
+ this.m12 = m12;
+ this.m13 = m13;
+
+ this.m20 = m20;
+ this.m21 = m21;
+ this.m22 = m22;
+ this.m23 = m23;
+
+ this.m30 = m30;
+ this.m31 = m31;
+ this.m32 = m32;
+ this.m33 = m33;
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4f from the specified 16
+ * element array. this.m00 =v[0], this.m01=v[1], etc.
+ * @param v the array of length 16 containing in order
+ */
+ public Matrix4f(float[] v)
+ {
+ this.m00 = v[ 0];
+ this.m01 = v[ 1];
+ this.m02 = v[ 2];
+ this.m03 = v[ 3];
+
+ this.m10 = v[ 4];
+ this.m11 = v[ 5];
+ this.m12 = v[ 6];
+ this.m13 = v[ 7];
+
+ this.m20 = v[ 8];
+ this.m21 = v[ 9];
+ this.m22 = v[10];
+ this.m23 = v[11];
+
+ this.m30 = v[12];
+ this.m31 = v[13];
+ this.m32 = v[14];
+ this.m33 = v[15];
+
+ }
+
+ /**
+ * Constructs and initializes a Matrix4f from the quaternion,
+ * translation, and scale values; the scale is applied only to the
+ * rotational components of the matrix (upper 3x3) and not to the
+ * translational components.
+ * @param q1 the quaternion value representing the rotational component
+ * @param t1 the translational component of the matrix
+ * @param s the scale value applied to the rotational components
+ */
+ public Matrix4f(Quat4f q1, Vector3f t1, float s)
+ {
+ m00 = (float)(s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z));
+ m10 = (float)(s*(2.0*(q1.x*q1.y + q1.w*q1.z)));
+ m20 = (float)(s*(2.0*(q1.x*q1.z - q1.w*q1.y)));
+
+ m01 = (float)(s*(2.0*(q1.x*q1.y - q1.w*q1.z)));
+ m11 = (float)(s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z));
+ m21 = (float)(s*(2.0*(q1.y*q1.z + q1.w*q1.x)));
+
+ m02 = (float)(s*(2.0*(q1.x*q1.z + q1.w*q1.y)));
+ m12 = (float)(s*(2.0*(q1.y*q1.z - q1.w*q1.x)));
+ m22 = (float)(s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y));
+
+ m03 = t1.x;
+ m13 = t1.y;
+ m23 = t1.z;
+
+ m30 = 0.0f;
+ m31 = 0.0f;
+ m32 = 0.0f;
+ m33 = 1.0f;
+
+ }
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix4d parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix4f(Matrix4d m1)
+ {
+ this.m00 = (float)m1.m00;
+ this.m01 = (float)m1.m01;
+ this.m02 = (float)m1.m02;
+ this.m03 = (float)m1.m03;
+
+ this.m10 = (float)m1.m10;
+ this.m11 = (float)m1.m11;
+ this.m12 = (float)m1.m12;
+ this.m13 = (float)m1.m13;
+
+ this.m20 = (float)m1.m20;
+ this.m21 = (float)m1.m21;
+ this.m22 = (float)m1.m22;
+ this.m23 = (float)m1.m23;
+
+ this.m30 = (float)m1.m30;
+ this.m31 = (float)m1.m31;
+ this.m32 = (float)m1.m32;
+ this.m33 = (float)m1.m33;
+
+ }
+
+
+ /**
+ * Constructs a new matrix with the same values as the
+ * Matrix4f parameter.
+ * @param m1 the source matrix
+ */
+ public Matrix4f(Matrix4f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+ this.m03 = m1.m03;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+ this.m13 = m1.m13;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ this.m23 = m1.m23;
+
+ this.m30 = m1.m30;
+ this.m31 = m1.m31;
+ this.m32 = m1.m32;
+ this.m33 = m1.m33;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Matrix4f from the rotation matrix,
+ * translation, and scale values; the scale is applied only to the
+ * rotational components of the matrix (upper 3x3) and not to the
+ * translational components of the matrix.
+ * @param m1 the rotation matrix representing the rotational components
+ * @param t1 the translational components of the matrix
+ * @param s the scale value applied to the rotational components
+ */
+ public Matrix4f(Matrix3f m1, Vector3f t1, float s)
+ {
+ this.m00 = m1.m00*s;
+ this.m01 = m1.m01*s;
+ this.m02 = m1.m02*s;
+ this.m03 = t1.x;
+
+ this.m10 = m1.m10*s;
+ this.m11 = m1.m11*s;
+ this.m12 = m1.m12*s;
+ this.m13 = t1.y;
+
+ this.m20 = m1.m20*s;
+ this.m21 = m1.m21*s;
+ this.m22 = m1.m22*s;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0f;
+ this.m31 = 0.0f;
+ this.m32 = 0.0f;
+ this.m33 = 1.0f;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Matrix4f to all zeros.
+ */
+ public Matrix4f()
+ {
+ this.m00 = (float) 0.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 0.0;
+ this.m12 = (float) 0.0;
+ this.m13 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 0.0;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 0.0;
+
+ }
+
+ /**
+ * Returns a string that contains the values of this Matrix4f.
+ * @return the String representation
+ */
+ public String toString() {
+ return
+ this.m00 + ", " + this.m01 + ", " + this.m02 + ", " + this.m03 + "\n" +
+ this.m10 + ", " + this.m11 + ", " + this.m12 + ", " + this.m13 + "\n" +
+ this.m20 + ", " + this.m21 + ", " + this.m22 + ", " + this.m23 + "\n" +
+ this.m30 + ", " + this.m31 + ", " + this.m32 + ", " + this.m33 + "\n";
+ }
+
+ /**
+ * Sets this Matrix4f to identity.
+ */
+ public final void setIdentity()
+ {
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+ this.m13 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the specified element of this matrix4f to the value provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param column the column number to be modified (zero indexed)
+ * @param value the new value
+ */
+ public final void setElement(int row, int column, float value)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ this.m00 = value;
+ break;
+ case 1:
+ this.m01 = value;
+ break;
+ case 2:
+ this.m02 = value;
+ break;
+ case 3:
+ this.m03 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f0"));
+ }
+ break;
+
+ case 1:
+ switch(column)
+ {
+ case 0:
+ this.m10 = value;
+ break;
+ case 1:
+ this.m11 = value;
+ break;
+ case 2:
+ this.m12 = value;
+ break;
+ case 3:
+ this.m13 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f0"));
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ this.m20 = value;
+ break;
+ case 1:
+ this.m21 = value;
+ break;
+ case 2:
+ this.m22 = value;
+ break;
+ case 3:
+ this.m23 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f0"));
+ }
+ break;
+
+ case 3:
+ switch(column)
+ {
+ case 0:
+ this.m30 = value;
+ break;
+ case 1:
+ this.m31 = value;
+ break;
+ case 2:
+ this.m32 = value;
+ break;
+ case 3:
+ this.m33 = value;
+ break;
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f0"));
+ }
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f0"));
+ }
+ }
+
+ /**
+ * Retrieves the value at the specified row and column of this matrix.
+ * @param row the row number to be retrieved (zero indexed)
+ * @param column the column number to be retrieved (zero indexed)
+ * @return the value at the indexed element
+ */
+ public final float getElement(int row, int column)
+ {
+ switch (row)
+ {
+ case 0:
+ switch(column)
+ {
+ case 0:
+ return(this.m00);
+ case 1:
+ return(this.m01);
+ case 2:
+ return(this.m02);
+ case 3:
+ return(this.m03);
+ default:
+ break;
+ }
+ break;
+ case 1:
+ switch(column)
+ {
+ case 0:
+ return(this.m10);
+ case 1:
+ return(this.m11);
+ case 2:
+ return(this.m12);
+ case 3:
+ return(this.m13);
+ default:
+ break;
+ }
+ break;
+
+ case 2:
+ switch(column)
+ {
+ case 0:
+ return(this.m20);
+ case 1:
+ return(this.m21);
+ case 2:
+ return(this.m22);
+ case 3:
+ return(this.m23);
+ default:
+ break;
+ }
+ break;
+
+ case 3:
+ switch(column)
+ {
+ case 0:
+ return(this.m30);
+ case 1:
+ return(this.m31);
+ case 2:
+ return(this.m32);
+ case 3:
+ return(this.m33);
+ default:
+ break;
+ }
+ break;
+
+ default:
+ break;
+ }
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f1"));
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the vector parameter.
+ * @param row the matrix row
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getRow(int row, Vector4f v) {
+ if( row == 0 ) {
+ v.x = m00;
+ v.y = m01;
+ v.z = m02;
+ v.w = m03;
+ } else if(row == 1) {
+ v.x = m10;
+ v.y = m11;
+ v.z = m12;
+ v.w = m13;
+ } else if(row == 2) {
+ v.x = m20;
+ v.y = m21;
+ v.z = m22;
+ v.w = m23;
+ } else if(row == 3) {
+ v.x = m30;
+ v.y = m31;
+ v.z = m32;
+ v.w = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f2"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified row into the array parameter.
+ * @param row the matrix row
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getRow(int row, float v[]) {
+ if( row == 0 ) {
+ v[0] = m00;
+ v[1] = m01;
+ v[2] = m02;
+ v[3] = m03;
+ } else if(row == 1) {
+ v[0] = m10;
+ v[1] = m11;
+ v[2] = m12;
+ v[3] = m13;
+ } else if(row == 2) {
+ v[0] = m20;
+ v[1] = m21;
+ v[2] = m22;
+ v[3] = m23;
+ } else if(row == 3) {
+ v[0] = m30;
+ v[1] = m31;
+ v[2] = m32;
+ v[3] = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f2"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the vector
+ * parameter.
+ * @param column the matrix column
+ * @param v the vector into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, Vector4f v) {
+ if( column == 0 ) {
+ v.x = m00;
+ v.y = m10;
+ v.z = m20;
+ v.w = m30;
+ } else if(column == 1) {
+ v.x = m01;
+ v.y = m11;
+ v.z = m21;
+ v.w = m31;
+ } else if(column == 2) {
+ v.x = m02;
+ v.y = m12;
+ v.z = m22;
+ v.w = m32;
+ } else if(column == 3) {
+ v.x = m03;
+ v.y = m13;
+ v.z = m23;
+ v.w = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f4"));
+ }
+
+ }
+
+ /**
+ * Copies the matrix values in the specified column into the array
+ * parameter.
+ * @param column the matrix column
+ * @param v the array into which the matrix row values will be copied
+ */
+ public final void getColumn(int column, float v[]) {
+ if( column == 0 ) {
+ v[0] = m00;
+ v[1] = m10;
+ v[2] = m20;
+ v[3] = m30;
+ } else if(column == 1) {
+ v[0] = m01;
+ v[1] = m11;
+ v[2] = m21;
+ v[3] = m31;
+ } else if(column == 2) {
+ v[0] = m02;
+ v[1] = m12;
+ v[2] = m22;
+ v[3] = m32;
+ } else if(column == 3) {
+ v[0] = m03;
+ v[1] = m13;
+ v[2] = m23;
+ v[3] = m33;
+ } else {
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f4"));
+ }
+
+ }
+
+
+ /**
+ * Sets the scale component of the current matrix by factoring
+ * out the current scale (by doing an SVD) from the rotational
+ * component and multiplying by the new scale.
+ * @param scale the new scale amount
+ */
+ public final void setScale(float scale){
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (float)(tmp_rot[0]*scale);
+ m01 = (float)(tmp_rot[1]*scale);
+ m02 = (float)(tmp_rot[2]*scale);
+
+ m10 = (float)(tmp_rot[3]*scale);
+ m11 = (float)(tmp_rot[4]*scale);
+ m12 = (float)(tmp_rot[5]*scale);
+
+ m20 = (float)(tmp_rot[6]*scale);
+ m21 = (float)(tmp_rot[7]*scale);
+ m22 = (float)(tmp_rot[8]*scale);
+
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Matrix3d parameter.
+ * @param m1 matrix into which the rotational component is placed
+ */
+ public final void get(Matrix3d m1){
+
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = tmp_rot[0];
+ m1.m01 = tmp_rot[1];
+ m1.m02 = tmp_rot[2];
+
+ m1.m10 = tmp_rot[3];
+ m1.m11 = tmp_rot[4];
+ m1.m12 = tmp_rot[5];
+
+ m1.m20 = tmp_rot[6];
+ m1.m21 = tmp_rot[7];
+ m1.m22 = tmp_rot[8];
+
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Matrix3f parameter.
+ * @param m1 matrix into which the rotational component is placed
+ */
+ public final void get(Matrix3f m1)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = (float)tmp_rot[0];
+ m1.m01 = (float)tmp_rot[1];
+ m1.m02 = (float)tmp_rot[2];
+
+ m1.m10 = (float)tmp_rot[3];
+ m1.m11 = (float)tmp_rot[4];
+ m1.m12 = (float)tmp_rot[5];
+
+ m1.m20 = (float)tmp_rot[6];
+ m1.m21 = (float)tmp_rot[7];
+ m1.m22 = (float)tmp_rot[8];
+
+ }
+
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * the rotation as a 3x3 matrix, the translation, and the scale.
+ * None of the matrix values are modified.
+ * @param m1 the normalized matrix representing the rotation
+ * @param t1 the translation component
+ * @return the scale component of this transform
+ */
+ public final float get(Matrix3f m1, Vector3f t1)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m1.m00 = (float)tmp_rot[0];
+ m1.m01 = (float)tmp_rot[1];
+ m1.m02 = (float)tmp_rot[2];
+
+ m1.m10 = (float)tmp_rot[3];
+ m1.m11 = (float)tmp_rot[4];
+ m1.m12 = (float)tmp_rot[5];
+
+ m1.m20 = (float)tmp_rot[6];
+ m1.m21 = (float)tmp_rot[7];
+ m1.m22 = (float)tmp_rot[8];
+
+ t1.x = m03;
+ t1.y = m13;
+ t1.z = m23;
+
+ return( (float)Matrix3d.max3( tmp_scale ));
+
+ }
+
+
+ /**
+ * Performs an SVD normalization of this matrix in order to acquire
+ * the normalized rotational component; the values are placed into
+ * the Quat4f parameter.
+ * @param q1 quaternion into which the rotation component is placed
+ */
+ public final void get(Quat4f q1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ double ww;
+
+ ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.w = (float)Math.sqrt(ww);
+ ww = 0.25/q1.w;
+ q1.x = (float)((tmp_rot[7] - tmp_rot[5])*ww);
+ q1.y = (float)((tmp_rot[2] - tmp_rot[6])*ww);
+ q1.z = (float)((tmp_rot[3] - tmp_rot[1])*ww);
+ return;
+ }
+
+ q1.w = 0.0f;
+ ww = -0.5*(tmp_rot[4] + tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.x = (float)Math.sqrt(ww);
+ ww = 0.5/q1.x;
+ q1.y = (float)(tmp_rot[3]*ww);
+ q1.z = (float)(tmp_rot[6]*ww);
+ return;
+ }
+
+ q1.x = 0.0f;
+ ww = 0.5*(1.0 - tmp_rot[8]);
+ if(!((ww<0?-ww:ww) < 1.0e-30)) {
+ q1.y = (float)(Math.sqrt(ww));
+ q1.z = (float)(tmp_rot[7]/(2.0*q1.y));
+ return;
+ }
+
+ q1.y = 0.0f;
+ q1.z = 1.0f;
+
+ }
+
+
+ /**
+ * Retrieves the translational components of this matrix.
+ * @param trans the vector that will receive the translational component
+ */
+ public final void get(Vector3f trans)
+ {
+ trans.x = m03;
+ trans.y = m13;
+ trans.z = m23;
+ }
+
+ /**
+ * Gets the upper 3x3 values of this matrix and places them into
+ * the matrix m1.
+ * @param m1 the matrix that will hold the values
+ */
+ public final void getRotationScale(Matrix3f m1)
+ {
+ m1.m00 = m00; m1.m01 = m01; m1.m02 = m02;
+ m1.m10 = m10; m1.m11 = m11; m1.m12 = m12;
+ m1.m20 = m20; m1.m21 = m21; m1.m22 = m22;
+ }
+
+ /**
+ * Performs an SVD normalization of this matrix to calculate
+ * and return the uniform scale factor. If the matrix has non-uniform
+ * scale factors, the largest of the x, y, and z scale factors will
+ * be returned. This matrix is not modified.
+ * @return the scale factor of this matrix
+ */
+ public final float getScale()
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ return( (float)Matrix3d.max3( tmp_scale ));
+
+ }
+
+
+ /**
+ * Replaces the upper 3x3 matrix values of this matrix with the
+ * values in the matrix m1.
+ * @param m1 the matrix that will be the new upper 3x3
+ */
+ public final void setRotationScale(Matrix3f m1)
+ {
+ m00 = m1.m00; m01 = m1.m01; m02 = m1.m02;
+ m10 = m1.m10; m11 = m1.m11; m12 = m1.m12;
+ m20 = m1.m20; m21 = m1.m21; m22 = m1.m22;
+ }
+
+
+ /**
+ * Sets the specified row of this matrix4f to the four values provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param x the first column element
+ * @param y the second column element
+ * @param z the third column element
+ * @param w the fourth column element
+ */
+ public final void setRow(int row, float x, float y, float z, float w)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = x;
+ this.m01 = y;
+ this.m02 = z;
+ this.m03 = w;
+ break;
+
+ case 1:
+ this.m10 = x;
+ this.m11 = y;
+ this.m12 = z;
+ this.m13 = w;
+ break;
+
+ case 2:
+ this.m20 = x;
+ this.m21 = y;
+ this.m22 = z;
+ this.m23 = w;
+ break;
+
+ case 3:
+ this.m30 = x;
+ this.m31 = y;
+ this.m32 = z;
+ this.m33 = w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix4f to the Vector provided.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, Vector4f v)
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v.x;
+ this.m01 = v.y;
+ this.m02 = v.z;
+ this.m03 = v.w;
+ break;
+
+ case 1:
+ this.m10 = v.x;
+ this.m11 = v.y;
+ this.m12 = v.z;
+ this.m13 = v.w;
+ break;
+
+ case 2:
+ this.m20 = v.x;
+ this.m21 = v.y;
+ this.m22 = v.z;
+ this.m23 = v.w;
+ break;
+
+ case 3:
+ this.m30 = v.x;
+ this.m31 = v.y;
+ this.m32 = v.z;
+ this.m33 = v.w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f6"));
+ }
+ }
+
+ /**
+ * Sets the specified row of this matrix4f to the four values provided
+ * in the passed array.
+ * @param row the row number to be modified (zero indexed)
+ * @param v the replacement row
+ */
+ public final void setRow(int row, float v[])
+ {
+ switch (row) {
+ case 0:
+ this.m00 = v[0];
+ this.m01 = v[1];
+ this.m02 = v[2];
+ this.m03 = v[3];
+ break;
+
+ case 1:
+ this.m10 = v[0];
+ this.m11 = v[1];
+ this.m12 = v[2];
+ this.m13 = v[3];
+ break;
+
+ case 2:
+ this.m20 = v[0];
+ this.m21 = v[1];
+ this.m22 = v[2];
+ this.m23 = v[3];
+ break;
+
+ case 3:
+ this.m30 = v[0];
+ this.m31 = v[1];
+ this.m32 = v[2];
+ this.m33 = v[3];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f6"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix4f to the four values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param x the first row element
+ * @param y the second row element
+ * @param z the third row element
+ * @param w the fourth row element
+ */
+ public final void setColumn(int column, float x, float y, float z, float w)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = x;
+ this.m10 = y;
+ this.m20 = z;
+ this.m30 = w;
+ break;
+
+ case 1:
+ this.m01 = x;
+ this.m11 = y;
+ this.m21 = z;
+ this.m31 = w;
+ break;
+
+ case 2:
+ this.m02 = x;
+ this.m12 = y;
+ this.m22 = z;
+ this.m32 = w;
+ break;
+
+ case 3:
+ this.m03 = x;
+ this.m13 = y;
+ this.m23 = z;
+ this.m33 = w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix4f to the vector provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, Vector4f v)
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v.x;
+ this.m10 = v.y;
+ this.m20 = v.z;
+ this.m30 = v.w;
+ break;
+
+ case 1:
+ this.m01 = v.x;
+ this.m11 = v.y;
+ this.m21 = v.z;
+ this.m31 = v.w;
+ break;
+
+ case 2:
+ this.m02 = v.x;
+ this.m12 = v.y;
+ this.m22 = v.z;
+ this.m32 = v.w;
+ break;
+
+ case 3:
+ this.m03 = v.x;
+ this.m13 = v.y;
+ this.m23 = v.z;
+ this.m33 = v.w;
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f9"));
+ }
+ }
+
+ /**
+ * Sets the specified column of this matrix4f to the four values provided.
+ * @param column the column number to be modified (zero indexed)
+ * @param v the replacement column
+ */
+ public final void setColumn(int column, float v[])
+ {
+ switch (column) {
+ case 0:
+ this.m00 = v[0];
+ this.m10 = v[1];
+ this.m20 = v[2];
+ this.m30 = v[3];
+ break;
+
+ case 1:
+ this.m01 = v[0];
+ this.m11 = v[1];
+ this.m21 = v[2];
+ this.m31 = v[3];
+ break;
+
+ case 2:
+ this.m02 = v[0];
+ this.m12 = v[1];
+ this.m22 = v[2];
+ this.m32 = v[3];
+ break;
+
+ case 3:
+ this.m03 = v[0];
+ this.m13 = v[1];
+ this.m23 = v[2];
+ this.m33 = v[3];
+ break;
+
+ default:
+ throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4f9"));
+ }
+ }
+
+ /**
+ * Adds a scalar to each component of this matrix.
+ * @param scalar the scalar adder
+ */
+ public final void add(float scalar)
+ {
+ m00 += scalar;
+ m01 += scalar;
+ m02 += scalar;
+ m03 += scalar;
+ m10 += scalar;
+ m11 += scalar;
+ m12 += scalar;
+ m13 += scalar;
+ m20 += scalar;
+ m21 += scalar;
+ m22 += scalar;
+ m23 += scalar;
+ m30 += scalar;
+ m31 += scalar;
+ m32 += scalar;
+ m33 += scalar;
+ }
+
+ /**
+ * Adds a scalar to each component of the matrix m1 and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar adder
+ * @param m1 the original matrix values
+ */
+ public final void add(float scalar, Matrix4f m1)
+ {
+ this.m00 = m1.m00 + scalar;
+ this.m01 = m1.m01 + scalar;
+ this.m02 = m1.m02 + scalar;
+ this.m03 = m1.m03 + scalar;
+ this.m10 = m1.m10 + scalar;
+ this.m11 = m1.m11 + scalar;
+ this.m12 = m1.m12 + scalar;
+ this.m13 = m1.m13 + scalar;
+ this.m20 = m1.m20 + scalar;
+ this.m21 = m1.m21 + scalar;
+ this.m22 = m1.m22 + scalar;
+ this.m23 = m1.m23 + scalar;
+ this.m30 = m1.m30 + scalar;
+ this.m31 = m1.m31 + scalar;
+ this.m32 = m1.m32 + scalar;
+ this.m33 = m1.m33 + scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix sum of matrices m1 and m2.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void add(Matrix4f m1, Matrix4f m2)
+ {
+ this.m00 = m1.m00 + m2.m00;
+ this.m01 = m1.m01 + m2.m01;
+ this.m02 = m1.m02 + m2.m02;
+ this.m03 = m1.m03 + m2.m03;
+
+ this.m10 = m1.m10 + m2.m10;
+ this.m11 = m1.m11 + m2.m11;
+ this.m12 = m1.m12 + m2.m12;
+ this.m13 = m1.m13 + m2.m13;
+
+ this.m20 = m1.m20 + m2.m20;
+ this.m21 = m1.m21 + m2.m21;
+ this.m22 = m1.m22 + m2.m22;
+ this.m23 = m1.m23 + m2.m23;
+
+ this.m30 = m1.m30 + m2.m30;
+ this.m31 = m1.m31 + m2.m31;
+ this.m32 = m1.m32 + m2.m32;
+ this.m33 = m1.m33 + m2.m33;
+ }
+
+
+ /**
+ * Sets the value of this matrix to the sum of itself and matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void add(Matrix4f m1)
+ {
+ this.m00 += m1.m00;
+ this.m01 += m1.m01;
+ this.m02 += m1.m02;
+ this.m03 += m1.m03;
+
+ this.m10 += m1.m10;
+ this.m11 += m1.m11;
+ this.m12 += m1.m12;
+ this.m13 += m1.m13;
+
+ this.m20 += m1.m20;
+ this.m21 += m1.m21;
+ this.m22 += m1.m22;
+ this.m23 += m1.m23;
+
+ this.m30 += m1.m30;
+ this.m31 += m1.m31;
+ this.m32 += m1.m32;
+ this.m33 += m1.m33;
+ }
+
+ /**
+ * Performs an element-by-element subtraction of matrix m2 from
+ * matrix m1 and places the result into matrix this (this =
+ * m2 - m1).
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void sub(Matrix4f m1, Matrix4f m2)
+ {
+ this.m00 = m1.m00 - m2.m00;
+ this.m01 = m1.m01 - m2.m01;
+ this.m02 = m1.m02 - m2.m02;
+ this.m03 = m1.m03 - m2.m03;
+
+ this.m10 = m1.m10 - m2.m10;
+ this.m11 = m1.m11 - m2.m11;
+ this.m12 = m1.m12 - m2.m12;
+ this.m13 = m1.m13 - m2.m13;
+
+ this.m20 = m1.m20 - m2.m20;
+ this.m21 = m1.m21 - m2.m21;
+ this.m22 = m1.m22 - m2.m22;
+ this.m23 = m1.m23 - m2.m23;
+
+ this.m30 = m1.m30 - m2.m30;
+ this.m31 = m1.m31 - m2.m31;
+ this.m32 = m1.m32 - m2.m32;
+ this.m33 = m1.m33 - m2.m33;
+ }
+
+ /**
+ * Sets this matrix to the matrix difference of itself and
+ * matrix m1 (this = this - m1).
+ * @param m1 the other matrix
+ */
+ public final void sub(Matrix4f m1)
+ {
+ this.m00 -= m1.m00;
+ this.m01 -= m1.m01;
+ this.m02 -= m1.m02;
+ this.m03 -= m1.m03;
+
+ this.m10 -= m1.m10;
+ this.m11 -= m1.m11;
+ this.m12 -= m1.m12;
+ this.m13 -= m1.m13;
+
+ this.m20 -= m1.m20;
+ this.m21 -= m1.m21;
+ this.m22 -= m1.m22;
+ this.m23 -= m1.m23;
+
+ this.m30 -= m1.m30;
+ this.m31 -= m1.m31;
+ this.m32 -= m1.m32;
+ this.m33 -= m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to its transpose in place.
+ */
+ public final void transpose()
+ {
+ float temp;
+
+ temp = this.m10;
+ this.m10 = this.m01;
+ this.m01 = temp;
+
+ temp = this.m20;
+ this.m20 = this.m02;
+ this.m02 = temp;
+
+ temp = this.m30;
+ this.m30 = this.m03;
+ this.m03 = temp;
+
+ temp = this.m21;
+ this.m21 = this.m12;
+ this.m12 = temp;
+
+ temp = this.m31;
+ this.m31 = this.m13;
+ this.m13 = temp;
+
+ temp = this.m32;
+ this.m32 = this.m23;
+ this.m23 = temp;
+ }
+
+ /**
+ * Sets the value of this matrix to the transpose of the argument matrix.
+ * @param m1 the matrix to be transposed
+ */
+ public final void transpose(Matrix4f m1)
+ {
+ if (this != m1) {
+ this.m00 = m1.m00;
+ this.m01 = m1.m10;
+ this.m02 = m1.m20;
+ this.m03 = m1.m30;
+
+ this.m10 = m1.m01;
+ this.m11 = m1.m11;
+ this.m12 = m1.m21;
+ this.m13 = m1.m31;
+
+ this.m20 = m1.m02;
+ this.m21 = m1.m12;
+ this.m22 = m1.m22;
+ this.m23 = m1.m32;
+
+ this.m30 = m1.m03;
+ this.m31 = m1.m13;
+ this.m32 = m1.m23;
+ this.m33 = m1.m33;
+ } else
+ this.transpose();
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * single precision quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4f q1)
+ {
+ this.m00 = (1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z);
+ this.m10 = (2.0f*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (2.0f*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (2.0f*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z);
+ this.m21 = (2.0f*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (2.0f*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (2.0f*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y);
+
+ this.m03 = (float) 0.0;
+ this.m13 = (float) 0.0;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * (single precision) axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4f a1)
+ {
+ float mag = (float)Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0f/mag;
+ float ax = a1.x*mag;
+ float ay = a1.y*mag;
+ float az = a1.z*mag;
+
+ float sinTheta = (float)Math.sin((double)a1.angle);
+ float cosTheta = (float)Math.cos((double)a1.angle);
+ float t = 1.0f - cosTheta;
+
+ float xz = ax * az;
+ float xy = ax * ay;
+ float yz = ay * az;
+
+ m00 = t * ax * ax + cosTheta;
+ m01 = t * xy - sinTheta * az;
+ m02 = t * xz + sinTheta * ay;
+
+ m10 = t * xy + sinTheta * az;
+ m11 = t * ay * ay + cosTheta;
+ m12 = t * yz - sinTheta * ax;
+
+ m20 = t * xz - sinTheta * ay;
+ m21 = t * yz + sinTheta * ax;
+ m22 = t * az * az + cosTheta;
+ }
+ m03 = 0.0f;
+ m13 = 0.0f;
+ m23 = 0.0f;
+
+ m30 = 0.0f;
+ m31 = 0.0f;
+ m32 = 0.0f;
+ m33 = 1.0f;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * double precision quaternion argument.
+ * @param q1 the quaternion to be converted
+ */
+ public final void set(Quat4d q1)
+ {
+ this.m00 = (float) (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z);
+ this.m10 = (float) (2.0*(q1.x*q1.y + q1.w*q1.z));
+ this.m20 = (float) (2.0*(q1.x*q1.z - q1.w*q1.y));
+
+ this.m01 = (float) (2.0*(q1.x*q1.y - q1.w*q1.z));
+ this.m11 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z);
+ this.m21 = (float) (2.0*(q1.y*q1.z + q1.w*q1.x));
+
+ this.m02 = (float) (2.0*(q1.x*q1.z + q1.w*q1.y));
+ this.m12 = (float) (2.0*(q1.y*q1.z - q1.w*q1.x));
+ this.m22 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y);
+
+ this.m03 = (float) 0.0;
+ this.m13 = (float) 0.0;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix conversion of the
+ * double precision axis and angle argument.
+ * @param a1 the axis and angle to be converted
+ */
+ public final void set(AxisAngle4d a1)
+ {
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ float sinTheta = (float) Math.sin(a1.angle);
+ float cosTheta = (float) Math.cos(a1.angle);
+ float t = 1.0f - cosTheta;
+
+ float xz = (float) (ax * az);
+ float xy = (float) (ax * ay);
+ float yz = (float) (ay * az);
+
+ this.m00 = t * (float)(ax * ax) + cosTheta;
+ this.m01 = t * xy - sinTheta * (float)az;
+ this.m02 = t * xz + sinTheta * (float)ay;
+
+ this.m10 = t * xy + sinTheta * (float)az;
+ this.m11 = t * (float)(ay * ay) + cosTheta;
+ this.m12 = t * yz - sinTheta * (float)ax;
+
+ this.m20 = t * xz - sinTheta * (float)ay;
+ this.m21 = t * yz + sinTheta * (float)ax;
+ this.m22 = t * (float)(az * az) + cosTheta;
+ }
+ this.m03 = 0.0f;
+ this.m13 = 0.0f;
+ this.m23 = 0.0f;
+
+ this.m30 = 0.0f;
+ this.m31 = 0.0f;
+ this.m32 = 0.0f;
+ this.m33 = 1.0f;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed
+ * by the quaternion q1, the translation t1, and the scale s.
+ * @param q1 the rotation expressed as a quaternion
+ * @param t1 the translation
+ * @param s the scale value
+ */
+ public final void set(Quat4d q1, Vector3d t1, double s)
+ {
+ this.m00 = (float) (s*(1.0 - 2.0*q1.y*q1.y -2.0*q1.z*q1.z));
+ this.m10 = (float) (s*(2.0*(q1.x*q1.y + q1.w*q1.z)));
+ this.m20 = (float) (s*(2.0*(q1.x*q1.z - q1.w*q1.y)));
+
+ this.m01 = (float) (s*(2.0*(q1.x*q1.y - q1.w*q1.z)));
+ this.m11 = (float) (s*(1.0 - 2.0*q1.x*q1.x -2.0*q1.z*q1.z));
+ this.m21 = (float) (s*(2.0*(q1.y*q1.z + q1.w*q1.x)));
+
+ this.m02 = (float) (s*(2.0*(q1.x*q1.z + q1.w*q1.y)));
+ this.m12 = (float) (s*(2.0*(q1.y*q1.z - q1.w*q1.x)));
+ this.m22 = (float) (s*(1.0 - 2.0*q1.x*q1.x -2.0*q1.y*q1.y));
+
+ this.m03 = (float) t1.x;
+ this.m13 = (float) t1.y;
+ this.m23 = (float) t1.z;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed
+ * by the quaternion q1, the translation t1, and the scale s.
+ * @param q1 the rotation expressed as a quaternion
+ * @param t1 the translation
+ * @param s the scale value
+ */
+ public final void set(Quat4f q1, Vector3f t1, float s)
+ {
+ this.m00 = (s*(1.0f - 2.0f*q1.y*q1.y -2.0f*q1.z*q1.z));
+ this.m10 = (s*(2.0f*(q1.x*q1.y + q1.w*q1.z)));
+ this.m20 = (s*(2.0f*(q1.x*q1.z - q1.w*q1.y)));
+
+ this.m01 = (s*(2.0f*(q1.x*q1.y - q1.w*q1.z)));
+ this.m11 = (s*(1.0f - 2.0f*q1.x*q1.x -2.0f*q1.z*q1.z));
+ this.m21 = (s*(2.0f*(q1.y*q1.z + q1.w*q1.x)));
+
+ this.m02 = (s*(2.0f*(q1.x*q1.z + q1.w*q1.y)));
+ this.m12 = (s*(2.0f*(q1.y*q1.z - q1.w*q1.x)));
+ this.m22 = (s*(1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y));
+
+ this.m03 = t1.x;
+ this.m13 = t1.y;
+ this.m23 = t1.z;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to the float value of the
+ * passed matrix4d m1.
+ * @param m1 the matrix4d to be converted to float
+ */
+ public final void set(Matrix4d m1)
+ {
+ this.m00 = (float) m1.m00;
+ this.m01 = (float) m1.m01;
+ this.m02 = (float) m1.m02;
+ this.m03 = (float) m1.m03;
+
+ this.m10 = (float) m1.m10;
+ this.m11 = (float) m1.m11;
+ this.m12 = (float) m1.m12;
+ this.m13 = (float) m1.m13;
+
+ this.m20 = (float) m1.m20;
+ this.m21 = (float) m1.m21;
+ this.m22 = (float) m1.m22;
+ this.m23 = (float) m1.m23;
+
+ this.m30 = (float) m1.m30;
+ this.m31 = (float) m1.m31;
+ this.m32 = (float) m1.m32;
+ this.m33 = (float) m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to a copy of the
+ * passed matrix m1.
+ * @param m1 the matrix to be copied
+ */
+ public final void set(Matrix4f m1)
+ {
+ this.m00 = m1.m00;
+ this.m01 = m1.m01;
+ this.m02 = m1.m02;
+ this.m03 = m1.m03;
+
+ this.m10 = m1.m10;
+ this.m11 = m1.m11;
+ this.m12 = m1.m12;
+ this.m13 = m1.m13;
+
+ this.m20 = m1.m20;
+ this.m21 = m1.m21;
+ this.m22 = m1.m22;
+ this.m23 = m1.m23;
+
+ this.m30 = m1.m30;
+ this.m31 = m1.m31;
+ this.m32 = m1.m32;
+ this.m33 = m1.m33;
+ }
+
+ /**
+ * Sets the value of this matrix to the matrix inverse
+ * of the passed (user declared) matrix m1.
+ * @param m1 the matrix to be inverted
+ */
+ public final void invert(Matrix4f m1)
+ {
+
+ invertGeneral( m1);
+ }
+
+ /**
+ * Inverts this matrix in place.
+ */
+ public final void invert()
+ {
+ invertGeneral( this );
+ }
+
+ /**
+ * General invert routine. Inverts m1 and places the result in "this".
+ * Note that this routine handles both the "this" version and the
+ * non-"this" version.
+ *
+ * Also note that since this routine is slow anyway, we won't worry
+ * about allocating a little bit of garbage.
+ */
+ final void invertGeneral(Matrix4f m1) {
+ double temp[] = new double[16];
+ double result[] = new double[16];
+ int row_perm[] = new int[4];
+ int i, r, c;
+
+ // Use LU decomposition and backsubstitution code specifically
+ // for floating-point 4x4 matrices.
+
+ // Copy source matrix to t1tmp
+ temp[0] = m1.m00;
+ temp[1] = m1.m01;
+ temp[2] = m1.m02;
+ temp[3] = m1.m03;
+
+ temp[4] = m1.m10;
+ temp[5] = m1.m11;
+ temp[6] = m1.m12;
+ temp[7] = m1.m13;
+
+ temp[8] = m1.m20;
+ temp[9] = m1.m21;
+ temp[10] = m1.m22;
+ temp[11] = m1.m23;
+
+ temp[12] = m1.m30;
+ temp[13] = m1.m31;
+ temp[14] = m1.m32;
+ temp[15] = m1.m33;
+
+ // Calculate LU decomposition: Is the matrix singular?
+ if (!luDecomposition(temp, row_perm)) {
+ // Matrix has no inverse
+ throw new SingularMatrixException(VecMathI18N.getString("Matrix4f12"));
+ }
+
+ // Perform back substitution on the identity matrix
+ for(i=0;i<16;i++) result[i] = 0.0;
+ result[0] = 1.0; result[5] = 1.0; result[10] = 1.0; result[15] = 1.0;
+ luBacksubstitution(temp, row_perm, result);
+
+ this.m00 = (float)result[0];
+ this.m01 = (float)result[1];
+ this.m02 = (float)result[2];
+ this.m03 = (float)result[3];
+
+ this.m10 = (float)result[4];
+ this.m11 = (float)result[5];
+ this.m12 = (float)result[6];
+ this.m13 = (float)result[7];
+
+ this.m20 = (float)result[8];
+ this.m21 = (float)result[9];
+ this.m22 = (float)result[10];
+ this.m23 = (float)result[11];
+
+ this.m30 = (float)result[12];
+ this.m31 = (float)result[13];
+ this.m32 = (float)result[14];
+ this.m33 = (float)result[15];
+
+ }
+
+ /**
+ * Given a 4x4 array "matrix0", this function replaces it with the
+ * LU decomposition of a row-wise permutation of itself. The input
+ * parameters are "matrix0" and "dimen". The array "matrix0" is also
+ * an output parameter. The vector "row_perm[4]" is an output
+ * parameter that contains the row permutations resulting from partial
+ * pivoting. The output parameter "even_row_xchg" is 1 when the
+ * number of row exchanges is even, or -1 otherwise. Assumes data
+ * type is always double.
+ *
+ * This function is similar to luDecomposition, except that it
+ * is tuned specifically for 4x4 matrices.
+ *
+ * @return true if the matrix is nonsingular, or false otherwise.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 40-45.
+ //
+ static boolean luDecomposition(double[] matrix0,
+ int[] row_perm) {
+
+ double row_scale[] = new double[4];
+
+ // Determine implicit scaling information by looping over rows
+ {
+ int i, j;
+ int ptr, rs;
+ double big, temp;
+
+ ptr = 0;
+ rs = 0;
+
+ // For each row ...
+ i = 4;
+ while (i-- != 0) {
+ big = 0.0;
+
+ // For each column, find the largest element in the row
+ j = 4;
+ while (j-- != 0) {
+ temp = matrix0[ptr++];
+ temp = Math.abs(temp);
+ if (temp > big) {
+ big = temp;
+ }
+ }
+
+ // Is the matrix singular?
+ if (big == 0.0) {
+ return false;
+ }
+ row_scale[rs++] = 1.0 / big;
+ }
+ }
+
+ {
+ int j;
+ int mtx;
+
+ mtx = 0;
+
+ // For all columns, execute Crout's method
+ for (j = 0; j < 4; j++) {
+ int i, imax, k;
+ int target, p1, p2;
+ double sum, big, temp;
+
+ // Determine elements of upper diagonal matrix U
+ for (i = 0; i < j; i++) {
+ target = mtx + (4*i) + j;
+ sum = matrix0[target];
+ k = i;
+ p1 = mtx + (4*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 4;
+ }
+ matrix0[target] = sum;
+ }
+
+ // Search for largest pivot element and calculate
+ // intermediate elements of lower diagonal matrix L.
+ big = 0.0;
+ imax = -1;
+ for (i = j; i < 4; i++) {
+ target = mtx + (4*i) + j;
+ sum = matrix0[target];
+ k = j;
+ p1 = mtx + (4*i);
+ p2 = mtx + j;
+ while (k-- != 0) {
+ sum -= matrix0[p1] * matrix0[p2];
+ p1++;
+ p2 += 4;
+ }
+ matrix0[target] = sum;
+
+ // Is this the best pivot so far?
+ if ((temp = row_scale[i] * Math.abs(sum)) >= big) {
+ big = temp;
+ imax = i;
+ }
+ }
+
+ if (imax < 0) {
+ throw new RuntimeException(VecMathI18N.getString("Matrix4f13"));
+ }
+
+ // Is a row exchange necessary?
+ if (j != imax) {
+ // Yes: exchange rows
+ k = 4;
+ p1 = mtx + (4*imax);
+ p2 = mtx + (4*j);
+ while (k-- != 0) {
+ temp = matrix0[p1];
+ matrix0[p1++] = matrix0[p2];
+ matrix0[p2++] = temp;
+ }
+
+ // Record change in scale factor
+ row_scale[imax] = row_scale[j];
+ }
+
+ // Record row permutation
+ row_perm[j] = imax;
+
+ // Is the matrix singular
+ if (matrix0[(mtx + (4*j) + j)] == 0.0) {
+ return false;
+ }
+
+ // Divide elements of lower diagonal matrix L by pivot
+ if (j != (4-1)) {
+ temp = 1.0 / (matrix0[(mtx + (4*j) + j)]);
+ target = mtx + (4*(j+1)) + j;
+ i = 3 - j;
+ while (i-- != 0) {
+ matrix0[target] *= temp;
+ target += 4;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ /**
+ * Solves a set of linear equations. The input parameters "matrix1",
+ * and "row_perm" come from luDecompostionD4x4 and do not change
+ * here. The parameter "matrix2" is a set of column vectors assembled
+ * into a 4x4 matrix of floating-point values. The procedure takes each
+ * column of "matrix2" in turn and treats it as the right-hand side of the
+ * matrix equation Ax = LUx = b. The solution vector replaces the
+ * original column of the matrix.
+ *
+ * If "matrix2" is the identity matrix, the procedure replaces its contents
+ * with the inverse of the matrix from which "matrix1" was originally
+ * derived.
+ */
+ //
+ // Reference: Press, Flannery, Teukolsky, Vetterling,
+ // _Numerical_Recipes_in_C_, Cambridge University Press,
+ // 1988, pp 44-45.
+ //
+ static void luBacksubstitution(double[] matrix1,
+ int[] row_perm,
+ double[] matrix2) {
+
+ int i, ii, ip, j, k;
+ int rp;
+ int cv, rv;
+
+ // rp = row_perm;
+ rp = 0;
+
+ // For each column vector of matrix2 ...
+ for (k = 0; k < 4; k++) {
+ // cv = &(matrix2[0][k]);
+ cv = k;
+ ii = -1;
+
+ // Forward substitution
+ for (i = 0; i < 4; i++) {
+ double sum;
+
+ ip = row_perm[rp+i];
+ sum = matrix2[cv+4*ip];
+ matrix2[cv+4*ip] = matrix2[cv+4*i];
+ if (ii >= 0) {
+ // rv = &(matrix1[i][0]);
+ rv = i*4;
+ for (j = ii; j <= i-1; j++) {
+ sum -= matrix1[rv+j] * matrix2[cv+4*j];
+ }
+ }
+ else if (sum != 0.0) {
+ ii = i;
+ }
+ matrix2[cv+4*i] = sum;
+ }
+
+ // Backsubstitution
+ // rv = &(matrix1[3][0]);
+ rv = 3*4;
+ matrix2[cv+4*3] /= matrix1[rv+3];
+
+ rv -= 4;
+ matrix2[cv+4*2] = (matrix2[cv+4*2] -
+ matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2];
+
+ rv -= 4;
+ matrix2[cv+4*1] = (matrix2[cv+4*1] -
+ matrix1[rv+2] * matrix2[cv+4*2] -
+ matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1];
+
+ rv -= 4;
+ matrix2[cv+4*0] = (matrix2[cv+4*0] -
+ matrix1[rv+1] * matrix2[cv+4*1] -
+ matrix1[rv+2] * matrix2[cv+4*2] -
+ matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0];
+ }
+ }
+
+ /**
+ * Computes the determinate of this matrix.
+ * @return the determinate of the matrix
+ */
+ public final float determinant()
+ {
+ float det;
+
+ // cofactor exapainsion along first row
+
+ det = m00*(m11*m22*m33+ m12*m23*m31 + m13*m21*m32
+ - m13*m22*m31 -m11*m23*m32 - m12*m21*m33);
+ det -= m01*(m10*m22*m33+ m12*m23*m30 + m13*m20*m32
+ - m13*m22*m30 -m10*m23*m32 - m12*m20*m33);
+ det += m02*(m10*m21*m33+ m11*m23*m30 + m13*m20*m31
+ - m13*m21*m30 -m10*m23*m31 - m11*m20*m33);
+ det -= m03*(m10*m21*m32+ m11*m22*m30 + m12*m20*m31
+ - m12*m21*m30 -m10*m22*m31 - m11*m20*m32);
+
+ return( det );
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the single precision Matrix3f argument; the other
+ * elements of this matrix are initialized as if this were an identity
+ * matrix (i.e., affine matrix with no translational component).
+ * @param m1 the single-precision 3x3 matrix
+ */
+ public final void set(Matrix3f m1)
+ {
+ m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0f;
+ m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0f;
+ m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0f;
+ m30 = 0.0f; m31 = 0.0f ; m32 = 0.0f ; m33 = 1.0f;
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the double precision Matrix3d argument; the other
+ * elements of this matrix are initialized as if this were an identity
+ * matrix (i.e., affine matrix with no translational component).
+ * @param m1 the double-precision 3x3 matrix
+ */
+ public final void set(Matrix3d m1)
+ {
+ m00 = (float)m1.m00; m01 = (float)m1.m01; m02 = (float)m1.m02; m03 = 0.0f;
+ m10 = (float)m1.m10; m11 = (float)m1.m11; m12 = (float)m1.m12; m13 = 0.0f;
+ m20 = (float)m1.m20; m21 = (float)m1.m21; m22 = (float)m1.m22; m23 = 0.0f;
+ m30 = 0.0f; m31 = 0.0f ; m32 = 0.0f ; m33 = 1.0f;
+ }
+
+ /**
+ * Sets the value of this matrix to a scale matrix with the
+ * the passed scale amount.
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(float scale)
+ {
+ this.m00 = scale;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = scale;
+ this.m12 = (float) 0.0;
+ this.m13 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = scale;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the values in this Matrix4f equal to the row-major
+ * array parameter (ie, the first four elements of the
+ * array will be copied into the first row of this matrix, etc.).
+ * @param m the single precision array of length 16
+ */
+ public final void set(float[] m)
+ {
+ m00 = m[0];
+ m01 = m[1];
+ m02 = m[2];
+ m03 = m[3];
+ m10 = m[4];
+ m11 = m[5];
+ m12 = m[6];
+ m13 = m[7];
+ m20 = m[8];
+ m21 = m[9];
+ m22 = m[10];
+ m23 = m[11];
+ m30 = m[12];
+ m31 = m[13];
+ m32 = m[14];
+ m33 = m[15];
+ }
+
+ /**
+ * Sets the value of this matrix to a translate matrix with
+ * the passed translation value.
+ * @param v1 the translation amount
+ */
+ public final void set(Vector3f v1)
+ {
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = v1.x;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+ this.m13 = v1.y;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ this.m23 = v1.z;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this transform to a scale and translation matrix;
+ * the scale is not applied to the translation and all of the matrix
+ * values are modified.
+ * @param scale the scale factor for the matrix
+ * @param t1 the translation amount
+ */
+ public final void set(float scale, Vector3f t1)
+ {
+ this.m00 = scale;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = t1.x;
+
+ this.m10 = (float) 0.0;
+ this.m11 = scale;
+ this.m12 = (float) 0.0;
+ this.m13 = t1.y;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = scale;
+ this.m23 = t1.z;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this transform to a scale and translation matrix;
+ * the translation is scaled by the scale factor and all of the matrix
+ * values are modified.
+ * @param t1 the translation amount
+ * @param scale the scale factor for the matrix
+ */
+ public final void set(Vector3f t1, float scale)
+ {
+ this.m00 = scale;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = scale*t1.x;
+
+ this.m10 = (float) 0.0;
+ this.m11 = scale;
+ this.m12 = (float) 0.0;
+ this.m13 = scale*t1.y;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = scale;
+ this.m23 = scale*t1.z;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed by
+ * the rotation matrix m1, the translation t1, and the scale factor.
+ * The translation is not modified by the scale.
+ * @param m1 the rotation component
+ * @param t1 the translation component
+ * @param scale the scale component
+ */
+ public final void set(Matrix3f m1, Vector3f t1, float scale)
+ {
+ this.m00 = m1.m00*scale;
+ this.m01 = m1.m01*scale;
+ this.m02 = m1.m02*scale;
+ this.m03 = t1.x;
+
+ this.m10 = m1.m10*scale;
+ this.m11 = m1.m11*scale;
+ this.m12 = m1.m12*scale;
+ this.m13 = t1.y;
+
+ this.m20 = m1.m20*scale;
+ this.m21 = m1.m21*scale;
+ this.m22 = m1.m22*scale;
+ this.m23 = t1.z;
+
+ this.m30 = 0.0f;
+ this.m31 = 0.0f;
+ this.m32 = 0.0f;
+ this.m33 = 1.0f;
+ }
+
+ /**
+ * Sets the value of this matrix from the rotation expressed by
+ * the rotation matrix m1, the translation t1, and the scale factor.
+ * The translation is not modified by the scale.
+ * @param m1 the rotation component
+ * @param t1 the translation component
+ * @param scale the scale factor
+ */
+ public final void set(Matrix3d m1, Vector3d t1, double scale)
+ {
+ this.m00 = (float)(m1.m00*scale);
+ this.m01 = (float)(m1.m01*scale);
+ this.m02 = (float)(m1.m02*scale);
+ this.m03 = (float)t1.x;
+
+ this.m10 = (float)(m1.m10*scale);
+ this.m11 = (float)(m1.m11*scale);
+ this.m12 = (float)(m1.m12*scale);
+ this.m13 = (float)t1.y;
+
+ this.m20 = (float)(m1.m20*scale);
+ this.m21 = (float)(m1.m21*scale);
+ this.m22 = (float)(m1.m22*scale);
+ this.m23 = (float)t1.z;
+
+ this.m30 = 0.0f;
+ this.m31 = 0.0f;
+ this.m32 = 0.0f;
+ this.m33 = 1.0f;
+ }
+
+ /**
+ * Modifies the translational components of this matrix to the values
+ * of the Vector3f argument; the other values of this matrix are not
+ * modified.
+ * @param trans the translational component
+ */
+ public final void setTranslation(Vector3f trans)
+ {
+ m03 = trans.x;
+ m13 = trans.y;
+ m23 = trans.z;
+ }
+
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the x axis.
+ * @param angle the angle to rotate about the X axis in radians
+ */
+ public final void rotX(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = (float) 1.0;
+ this.m01 = (float) 0.0;
+ this.m02 = (float) 0.0;
+ this.m03 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = cosAngle;
+ this.m12 = -sinAngle;
+ this.m13 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = sinAngle;
+ this.m22 = cosAngle;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the y axis.
+ * @param angle the angle to rotate about the Y axis in radians
+ */
+ public final void rotY(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = cosAngle;
+ this.m01 = (float) 0.0;
+ this.m02 = sinAngle;
+ this.m03 = (float) 0.0;
+
+ this.m10 = (float) 0.0;
+ this.m11 = (float) 1.0;
+ this.m12 = (float) 0.0;
+ this.m13 = (float) 0.0;
+
+ this.m20 = -sinAngle;
+ this.m21 = (float) 0.0;
+ this.m22 = cosAngle;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Sets the value of this matrix to a counter clockwise rotation
+ * about the z axis.
+ * @param angle the angle to rotate about the Z axis in radians
+ */
+ public final void rotZ(float angle)
+ {
+ float sinAngle, cosAngle;
+
+ sinAngle = (float) Math.sin((double) angle);
+ cosAngle = (float) Math.cos((double) angle);
+
+ this.m00 = cosAngle;
+ this.m01 = -sinAngle;
+ this.m02 = (float) 0.0;
+ this.m03 = (float) 0.0;
+
+ this.m10 = sinAngle;
+ this.m11 = cosAngle;
+ this.m12 = (float) 0.0;
+ this.m13 = (float) 0.0;
+
+ this.m20 = (float) 0.0;
+ this.m21 = (float) 0.0;
+ this.m22 = (float) 1.0;
+ this.m23 = (float) 0.0;
+
+ this.m30 = (float) 0.0;
+ this.m31 = (float) 0.0;
+ this.m32 = (float) 0.0;
+ this.m33 = (float) 1.0;
+ }
+
+ /**
+ * Multiplies each element of this matrix by a scalar.
+ * @param scalar the scalar multiplier.
+ */
+ public final void mul(float scalar)
+ {
+ m00 *= scalar;
+ m01 *= scalar;
+ m02 *= scalar;
+ m03 *= scalar;
+ m10 *= scalar;
+ m11 *= scalar;
+ m12 *= scalar;
+ m13 *= scalar;
+ m20 *= scalar;
+ m21 *= scalar;
+ m22 *= scalar;
+ m23 *= scalar;
+ m30 *= scalar;
+ m31 *= scalar;
+ m32 *= scalar;
+ m33 *= scalar;
+ }
+
+ /**
+ * Multiplies each element of matrix m1 by a scalar and places
+ * the result into this. Matrix m1 is not modified.
+ * @param scalar the scalar multiplier.
+ * @param m1 the original matrix.
+ */
+ public final void mul(float scalar, Matrix4f m1)
+ {
+ this.m00 = m1.m00 * scalar;
+ this.m01 = m1.m01 * scalar;
+ this.m02 = m1.m02 * scalar;
+ this.m03 = m1.m03 * scalar;
+ this.m10 = m1.m10 * scalar;
+ this.m11 = m1.m11 * scalar;
+ this.m12 = m1.m12 * scalar;
+ this.m13 = m1.m13 * scalar;
+ this.m20 = m1.m20 * scalar;
+ this.m21 = m1.m21 * scalar;
+ this.m22 = m1.m22 * scalar;
+ this.m23 = m1.m23 * scalar;
+ this.m30 = m1.m30 * scalar;
+ this.m31 = m1.m31 * scalar;
+ this.m32 = m1.m32 * scalar;
+ this.m33 = m1.m33 * scalar;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying itself
+ * with matrix m1.
+ * @param m1 the other matrix
+ */
+ public final void mul(Matrix4f m1)
+ {
+ float m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23,
+ m30, m31, m32, m33; // vars for temp result matrix
+
+ m00 = this.m00*m1.m00 + this.m01*m1.m10 +
+ this.m02*m1.m20 + this.m03*m1.m30;
+ m01 = this.m00*m1.m01 + this.m01*m1.m11 +
+ this.m02*m1.m21 + this.m03*m1.m31;
+ m02 = this.m00*m1.m02 + this.m01*m1.m12 +
+ this.m02*m1.m22 + this.m03*m1.m32;
+ m03 = this.m00*m1.m03 + this.m01*m1.m13 +
+ this.m02*m1.m23 + this.m03*m1.m33;
+
+ m10 = this.m10*m1.m00 + this.m11*m1.m10 +
+ this.m12*m1.m20 + this.m13*m1.m30;
+ m11 = this.m10*m1.m01 + this.m11*m1.m11 +
+ this.m12*m1.m21 + this.m13*m1.m31;
+ m12 = this.m10*m1.m02 + this.m11*m1.m12 +
+ this.m12*m1.m22 + this.m13*m1.m32;
+ m13 = this.m10*m1.m03 + this.m11*m1.m13 +
+ this.m12*m1.m23 + this.m13*m1.m33;
+
+ m20 = this.m20*m1.m00 + this.m21*m1.m10 +
+ this.m22*m1.m20 + this.m23*m1.m30;
+ m21 = this.m20*m1.m01 + this.m21*m1.m11 +
+ this.m22*m1.m21 + this.m23*m1.m31;
+ m22 = this.m20*m1.m02 + this.m21*m1.m12 +
+ this.m22*m1.m22 + this.m23*m1.m32;
+ m23 = this.m20*m1.m03 + this.m21*m1.m13 +
+ this.m22*m1.m23 + this.m23*m1.m33;
+
+ m30 = this.m30*m1.m00 + this.m31*m1.m10 +
+ this.m32*m1.m20 + this.m33*m1.m30;
+ m31 = this.m30*m1.m01 + this.m31*m1.m11 +
+ this.m32*m1.m21 + this.m33*m1.m31;
+ m32 = this.m30*m1.m02 + this.m31*m1.m12 +
+ this.m32*m1.m22 + this.m33*m1.m32;
+ m33 = this.m30*m1.m03 + this.m31*m1.m13 +
+ this.m32*m1.m23 + this.m33*m1.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ /**
+ * Sets the value of this matrix to the result of multiplying
+ * the two argument matrices together.
+ * @param m1 the first matrix
+ * @param m2 the second matrix
+ */
+ public final void mul(Matrix4f m1, Matrix4f m2)
+ {
+ if (this != m1 && this != m2) {
+
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 +
+ m1.m02*m2.m20 + m1.m03*m2.m30;
+ this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 +
+ m1.m02*m2.m21 + m1.m03*m2.m31;
+ this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 +
+ m1.m02*m2.m22 + m1.m03*m2.m32;
+ this.m03 = m1.m00*m2.m03 + m1.m01*m2.m13 +
+ m1.m02*m2.m23 + m1.m03*m2.m33;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 +
+ m1.m12*m2.m20 + m1.m13*m2.m30;
+ this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 +
+ m1.m12*m2.m21 + m1.m13*m2.m31;
+ this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 +
+ m1.m12*m2.m22 + m1.m13*m2.m32;
+ this.m13 = m1.m10*m2.m03 + m1.m11*m2.m13 +
+ m1.m12*m2.m23 + m1.m13*m2.m33;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 +
+ m1.m22*m2.m20 + m1.m23*m2.m30;
+ this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 +
+ m1.m22*m2.m21 + m1.m23*m2.m31;
+ this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 +
+ m1.m22*m2.m22 + m1.m23*m2.m32;
+ this.m23 = m1.m20*m2.m03 + m1.m21*m2.m13 +
+ m1.m22*m2.m23 + m1.m23*m2.m33;
+
+ this.m30 = m1.m30*m2.m00 + m1.m31*m2.m10 +
+ m1.m32*m2.m20 + m1.m33*m2.m30;
+ this.m31 = m1.m30*m2.m01 + m1.m31*m2.m11 +
+ m1.m32*m2.m21 + m1.m33*m2.m31;
+ this.m32 = m1.m30*m2.m02 + m1.m31*m2.m12 +
+ m1.m32*m2.m22 + m1.m33*m2.m32;
+ this.m33 = m1.m30*m2.m03 + m1.m31*m2.m13 +
+ m1.m32*m2.m23 + m1.m33*m2.m33;
+ } else {
+ float m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23,
+ m30, m31, m32, m33; // vars for temp result matrix
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20 + m1.m03*m2.m30;
+ m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21 + m1.m03*m2.m31;
+ m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22 + m1.m03*m2.m32;
+ m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + m1.m02*m2.m23 + m1.m03*m2.m33;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20 + m1.m13*m2.m30;
+ m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21 + m1.m13*m2.m31;
+ m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22 + m1.m13*m2.m32;
+ m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + m1.m12*m2.m23 + m1.m13*m2.m33;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20 + m1.m23*m2.m30;
+ m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21 + m1.m23*m2.m31;
+ m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22 + m1.m23*m2.m32;
+ m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + m1.m22*m2.m23 + m1.m23*m2.m33;
+
+ m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + m1.m32*m2.m20 + m1.m33*m2.m30;
+ m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + m1.m32*m2.m21 + m1.m33*m2.m31;
+ m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + m1.m32*m2.m22 + m1.m33*m2.m32;
+ m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + m1.m32*m2.m23 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+ }
+
+ /**
+ * Multiplies the transpose of matrix m1 times the transpose of matrix
+ * m2, and places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeBoth(Matrix4f m1, Matrix4f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03;
+ this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13;
+ this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23;
+ this.m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03;
+ this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13;
+ this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23;
+ this.m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03;
+ this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13;
+ this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23;
+ this.m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33;
+
+ this.m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03;
+ this.m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13;
+ this.m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23;
+ this.m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33;
+ } else {
+ float m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23, // vars for temp result matrix
+ m30, m31, m32, m33;
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03;
+ m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13;
+ m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23;
+ m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03;
+ m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13;
+ m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23;
+ m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03;
+ m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13;
+ m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23;
+ m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33;
+
+ m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03;
+ m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13;
+ m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23;
+ m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ }
+
+ /**
+ * Multiplies matrix m1 times the transpose of matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeRight(Matrix4f m1, Matrix4f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03;
+ this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13;
+ this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23;
+ this.m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33;
+
+ this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03;
+ this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13;
+ this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23;
+ this.m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33;
+
+ this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03;
+ this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13;
+ this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23;
+ this.m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33;
+
+ this.m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03;
+ this.m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13;
+ this.m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23;
+ this.m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33;
+ } else {
+ float m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23, // vars for temp result matrix
+ m30, m31, m32, m33;
+
+ m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03;
+ m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13;
+ m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23;
+ m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33;
+
+ m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03;
+ m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13;
+ m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23;
+ m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33;
+
+ m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03;
+ m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13;
+ m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23;
+ m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33;
+
+ m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03;
+ m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13;
+ m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23;
+ m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ }
+
+
+ /**
+ * Multiplies the transpose of matrix m1 times matrix m2, and
+ * places the result into this.
+ * @param m1 the matrix on the left hand side of the multiplication
+ * @param m2 the matrix on the right hand side of the multiplication
+ */
+ public final void mulTransposeLeft(Matrix4f m1, Matrix4f m2)
+ {
+ if (this != m1 && this != m2) {
+ this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30;
+ this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31;
+ this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32;
+ this.m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33;
+
+ this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30;
+ this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31;
+ this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32;
+ this.m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33;
+
+ this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30;
+ this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31;
+ this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32;
+ this.m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33;
+
+ this.m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30;
+ this.m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31;
+ this.m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32;
+ this.m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33;
+ } else {
+ float m00, m01, m02, m03,
+ m10, m11, m12, m13,
+ m20, m21, m22, m23, // vars for temp result matrix
+ m30, m31, m32, m33;
+
+
+
+ m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30;
+ m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31;
+ m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32;
+ m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33;
+
+ m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30;
+ m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31;
+ m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32;
+ m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33;
+
+ m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30;
+ m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31;
+ m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32;
+ m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33;
+
+ m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30;
+ m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31;
+ m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32;
+ m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33;
+
+ this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
+ this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
+ this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
+ this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
+ }
+
+ }
+
+
+ /**
+ * Returns true if all of the data members of Matrix4f m1 are
+ * equal to the corresponding data members in this Matrix4f.
+ * @param m1 the matrix with which the comparison is made.
+ * @return true or false
+ */
+ public boolean equals(Matrix4f m1)
+ {
+ try {
+ return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02
+ && this.m03 == m1.m03 && this.m10 == m1.m10 && this.m11 == m1.m11
+ && this.m12 == m1.m12 && this.m13 == m1.m13 && this.m20 == m1.m20
+ && this.m21 == m1.m21 && this.m22 == m1.m22 && this.m23 == m1.m23
+ && this.m30 == m1.m30 && this.m31 == m1.m31 && this.m32 == m1.m32
+ && this.m33 == m1.m33);
+ }
+ catch (NullPointerException e2) { return false; }
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Matrix4f and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Matrix4f.
+ * @param t1 the matrix with which the comparison is made.
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Matrix4f m2 = (Matrix4f) t1;
+ return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02
+ && this.m03 == m2.m03 && this.m10 == m2.m10 && this.m11 == m2.m11
+ && this.m12 == m2.m12 && this.m13 == m2.m13 && this.m20 == m2.m20
+ && this.m21 == m2.m21 && this.m22 == m2.m22 && this.m23 == m2.m23
+ && this.m30 == m2.m30 && this.m31 == m2.m31 && this.m32 == m2.m32
+ && this.m33 == m2.m33);
+ }
+ catch (ClassCastException e1) { return false; }
+ catch (NullPointerException e2) { return false; }
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this matrix
+ * and matrix m1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs(this.m(i,j) - m1.m(i,j)]
+ * @param m1 the matrix to be compared to this matrix
+ * @param epsilon the threshold value
+ */
+ public boolean epsilonEquals(Matrix4f m1, float epsilon)
+ {
+
+ boolean status = true;
+
+ if( Math.abs( this.m00 - m1.m00) > epsilon) status = false;
+ if( Math.abs( this.m01 - m1.m01) > epsilon) status = false;
+ if( Math.abs( this.m02 - m1.m02) > epsilon) status = false;
+ if( Math.abs( this.m03 - m1.m03) > epsilon) status = false;
+
+ if( Math.abs( this.m10 - m1.m10) > epsilon) status = false;
+ if( Math.abs( this.m11 - m1.m11) > epsilon) status = false;
+ if( Math.abs( this.m12 - m1.m12) > epsilon) status = false;
+ if( Math.abs( this.m13 - m1.m13) > epsilon) status = false;
+
+ if( Math.abs( this.m20 - m1.m20) > epsilon) status = false;
+ if( Math.abs( this.m21 - m1.m21) > epsilon) status = false;
+ if( Math.abs( this.m22 - m1.m22) > epsilon) status = false;
+ if( Math.abs( this.m23 - m1.m23) > epsilon) status = false;
+
+ if( Math.abs( this.m30 - m1.m30) > epsilon) status = false;
+ if( Math.abs( this.m31 - m1.m31) > epsilon) status = false;
+ if( Math.abs( this.m32 - m1.m32) > epsilon) status = false;
+ if( Math.abs( this.m33 - m1.m33) > epsilon) status = false;
+
+ return( status );
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Matrix4f objects with identical data values
+ * (i.e., Matrix4f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)Float.floatToIntBits(m00);
+ bits = 31L * bits + (long)Float.floatToIntBits(m01);
+ bits = 31L * bits + (long)Float.floatToIntBits(m02);
+ bits = 31L * bits + (long)Float.floatToIntBits(m03);
+ bits = 31L * bits + (long)Float.floatToIntBits(m10);
+ bits = 31L * bits + (long)Float.floatToIntBits(m11);
+ bits = 31L * bits + (long)Float.floatToIntBits(m12);
+ bits = 31L * bits + (long)Float.floatToIntBits(m13);
+ bits = 31L * bits + (long)Float.floatToIntBits(m20);
+ bits = 31L * bits + (long)Float.floatToIntBits(m21);
+ bits = 31L * bits + (long)Float.floatToIntBits(m22);
+ bits = 31L * bits + (long)Float.floatToIntBits(m23);
+ bits = 31L * bits + (long)Float.floatToIntBits(m30);
+ bits = 31L * bits + (long)Float.floatToIntBits(m31);
+ bits = 31L * bits + (long)Float.floatToIntBits(m32);
+ bits = 31L * bits + (long)Float.floatToIntBits(m33);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Transform the vector vec using this Matrix4f and place the
+ * result into vecOut.
+ * @param vec the single precision vector to be transformed
+ * @param vecOut the vector into which the transformed values are placed
+ */
+ public final void transform(Tuple4f vec, Tuple4f vecOut)
+ {
+ float x,y,z;
+ x = m00*vec.x + m01*vec.y
+ + m02*vec.z + m03*vec.w;
+ y = m10*vec.x + m11*vec.y
+ + m12*vec.z + m13*vec.w;
+ z = m20*vec.x + m21*vec.y
+ + m22*vec.z + m23*vec.w;
+ vecOut.w = m30*vec.x + m31*vec.y
+ + m32*vec.z + m33*vec.w;
+ vecOut.x = x;
+ vecOut.y = y;
+ vecOut.z = z;
+ }
+
+
+ /**
+ * Transform the vector vec using this Transform and place the
+ * result back into vec.
+ * @param vec the single precision vector to be transformed
+ */
+ public final void transform(Tuple4f vec)
+ {
+ float x,y,z;
+
+ x = m00*vec.x + m01*vec.y
+ + m02*vec.z + m03*vec.w;
+ y = m10*vec.x + m11*vec.y
+ + m12*vec.z + m13*vec.w;
+ z = m20*vec.x + m21*vec.y
+ + m22*vec.z + m23*vec.w;
+ vec.w = m30*vec.x + m31*vec.y
+ + m32*vec.z + m33*vec.w;
+ vec.x = x;
+ vec.y = y;
+ vec.z = z;
+ }
+
+ /**
+ * Transforms the point parameter with this Matrix4f and
+ * places the result into pointOut. The fourth element of the
+ * point input paramter is assumed to be one.
+ * @param point the input point to be transformed.
+ * @param pointOut the transformed point
+ */
+ public final void transform(Point3f point, Point3f pointOut)
+ {
+ float x,y;
+ x = m00*point.x + m01*point.y + m02*point.z + m03;
+ y = m10*point.x + m11*point.y + m12*point.z + m13;
+ pointOut.z = m20*point.x + m21*point.y + m22*point.z + m23;
+ pointOut.x = x;
+ pointOut.y = y;
+ }
+
+
+ /**
+ * Transforms the point parameter with this Matrix4f and
+ * places the result back into point. The fourth element of the
+ * point input paramter is assumed to be one.
+ * @param point the input point to be transformed.
+ */
+ public final void transform(Point3f point)
+ {
+ float x, y;
+ x = m00*point.x + m01*point.y + m02*point.z + m03;
+ y = m10*point.x + m11*point.y + m12*point.z + m13;
+ point.z = m20*point.x + m21*point.y + m22*point.z + m23;
+ point.x = x;
+ point.y = y;
+ }
+
+
+ /**
+ * Transforms the normal parameter by this Matrix4f and places the value
+ * into normalOut. The fourth element of the normal is assumed to be zero.
+ * @param normal the input normal to be transformed.
+ * @param normalOut the transformed normal
+ */
+ public final void transform(Vector3f normal, Vector3f normalOut)
+ {
+ float x,y;
+ x = m00*normal.x + m01*normal.y + m02*normal.z;
+ y = m10*normal.x + m11*normal.y + m12*normal.z;
+ normalOut.z = m20*normal.x + m21*normal.y + m22*normal.z;
+ normalOut.x = x;
+ normalOut.y = y;
+ }
+
+
+ /**
+ * Transforms the normal parameter by this transform and places the value
+ * back into normal. The fourth element of the normal is assumed to be zero.
+ * @param normal the input normal to be transformed.
+ */
+ public final void transform(Vector3f normal)
+ {
+ float x, y;
+
+ x = m00*normal.x + m01*normal.y + m02*normal.z;
+ y = m10*normal.x + m11*normal.y + m12*normal.z;
+ normal.z = m20*normal.x + m21*normal.y + m22*normal.z;
+ normal.x = x;
+ normal.y = y;
+ }
+
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the double precision Matrix3d argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the passed rotation components,
+ * and then the scale is reapplied to the rotational components.
+ * @param m1 double precision 3x3 matrix
+ */
+ public final void setRotation( Matrix3d m1)
+ {
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (float)(m1.m00*tmp_scale[0]);
+ m01 = (float)(m1.m01*tmp_scale[1]);
+ m02 = (float)(m1.m02*tmp_scale[2]);
+
+ m10 = (float)(m1.m10*tmp_scale[0]);
+ m11 = (float)(m1.m11*tmp_scale[1]);
+ m12 = (float)(m1.m12*tmp_scale[2]);
+
+ m20 = (float)(m1.m20*tmp_scale[0]);
+ m21 = (float)(m1.m21*tmp_scale[1]);
+ m22 = (float)(m1.m22*tmp_scale[2]);
+
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix values in the single precision Matrix3f argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the passed rotation components,
+ * and then the scale is reapplied to the rotational components.
+ * @param m1 single precision 3x3 matrix
+ */
+ public final void setRotation( Matrix3f m1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (float)(m1.m00*tmp_scale[0]);
+ m01 = (float)(m1.m01*tmp_scale[1]);
+ m02 = (float)(m1.m02*tmp_scale[2]);
+
+ m10 = (float)(m1.m10*tmp_scale[0]);
+ m11 = (float)(m1.m11*tmp_scale[1]);
+ m12 = (float)(m1.m12*tmp_scale[2]);
+
+ m20 = (float)(m1.m20*tmp_scale[0]);
+ m21 = (float)(m1.m21*tmp_scale[1]);
+ m22 = (float)(m1.m22*tmp_scale[2]);
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix equivalent values of the quaternion argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the matrix equivalent of the quaternion,
+ * and then the scale is reapplied to the rotational components.
+ * @param q1 the quaternion that specifies the rotation
+ */
+ public final void setRotation(Quat4f q1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (float)((1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0]);
+ m10 = (float)((2.0f*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0]);
+ m20 = (float)((2.0f*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0]);
+
+ m01 = (float)((2.0f*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1]);
+ m11 = (float)((1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1]);
+ m21 = (float)((2.0f*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1]);
+
+ m02 = (float)((2.0f*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2]);
+ m12 = (float)((2.0f*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2]);
+ m22 = (float)((1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2]);
+
+ }
+
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix equivalent values of the quaternion argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the matrix equivalent of the quaternion,
+ * and then the scale is reapplied to the rotational components.
+ * @param q1 the quaternion that specifies the rotation
+ */
+ public final void setRotation(Quat4d q1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ m00 = (float)((1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0]);
+ m10 = (float)((2.0f*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0]);
+ m20 = (float)((2.0f*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0]);
+
+ m01 = (float)((2.0f*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1]);
+ m11 = (float)((1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1]);
+ m21 = (float)((2.0f*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1]);
+
+ m02 = (float)((2.0f*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2]);
+ m12 = (float)((2.0f*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2]);
+ m22 = (float)((1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2]);
+ }
+
+ /**
+ * Sets the rotational component (upper 3x3) of this matrix to the
+ * matrix equivalent values of the axis-angle argument; the other
+ * elements of this matrix are unchanged; a singular value
+ * decomposition is performed on this object's upper 3x3 matrix to
+ * factor out the scale, then this object's upper 3x3 matrix components
+ * are replaced by the matrix equivalent of the axis-angle,
+ * and then the scale is reapplied to the rotational components.
+ * @param a1 the axis-angle to be converted (x, y, z, angle)
+ */
+ public final void setRotation(AxisAngle4f a1){
+ double[] tmp_rot = new double[9]; // scratch matrix
+ double[] tmp_scale = new double[3]; // scratch matrix
+
+ getScaleRotate( tmp_scale, tmp_rot );
+
+ double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z);
+ if( mag < EPS ) {
+ m00 = 1.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+
+ m10 = 0.0f;
+ m11 = 1.0f;
+ m12 = 0.0f;
+
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 1.0f;
+ } else {
+ mag = 1.0/mag;
+ double ax = a1.x*mag;
+ double ay = a1.y*mag;
+ double az = a1.z*mag;
+
+ double sinTheta = Math.sin(a1.angle);
+ double cosTheta = Math.cos(a1.angle);
+ double t = 1.0 - cosTheta;
+
+ double xz = a1.x * a1.z;
+ double xy = a1.x * a1.y;
+ double yz = a1.y * a1.z;
+
+ m00 = (float)((t * ax * ax + cosTheta)*tmp_scale[0]);
+ m01 = (float)((t * xy - sinTheta * az)*tmp_scale[1]);
+ m02 = (float)((t * xz + sinTheta * ay)*tmp_scale[2]);
+
+ m10 = (float)((t * xy + sinTheta * az)*tmp_scale[0]);
+ m11 = (float)((t * ay * ay + cosTheta)*tmp_scale[1]);
+ m12 = (float)((t * yz - sinTheta * ax)*tmp_scale[2]);
+
+ m20 = (float)((t * xz - sinTheta * ay)*tmp_scale[0]);
+ m21 = (float)((t * yz + sinTheta * ax)*tmp_scale[1]);
+ m22 = (float)((t * az * az + cosTheta)*tmp_scale[2]);
+ }
+
+
+ }
+
+ /**
+ * Sets this matrix to all zeros.
+ */
+ public final void setZero()
+ {
+ m00 = 0.0f;
+ m01 = 0.0f;
+ m02 = 0.0f;
+ m03 = 0.0f;
+ m10 = 0.0f;
+ m11 = 0.0f;
+ m12 = 0.0f;
+ m13 = 0.0f;
+ m20 = 0.0f;
+ m21 = 0.0f;
+ m22 = 0.0f;
+ m23 = 0.0f;
+ m30 = 0.0f;
+ m31 = 0.0f;
+ m32 = 0.0f;
+ m33 = 0.0f;
+ }
+
+ /**
+ * Negates the value of this matrix: this = -this.
+ */
+ public final void negate()
+ {
+ m00 = -m00;
+ m01 = -m01;
+ m02 = -m02;
+ m03 = -m03;
+ m10 = -m10;
+ m11 = -m11;
+ m12 = -m12;
+ m13 = -m13;
+ m20 = -m20;
+ m21 = -m21;
+ m22 = -m22;
+ m23 = -m23;
+ m30 = -m30;
+ m31 = -m31;
+ m32 = -m32;
+ m33 = -m33;
+ }
+
+ /**
+ * Sets the value of this matrix equal to the negation of
+ * of the Matrix4f parameter.
+ * @param m1 the source matrix
+ */
+ public final void negate(Matrix4f m1)
+ {
+ this.m00 = -m1.m00;
+ this.m01 = -m1.m01;
+ this.m02 = -m1.m02;
+ this.m03 = -m1.m03;
+ this.m10 = -m1.m10;
+ this.m11 = -m1.m11;
+ this.m12 = -m1.m12;
+ this.m13 = -m1.m13;
+ this.m20 = -m1.m20;
+ this.m21 = -m1.m21;
+ this.m22 = -m1.m22;
+ this.m23 = -m1.m23;
+ this.m30 = -m1.m30;
+ this.m31 = -m1.m31;
+ this.m32 = -m1.m32;
+ this.m33 = -m1.m33;
+ }
+ private final void getScaleRotate(double scales[], double rots[]) {
+
+ double[] tmp = new double[9]; // scratch matrix
+ tmp[0] = m00;
+ tmp[1] = m01;
+ tmp[2] = m02;
+
+ tmp[3] = m10;
+ tmp[4] = m11;
+ tmp[5] = m12;
+
+ tmp[6] = m20;
+ tmp[7] = m21;
+ tmp[8] = m22;
+
+ Matrix3d.compute_svd( tmp, scales, rots);
+
+ return;
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ Matrix4f m1 = null;
+ try {
+ m1 = (Matrix4f)super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+
+ return m1;
+ }
+
+}
diff --git a/src/javax/vecmath/MismatchedSizeException.java b/src/javax/vecmath/MismatchedSizeException.java
new file mode 100644
index 0000000..062194c
--- /dev/null
+++ b/src/javax/vecmath/MismatchedSizeException.java
@@ -0,0 +1,38 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+/**
+ * Indicates that an operation cannot be completed properly because
+ * of a mismatch in the sizes of object attributes.
+ */
+public class MismatchedSizeException extends RuntimeException{
+
+
+/**
+ * Create the exception object with default values.
+ */
+ public MismatchedSizeException(){
+ }
+
+/**
+ * Create the exception object that outputs a message.
+ * @param str the message string to be output.
+ */
+ public MismatchedSizeException(String str){
+
+ super(str);
+ }
+
+}
+
diff --git a/src/javax/vecmath/Point2d.java b/src/javax/vecmath/Point2d.java
new file mode 100644
index 0000000..0e819d3
--- /dev/null
+++ b/src/javax/vecmath/Point2d.java
@@ -0,0 +1,144 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 2 element point that is represented by double precision floating
+ * point x,y coordinates.
+ *
+ */
+public class Point2d extends Tuple2d implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 1133748791492571954L;
+
+ /**
+ * Constructs and initializes a Point2d from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Point2d(double x, double y)
+ {
+ super(x,y);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2d from the specified array.
+ * @param p the array of length 2 containing xy in order
+ */
+ public Point2d(double[] p)
+ {
+ super(p);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2d from the specified Point2d.
+ * @param p1 the Point2d containing the initialization x y data
+ */
+ public Point2d(Point2d p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2d from the specified Point2f.
+ * @param p1 the Point2f containing the initialization x y data
+ */
+ public Point2d(Point2f p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2d from the specified Tuple2d.
+ * @param t1 the Tuple2d containing the initialization x y data
+ */
+ public Point2d(Tuple2d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2d from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public Point2d(Tuple2f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2d to (0,0).
+ */
+ public Point2d()
+ {
+ super();
+ }
+
+ /**
+ * Computes the square of the distance between this point and point p1.
+ * @param p1 the other point
+ */
+ public final double distanceSquared(Point2d p1)
+ {
+ double dx, dy;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ return dx*dx+dy*dy;
+ }
+
+ /**
+ * Computes the distance between this point and point p1.
+ * @param p1 the other point
+ */
+ public final double distance(Point2d p1)
+ {
+ double dx, dy;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ return Math.sqrt(dx*dx+dy*dy);
+ }
+
+
+ /**
+ * Computes the L-1 (Manhattan) distance between this point and
+ * point p1. The L-1 distance is equal to abs(x1-x2) + abs(y1-y2).
+ * @param p1 the other point
+ */
+ public final double distanceL1(Point2d p1)
+ {
+ return( Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y));
+ }
+
+ /**
+ * Computes the L-infinite distance between this point and
+ * point p1. The L-infinite distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2)].
+ * @param p1 the other point
+ */
+ public final double distanceLinf(Point2d p1)
+ {
+ return(Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y)));
+ }
+
+}
diff --git a/src/javax/vecmath/Point2f.java b/src/javax/vecmath/Point2f.java
new file mode 100644
index 0000000..acb3243
--- /dev/null
+++ b/src/javax/vecmath/Point2f.java
@@ -0,0 +1,145 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 2 element point that is represented by single precision floating
+ * point x,y coordinates.
+ *
+ */
+public class Point2f extends Tuple2f implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = -4801347926528714435L;
+
+ /**
+ * Constructs and initializes a Point2f from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Point2f(float x, float y)
+ {
+ super(x,y);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2f from the specified array.
+ * @param p the array of length 2 containing xy in order
+ */
+ public Point2f(float[] p)
+ {
+ super(p);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2f from the specified Point2f.
+ * @param p1 the Point2f containing the initialization x y data
+ */
+ public Point2f(Point2f p1)
+ {
+ super(p1);
+ }
+
+ /**
+ * Constructs and initializes a Point2f from the specified Point2d.
+ * @param p1 the Point2d containing the initialization x y z data
+ */
+ public Point2f(Point2d p1)
+ {
+ super(p1);
+ }
+
+
+
+ /**
+ * Constructs and initializes a Point2f from the specified Tuple2d.
+ * @param t1 the Tuple2d containing the initialization x y z data
+ */
+ public Point2f(Tuple2d t1)
+ {
+ super(t1);
+ }
+
+
+
+ /**
+ * Constructs and initializes a Point2f from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public Point2f(Tuple2f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point2f to (0,0).
+ */
+ public Point2f()
+ {
+ super();
+ }
+
+ /**
+ * Computes the square of the distance between this point and point p1.
+ * @param p1 the other point
+ */
+ public final float distanceSquared(Point2f p1)
+ {
+ float dx, dy;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ return dx*dx+dy*dy;
+ }
+
+ /**
+ * Computes the distance between this point and point p1.
+ * @param p1 the other point
+ */
+ public final float distance(Point2f p1)
+ {
+ float dx, dy;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ return (float) Math.sqrt(dx*dx+dy*dy);
+ }
+
+
+ /**
+ * Computes the L-1 (Manhattan) distance between this point and
+ * point p1. The L-1 distance is equal to abs(x1-x2) + abs(y1-y2).
+ * @param p1 the other point
+ */
+ public final float distanceL1(Point2f p1)
+ {
+ return( Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y));
+ }
+
+ /**
+ * Computes the L-infinite distance between this point and
+ * point p1. The L-infinite distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2)].
+ * @param p1 the other point
+ */
+ public final float distanceLinf(Point2f p1)
+ {
+ return(Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y)));
+ }
+
+}
diff --git a/src/javax/vecmath/Point3d.java b/src/javax/vecmath/Point3d.java
new file mode 100644
index 0000000..3acf542
--- /dev/null
+++ b/src/javax/vecmath/Point3d.java
@@ -0,0 +1,175 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3 element point that is represented by double precision floating point
+ * x,y,z coordinates.
+ *
+ */
+public class Point3d extends Tuple3d implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 5718062286069042927L;
+
+ /**
+ * Constructs and initializes a Point3d from the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Point3d(double x, double y, double z)
+ {
+ super(x,y,z);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3d from the array of length 3.
+ * @param p the array of length 3 containing xyz in order
+ */
+ public Point3d(double[] p)
+ {
+ super(p);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3d from the specified Point3d.
+ * @param p1 the Point3d containing the initialization x y z data
+ */
+ public Point3d(Point3d p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3d from the specified Point3f.
+ * @param p1 the Point3f containing the initialization x y z data
+ */
+ public Point3d(Point3f p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3d from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Point3d(Tuple3f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3d from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Point3d(Tuple3d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3d to (0,0,0).
+ */
+ public Point3d()
+ {
+ super();
+ }
+
+
+ /**
+ * Returns the square of the distance between this point and point p1.
+ * @param p1 the other point
+ * @return the square of the distance
+ */
+ public final double distanceSquared(Point3d p1)
+ {
+ double dx, dy, dz;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ return (dx*dx+dy*dy+dz*dz);
+ }
+
+
+ /**
+ * Returns the distance between this point and point p1.
+ * @param p1 the other point
+ * @return the distance
+ */
+ public final double distance(Point3d p1)
+ {
+ double dx, dy, dz;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ return Math.sqrt(dx*dx+dy*dy+dz*dz);
+ }
+
+
+ /**
+ * Computes the L-1 (Manhattan) distance between this point and
+ * point p1. The L-1 distance is equal to:
+ * abs(x1-x2) + abs(y1-y2) + abs(z1-z2).
+ * @param p1 the other point
+ * @return the L-1 distance
+ */
+ public final double distanceL1(Point3d p1) {
+ return Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y) +
+ Math.abs(this.z-p1.z);
+ }
+
+
+ /**
+ * Computes the L-infinite distance between this point and
+ * point p1. The L-infinite distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)].
+ * @param p1 the other point
+ * @return the L-infinite distance
+ */
+ public final double distanceLinf(Point3d p1) {
+ double tmp;
+ tmp = Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y));
+
+ return Math.max(tmp,Math.abs(this.z-p1.z));
+ }
+
+
+ /**
+ * Multiplies each of the x,y,z components of the Point4d parameter
+ * by 1/w and places the projected values into this point.
+ * @param p1 the source Point4d, which is not modified
+ */
+ public final void project(Point4d p1)
+ {
+ double oneOw;
+
+ oneOw = 1/p1.w;
+ x = p1.x*oneOw;
+ y = p1.y*oneOw;
+ z = p1.z*oneOw;
+
+ }
+
+
+}
diff --git a/src/javax/vecmath/Point3f.java b/src/javax/vecmath/Point3f.java
new file mode 100644
index 0000000..1b0a372
--- /dev/null
+++ b/src/javax/vecmath/Point3f.java
@@ -0,0 +1,178 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3 element point that is represented by single precision floating point
+ * x,y,z coordinates.
+ *
+ */
+public class Point3f extends Tuple3f implements java.io.Serializable {
+
+
+ // Compatible with 1.1
+ static final long serialVersionUID = -8689337816398030143L;
+
+ /**
+ * Constructs and initializes a Point3f from the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Point3f(float x, float y, float z)
+ {
+ super(x,y,z);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3f from the array of length 3.
+ * @param p the array of length 3 containing xyz in order
+ */
+ public Point3f(float[] p)
+ {
+ super(p);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3f from the specified Point3f.
+ * @param p1 the Point3f containing the initialization x y z data
+ */
+ public Point3f(Point3f p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3f from the specified Point3d.
+ * @param p1 the Point3d containing the initialization x y z data
+ */
+ public Point3f(Point3d p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3f from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Point3f(Tuple3f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3f from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Point3f(Tuple3d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3f to (0,0,0).
+ */
+ public Point3f()
+ {
+ super();
+ }
+
+
+ /**
+ * Computes the square of the distance between this point and
+ * point p1.
+ * @param p1 the other point
+ * @return the square of the distance
+ */
+ public final float distanceSquared(Point3f p1)
+ {
+ float dx, dy, dz;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ return dx*dx+dy*dy+dz*dz;
+ }
+
+
+ /**
+ * Computes the distance between this point and point p1.
+ * @param p1 the other point
+ * @return the distance
+ */
+ public final float distance(Point3f p1)
+ {
+ float dx, dy, dz;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ return (float) Math.sqrt(dx*dx+dy*dy+dz*dz);
+ }
+
+
+ /**
+ * Computes the L-1 (Manhattan) distance between this point and
+ * point p1. The L-1 distance is equal to:
+ * abs(x1-x2) + abs(y1-y2) + abs(z1-z2).
+ * @param p1 the other point
+ * @return the L-1 distance
+ */
+ public final float distanceL1(Point3f p1)
+ {
+ return( Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y) + Math.abs(this.z-p1.z));
+ }
+
+
+ /**
+ * Computes the L-infinite distance between this point and
+ * point p1. The L-infinite distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)].
+ * @param p1 the other point
+ * @return the L-infinite distance
+ */
+ public final float distanceLinf(Point3f p1)
+ {
+ float tmp;
+ tmp = Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y));
+ return(Math.max(tmp,Math.abs(this.z-p1.z)));
+
+ }
+
+
+ /**
+ * Multiplies each of the x,y,z components of the Point4f parameter
+ * by 1/w and places the projected values into this point.
+ * @param p1 the source Point4f, which is not modified
+ */
+ public final void project(Point4f p1)
+ {
+ float oneOw;
+
+ oneOw = 1/p1.w;
+ x = p1.x*oneOw;
+ y = p1.y*oneOw;
+ z = p1.z*oneOw;
+
+ }
+
+
+}
diff --git a/src/javax/vecmath/Point3i.java b/src/javax/vecmath/Point3i.java
new file mode 100644
index 0000000..a84c35f
--- /dev/null
+++ b/src/javax/vecmath/Point3i.java
@@ -0,0 +1,66 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3 element point represented by signed integer x,y,z
+ * coordinates.
+ *
+ * @since Java 3D 1.2
+ */
+public class Point3i extends Tuple3i implements java.io.Serializable {
+
+ // Compatible with 1.2
+ static final long serialVersionUID = 6149289077348153921L;
+
+ /**
+ * Constructs and initializes a Point3i from the specified
+ * x, y, and z coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Point3i(int x, int y, int z) {
+ super(x, y, z);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3i from the array of length 3.
+ * @param t the array of length 3 containing x, y, and z in order.
+ */
+ public Point3i(int[] t) {
+ super(t);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3i from the specified Tuple3i.
+ * @param t1 the Tuple3i containing the initialization x, y, and z
+ * data.
+ */
+ public Point3i(Tuple3i t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point3i to (0,0,0).
+ */
+ public Point3i() {
+ super();
+ }
+
+}
diff --git a/src/javax/vecmath/Point4d.java b/src/javax/vecmath/Point4d.java
new file mode 100644
index 0000000..218b4d2
--- /dev/null
+++ b/src/javax/vecmath/Point4d.java
@@ -0,0 +1,210 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4 element vector represented by double precision floating point
+ * x,y,z,w coordinates.
+ *
+ */
+public class Point4d extends Tuple4d implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 1733471895962736949L;
+
+
+ /**
+ * Constructs and initializes a Point4d from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Point4d(double x, double y, double z, double w)
+ {
+ super(x,y,z,w);
+ }
+
+ /**
+ * Constructs and initializes a Point4d from the coordinates contained
+ * in the array.
+ * @param p the array of length 4 containing xyzw in order
+ */
+ public Point4d(double[] p)
+ {
+ super(p);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4d from the specified Point4d.
+ * @param p1 the Point4d containing the initialization x y z w data
+ */
+ public Point4d(Point4d p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4d from the specified Point4f.
+ * @param p1 the Point4f containing the initialization x y z w data
+ */
+ public Point4d(Point4f p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4d from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Point4d(Tuple4f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4d from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Point4d(Tuple4d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4d from the specified Tuple3d.
+ * The x,y,z components of this point are set to the corresponding
+ * components of tuple t1. The w component of this point
+ * is set to 1.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public Point4d(Tuple3d t1) {
+ super(t1.x, t1.y, t1.z, 1.0);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4d to (0,0,0,0).
+ */
+ public Point4d()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the x,y,z components of this point to the corresponding
+ * components of tuple t1. The w component of this point
+ * is set to 1.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Tuple3d t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = 1.0;
+ }
+
+
+ /**
+ * Returns the square of the distance between this point and point p1.
+ * @param p1 the first point
+ * @return the square of distance between this point and point p1
+ */
+ public final double distanceSquared(Point4d p1)
+ {
+ double dx, dy, dz, dw;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ dw = this.w-p1.w;
+ return (dx*dx+dy*dy+dz*dz+dw*dw);
+ }
+
+
+ /**
+ * Returns the distance between this point and point p1.
+ * @param p1 the first point
+ * @return the distance between these this point and point p1.
+ */
+ public final double distance(Point4d p1)
+ {
+ double dx, dy, dz, dw;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ dw = this.w-p1.w;
+ return Math.sqrt(dx*dx+dy*dy+dz*dz+dw*dw);
+ }
+
+
+ /**
+ * Computes the L-1 (Manhattan) distance between this point and
+ * point p1. The L-1 distance is equal to:
+ * abs(x1-x2) + abs(y1-y2) + abs(z1-z2) + abs(w1-w2).
+ * @param p1 the other point
+ * @return the L-1 distance
+ */
+ public final double distanceL1(Point4d p1) {
+ return Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y) +
+ Math.abs(this.z-p1.z) + Math.abs(this.w-p1.w);
+ }
+
+ /**
+ * Computes the L-infinite distance between this point and
+ * point p1. The L-infinite distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(w1-w2)].
+ * @param p1 the other point
+ * @return the L-infinite distance
+ */
+ public final double distanceLinf(Point4d p1) {
+ double t1, t2;
+ t1 = Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y));
+ t2 = Math.max( Math.abs(this.z-p1.z), Math.abs(this.w-p1.w));
+
+ return Math.max(t1,t2);
+ }
+
+ /**
+ * Multiplies each of the x,y,z components of the Point4d parameter
+ * by 1/w, places the projected values into this point, and places
+ * a 1 as the w parameter of this point.
+ * @param p1 the source Point4d, which is not modified
+ */
+ public final void project(Point4d p1)
+ {
+ double oneOw;
+
+ oneOw = 1/p1.w;
+ x = p1.x*oneOw;
+ y = p1.y*oneOw;
+ z = p1.z*oneOw;
+ w = 1.0;
+
+ }
+
+
+}
diff --git a/src/javax/vecmath/Point4f.java b/src/javax/vecmath/Point4f.java
new file mode 100644
index 0000000..8c7be5e
--- /dev/null
+++ b/src/javax/vecmath/Point4f.java
@@ -0,0 +1,212 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4 element point represented by single precision floating point x,y,z,w
+ * coordinates.
+ *
+ */
+public class Point4f extends Tuple4f implements java.io.Serializable {
+
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 4643134103185764459L;
+
+ /**
+ * Constructs and initializes a Point4f from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Point4f(float x, float y, float z, float w)
+ {
+ super(x,y,z,w);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f from the array of length 4.
+ * @param p the array of length 4 containing xyzw in order
+ */
+ public Point4f(float[] p)
+ {
+ super(p);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f from the specified Point4f.
+ * @param p1 the Point4f containing the initialization x y z w data
+ */
+ public Point4f(Point4f p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f from the specified Point4d.
+ * @param p1 the Point4d containing the initialization x y z w data
+ */
+ public Point4f(Point4d p1)
+ {
+ super(p1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Point4f(Tuple4f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Point4f(Tuple4d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f from the specified Tuple3f.
+ * The x,y,z components of this point are set to the corresponding
+ * components of tuple t1. The w component of this point
+ * is set to 1.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public Point4f(Tuple3f t1) {
+ super(t1.x, t1.y, t1.z, 1.0f);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4f to (0,0,0,0).
+ */
+ public Point4f()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the x,y,z components of this point to the corresponding
+ * components of tuple t1. The w component of this point
+ * is set to 1.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Tuple3f t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = 1.0f;
+ }
+
+
+ /**
+ * Computes the square of the distance between this point and point p1.
+ * @param p1 the other point
+ * @return the square of distance between these two points as a float
+ */
+ public final float distanceSquared(Point4f p1)
+ {
+ float dx, dy, dz, dw;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ dw = this.w-p1.w;
+ return (dx*dx+dy*dy+dz*dz+dw*dw);
+ }
+
+
+ /**
+ * Computes the distance between this point and point p1.
+ * @param p1 the other point
+ * @return the distance between the two points
+ */
+ public final float distance(Point4f p1)
+ {
+ float dx, dy, dz, dw;
+
+ dx = this.x-p1.x;
+ dy = this.y-p1.y;
+ dz = this.z-p1.z;
+ dw = this.w-p1.w;
+ return (float) Math.sqrt(dx*dx+dy*dy+dz*dz+dw*dw);
+ }
+
+
+ /**
+ * Computes the L-1 (Manhattan) distance between this point and
+ * point p1. The L-1 distance is equal to:
+ * abs(x1-x2) + abs(y1-y2) + abs(z1-z2) + abs(w1-w2).
+ * @param p1 the other point
+ * @return the L-1 distance
+ */
+ public final float distanceL1(Point4f p1)
+ {
+ return( Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y) + Math.abs(this.z-p1.z) + Math.abs(this.w-p1.w));
+ }
+
+
+ /**
+ * Computes the L-infinite distance between this point and
+ * point p1. The L-infinite distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(w1-w2)].
+ * @param p1 the other point
+ * @return the L-infinite distance
+ */
+ public final float distanceLinf(Point4f p1)
+ {
+ float t1, t2;
+ t1 = Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y));
+ t2 = Math.max( Math.abs(this.z-p1.z), Math.abs(this.w-p1.w));
+
+ return(Math.max(t1,t2));
+
+ }
+
+ /**
+ * Multiplies each of the x,y,z components of the Point4f parameter
+ * by 1/w, places the projected values into this point, and places
+ * a 1 as the w parameter of this point.
+ * @param p1 the source Point4f, which is not modified
+ */
+ public final void project(Point4f p1)
+ {
+ float oneOw;
+
+ oneOw = 1/p1.w;
+ x = p1.x*oneOw;
+ y = p1.y*oneOw;
+ z = p1.z*oneOw;
+ w = 1.0f;
+
+ }
+
+}
diff --git a/src/javax/vecmath/Point4i.java b/src/javax/vecmath/Point4i.java
new file mode 100644
index 0000000..13c6962
--- /dev/null
+++ b/src/javax/vecmath/Point4i.java
@@ -0,0 +1,67 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4 element point represented by signed integer x,y,z,w
+ * coordinates.
+ *
+ * @since Java 3D 1.2
+ */
+public class Point4i extends Tuple4i implements java.io.Serializable {
+
+ // Combatible with 1.2
+ static final long serialVersionUID = 620124780244617983L;
+
+ /**
+ * Constructs and initializes a Point4i from the specified
+ * x, y, z, and w coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Point4i(int x, int y, int z, int w) {
+ super(x, y, z, w);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4i from the array of length 4.
+ * @param t the array of length 4 containing x, y, z, and w in order.
+ */
+ public Point4i(int[] t) {
+ super(t);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4i from the specified Tuple4i.
+ * @param t1 the Tuple4i containing the initialization x, y, z,
+ * and w data.
+ */
+ public Point4i(Tuple4i t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Point4i to (0,0,0,0).
+ */
+ public Point4i() {
+ super();
+ }
+
+}
diff --git a/src/javax/vecmath/Quat4d.java b/src/javax/vecmath/Quat4d.java
new file mode 100644
index 0000000..c6232f6
--- /dev/null
+++ b/src/javax/vecmath/Quat4d.java
@@ -0,0 +1,662 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4-element quaternion represented by double precision floating
+ * point x,y,z,w coordinates. The quaternion is always normalized.
+ *
+ */
+public class Quat4d extends Tuple4d implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 7577479888820201099L;
+
+ final static double EPS = 0.000001;
+ final static double EPS2 = 1.0e-30;
+ final static double PIO2 = 1.57079632679;
+
+ /**
+ * Constructs and initializes a Quat4d from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w scalar component
+ */
+ public Quat4d(double x, double y, double z, double w)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( x*x + y*y + z*z + w*w );
+ this.x = x*mag;
+ this.y = y*mag;
+ this.z = z*mag;
+ this.w = w*mag;
+
+ }
+
+ /**
+ * Constructs and initializes a Quat4d from the array of length 4.
+ * @param q the array of length 4 containing xyzw in order
+ */
+ public Quat4d(double[] q)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] );
+ x = q[0]*mag;
+ y = q[1]*mag;
+ z = q[2]*mag;
+ w = q[3]*mag;
+
+ }
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Quat4d.
+ * @param q1 the Quat4d containing the initialization x y z w data
+ */
+ public Quat4d(Quat4d q1)
+ {
+ super(q1);
+ }
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Quat4f.
+ * @param q1 the Quat4f containing the initialization x y z w data
+ */
+ public Quat4d(Quat4f q1)
+ {
+ super(q1);
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Quat4d(Tuple4f t1)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
+ x = t1.x*mag;
+ y = t1.y*mag;
+ z = t1.z*mag;
+ w = t1.w*mag;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4d from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Quat4d(Tuple4d t1)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
+ x = t1.x*mag;
+ y = t1.y*mag;
+ z = t1.z*mag;
+ w = t1.w*mag;
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4d to (0,0,0,0).
+ */
+ public Quat4d()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the conjugate of quaternion q1.
+ * @param q1 the source vector
+ */
+ public final void conjugate(Quat4d q1)
+ {
+ this.x = -q1.x;
+ this.y = -q1.y;
+ this.z = -q1.z;
+ this.w = q1.w;
+ }
+
+
+ /**
+ * Negate the value of of each of this quaternion's x,y,z coordinates
+ * in place.
+ */
+ public final void conjugate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * quaternions q1 and q2 (this = q1 * q2).
+ * Note that this is safe for aliasing (e.g. this can be q1 or q2).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mul(Quat4d q1, Quat4d q2)
+ {
+ if (this != q1 && this != q2) {
+ this.w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ this.x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ this.y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ } else {
+ double x, y, w;
+
+ w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * itself and q1 (this = this * q1).
+ * @param q1 the other quaternion
+ */
+ public final void mul(Quat4d q1)
+ {
+ double x, y, w;
+
+ w = this.w*q1.w - this.x*q1.x - this.y*q1.y - this.z*q1.z;
+ x = this.w*q1.x + q1.w*this.x + this.y*q1.z - this.z*q1.y;
+ y = this.w*q1.y + q1.w*this.y - this.x*q1.z + this.z*q1.x;
+ this.z = this.w*q1.z + q1.w*this.z + this.x*q1.y - this.y*q1.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Multiplies quaternion q1 by the inverse of quaternion q2 and places
+ * the value into this quaternion. The value of both argument quaternions
+ * is preservered (this = q1 * q2^-1).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mulInverse(Quat4d q1, Quat4d q2)
+ {
+ Quat4d tempQuat = new Quat4d(q2);
+
+ tempQuat.inverse();
+ this.mul(q1, tempQuat);
+ }
+
+
+
+ /**
+ * Multiplies this quaternion by the inverse of quaternion q1 and places
+ * the value into this quaternion. The value of the argument quaternion
+ * is preserved (this = this * q^-1).
+ * @param q1 the other quaternion
+ */
+ public final void mulInverse(Quat4d q1)
+ {
+ Quat4d tempQuat = new Quat4d(q1);
+
+ tempQuat.inverse();
+ this.mul(tempQuat);
+ }
+
+
+ /**
+ * Sets the value of this quaternion to quaternion inverse of quaternion q1.
+ * @param q1 the quaternion to be inverted
+ */
+ public final void inverse(Quat4d q1)
+ {
+ double norm;
+
+ norm = 1.0/(q1.w*q1.w + q1.x*q1.x + q1.y*q1.y + q1.z*q1.z);
+ this.w = norm*q1.w;
+ this.x = -norm*q1.x;
+ this.y = -norm*q1.y;
+ this.z = -norm*q1.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion inverse of itself.
+ */
+ public final void inverse()
+ {
+ double norm;
+
+ norm = 1.0/(this.w*this.w + this.x*this.x + this.y*this.y + this.z*this.z);
+ this.w *= norm;
+ this.x *= -norm;
+ this.y *= -norm;
+ this.z *= -norm;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the normalized value
+ * of quaternion q1.
+ * @param q1 the quaternion to be normalized.
+ */
+ public final void normalize(Quat4d q1)
+ {
+ double norm;
+
+ norm = (q1.x*q1.x + q1.y*q1.y + q1.z*q1.z + q1.w*q1.w);
+
+ if (norm > 0.0) {
+ norm = 1.0/Math.sqrt(norm);
+ this.x = norm*q1.x;
+ this.y = norm*q1.y;
+ this.z = norm*q1.z;
+ this.w = norm*q1.w;
+ } else {
+ this.x = 0.0;
+ this.y = 0.0;
+ this.z = 0.0;
+ this.w = 0.0;
+ }
+ }
+
+
+ /**
+ * Normalizes the value of this quaternion in place.
+ */
+ public final void normalize()
+ {
+ double norm;
+
+ norm = (this.x*this.x + this.y*this.y + this.z*this.z + this.w*this.w);
+
+ if (norm > 0.0) {
+ norm = 1.0 / Math.sqrt(norm);
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ this.w *= norm;
+ } else {
+ this.x = 0.0;
+ this.y = 0.0;
+ this.z = 0.0;
+ this.w = 0.0;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = ((m1.m21 - m1.m12)*ww);
+ this.y = ((m1.m02 - m1.m20)*ww);
+ this.z = ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = Math.sqrt(ww);
+ ww = 1.0/(2.0*this.x);
+ this.y = (m1.m10*ww);
+ this.z = (m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = (m1.m21)/(2.0*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix4d
+ */
+ public final void set(Matrix4d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2){
+ this.x = Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0.0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = m1.m21/(2.0*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix3f
+ */
+ public final void set(Matrix3f m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = ((m1.m21 - m1.m12)*ww);
+ this.y = ((m1.m02 - m1.m20)*ww);
+ this.z = ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = (m1.m10*ww);
+ this.z = (m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = (m1.m21/(2.0*this.y));
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = Math.sqrt(ww);
+ this.z = m1.m21/(2.0*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4f a)
+ {
+ double mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+
+ amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
+ if( amag < EPS ) {
+ w = 0.0;
+ x = 0.0;
+ y = 0.0;
+ z = 0.0;
+ } else {
+ mag = Math.sin(a.angle/2.0);
+ amag = 1.0/amag;
+ w = Math.cos(a.angle/2.0);
+ x = a.x*amag*mag;
+ y = a.y*amag*mag;
+ z = a.z*amag*mag;
+ }
+
+ }
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4d a)
+ {
+ double mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+
+ amag = Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
+ if( amag < EPS ) {
+ w = 0.0;
+ x = 0.0;
+ y = 0.0;
+ z = 0.0;
+ } else {
+ amag = 1.0/amag;
+ mag = Math.sin(a.angle/2.0);
+ w = Math.cos(a.angle/2.0);
+ x = a.x*amag*mag;
+ y = a.y*amag*mag;
+ z = a.z*amag*mag;
+ }
+
+ }
+
+ /**
+ * Performs a great circle interpolation between this quaternion
+ * and the quaternion parameter and places the result into this
+ * quaternion.
+ * @param q1 the other quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4d q1, double alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+ double dot,s1,s2,om,sinom;
+
+ dot = x*q1.x + y*q1.y + z*q1.z + w*q1.w;
+
+ if ( dot < 0 ) {
+ // switch the quaterion values
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ }
+
+ if ( (1.0 - Math.abs(dot) ) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+
+ w = s1*w + s2*q1.w;
+ x = s1*x + s2*q1.x;
+ y = s1*y + s2*q1.y;
+ z = s1*z + s2*q1.z;
+ }
+
+/**
+ * Performs a great circle interpolation between quaternion q1
+ * and quaternion q2 and places the result into this quaternion.
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4d q1, Quat4d q2, double alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+ double dot,s1,s2,om,sinom;
+
+ dot = q2.x*q1.x + q2.y*q1.y + q2.z*q1.z + q2.w*q1.w;
+
+ if ( dot < 0 ) {
+ // switch the quaterion values
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ }
+
+ if ( (1.0 - Math.abs(dot) ) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+ w = s1*q1.w + s2*q2.w;
+ x = s1*q1.x + s2*q2.x;
+ y = s1*q1.y + s2*q2.y;
+ z = s1*q1.z + s2*q2.z;
+ }
+
+}
diff --git a/src/javax/vecmath/Quat4f.java b/src/javax/vecmath/Quat4f.java
new file mode 100644
index 0000000..f4fecfa
--- /dev/null
+++ b/src/javax/vecmath/Quat4f.java
@@ -0,0 +1,674 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4 element unit quaternion represented by single precision floating
+ * point x,y,z,w coordinates. The quaternion is always normalized.
+ *
+ */
+public class Quat4f extends Tuple4f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 2675933778405442383L;
+
+ final static double EPS = 0.000001;
+ final static double EPS2 = 1.0e-30;
+ final static double PIO2 = 1.57079632679;
+
+ /**
+ * Constructs and initializes a Quat4f from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w scalar component
+ */
+ public Quat4f(float x, float y, float z, float w)
+ {
+ float mag;
+ mag = (float)(1.0/Math.sqrt( x*x + y*y + z*z + w*w ));
+ this.x = x*mag;
+ this.y = y*mag;
+ this.z = z*mag;
+ this.w = w*mag;
+
+ }
+
+ /**
+ * Constructs and initializes a Quat4f from the array of length 4.
+ * @param q the array of length 4 containing xyzw in order
+ */
+ public Quat4f(float[] q)
+ {
+ float mag;
+ mag = (float)(1.0/Math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] ));
+ x = q[0]*mag;
+ y = q[1]*mag;
+ z = q[2]*mag;
+ w = q[3]*mag;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Quat4f.
+ * @param q1 the Quat4f containing the initialization x y z w data
+ */
+ public Quat4f(Quat4f q1)
+ {
+ super(q1);
+ }
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Quat4d.
+ * @param q1 the Quat4d containing the initialization x y z w data
+ */
+ public Quat4f(Quat4d q1)
+ {
+ super(q1);
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Quat4f(Tuple4f t1)
+ {
+ float mag;
+ mag = (float)(1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w ));
+ x = t1.x*mag;
+ y = t1.y*mag;
+ z = t1.z*mag;
+ w = t1.w*mag;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Quat4f(Tuple4d t1)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
+ x = (float)(t1.x*mag);
+ y = (float)(t1.y*mag);
+ z = (float)(t1.z*mag);
+ w = (float)(t1.w*mag);
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f to (0.0,0.0,0.0,0.0).
+ */
+ public Quat4f()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the conjugate of quaternion q1.
+ * @param q1 the source vector
+ */
+ public final void conjugate(Quat4f q1)
+ {
+ this.x = -q1.x;
+ this.y = -q1.y;
+ this.z = -q1.z;
+ this.w = q1.w;
+ }
+
+ /**
+ * Sets the value of this quaternion to the conjugate of itself.
+ */
+ public final void conjugate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * quaternions q1 and q2 (this = q1 * q2).
+ * Note that this is safe for aliasing (e.g. this can be q1 or q2).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mul(Quat4f q1, Quat4f q2)
+ {
+ if (this != q1 && this != q2) {
+ this.w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ this.x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ this.y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ } else {
+ float x, y, w;
+
+ w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * itself and q1 (this = this * q1).
+ * @param q1 the other quaternion
+ */
+ public final void mul(Quat4f q1)
+ {
+ float x, y, w;
+
+ w = this.w*q1.w - this.x*q1.x - this.y*q1.y - this.z*q1.z;
+ x = this.w*q1.x + q1.w*this.x + this.y*q1.z - this.z*q1.y;
+ y = this.w*q1.y + q1.w*this.y - this.x*q1.z + this.z*q1.x;
+ this.z = this.w*q1.z + q1.w*this.z + this.x*q1.y - this.y*q1.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Multiplies quaternion q1 by the inverse of quaternion q2 and places
+ * the value into this quaternion. The value of both argument quaternions
+ * is preservered (this = q1 * q2^-1).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mulInverse(Quat4f q1, Quat4f q2)
+ {
+ Quat4f tempQuat = new Quat4f(q2);
+
+ tempQuat.inverse();
+ this.mul(q1, tempQuat);
+ }
+
+
+
+ /**
+ * Multiplies this quaternion by the inverse of quaternion q1 and places
+ * the value into this quaternion. The value of the argument quaternion
+ * is preserved (this = this * q^-1).
+ * @param q1 the other quaternion
+ */
+ public final void mulInverse(Quat4f q1)
+ {
+ Quat4f tempQuat = new Quat4f(q1);
+
+ tempQuat.inverse();
+ this.mul(tempQuat);
+ }
+
+
+
+ /**
+ * Sets the value of this quaternion to quaternion inverse of quaternion q1.
+ * @param q1 the quaternion to be inverted
+ */
+ public final void inverse(Quat4f q1)
+ {
+ float norm;
+
+ norm = 1.0f/(q1.w*q1.w + q1.x*q1.x + q1.y*q1.y + q1.z*q1.z);
+ this.w = norm*q1.w;
+ this.x = -norm*q1.x;
+ this.y = -norm*q1.y;
+ this.z = -norm*q1.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion inverse of itself.
+ */
+ public final void inverse()
+ {
+ float norm;
+
+ norm = 1.0f/(this.w*this.w + this.x*this.x + this.y*this.y + this.z*this.z);
+ this.w *= norm;
+ this.x *= -norm;
+ this.y *= -norm;
+ this.z *= -norm;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the normalized value
+ * of quaternion q1.
+ * @param q1 the quaternion to be normalized.
+ */
+ public final void normalize(Quat4f q1)
+ {
+ float norm;
+
+ norm = (q1.x*q1.x + q1.y*q1.y + q1.z*q1.z + q1.w*q1.w);
+
+ if (norm > 0.0f) {
+ norm = 1.0f/(float)Math.sqrt(norm);
+ this.x = norm*q1.x;
+ this.y = norm*q1.y;
+ this.z = norm*q1.z;
+ this.w = norm*q1.w;
+ } else {
+ this.x = (float) 0.0;
+ this.y = (float) 0.0;
+ this.z = (float) 0.0;
+ this.w = (float) 0.0;
+ }
+ }
+
+
+ /**
+ * Normalizes the value of this quaternion in place.
+ */
+ public final void normalize()
+ {
+ float norm;
+
+ norm = (this.x*this.x + this.y*this.y + this.z*this.z + this.w*this.w);
+
+ if (norm > 0.0f) {
+ norm = 1.0f / (float)Math.sqrt(norm);
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ this.w *= norm;
+ } else {
+ this.x = (float) 0.0;
+ this.y = (float) 0.0;
+ this.z = (float) 0.0;
+ this.w = (float) 0.0;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ float ww = 0.25f*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt((double)ww);
+ ww = 0.25f/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5f*(m1.m11 + m1.m22);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt((double) ww);
+ ww = 1.0f/(2.0f*this.x);
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5f*(1.0f - m1.m22);
+
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt((double) ww);
+ this.z = m1.m21/(2.0f*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix4d
+ */
+ public final void set(Matrix4d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (float) ((m1.m21 - m1.m12)*ww);
+ this.y = (float) ((m1.m02 - m1.m20)*ww);
+ this.z = (float) ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = (float)(m1.m10*ww);
+ this.z = (float)(m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt(ww);
+ this.z = (float) (m1.m21/(2.0*(double)(this.y)));
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix3f
+ */
+ public final void set(Matrix3f m1)
+ {
+ float ww = 0.25f*(m1.m00 + m1.m11 + m1.m22 + 1.0f);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt((double) ww);
+ ww = 0.25f/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5f*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt((double) ww);
+ ww = 0.5f/this.x;
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5f*(1.0f - m1.m22);
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt((double) ww);
+ this.z = m1.m21/(2.0f*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0f);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (float) ((m1.m21 - m1.m12)*ww);
+ this.y = (float) ((m1.m02 - m1.m20)*ww);
+ this.z = (float) ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = (float) (m1.m10*ww);
+ this.z = (float) (m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt(ww);
+ this.z = (float) (m1.m21/(2.0*(double)(this.y)));
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4f a)
+ {
+ float mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+ amag = (float)Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
+ if (amag < EPS ) {
+ w = 0.0f;
+ x = 0.0f;
+ y = 0.0f;
+ z = 0.0f;
+ } else {
+ amag = 1.0f/amag;
+ mag = (float)Math.sin(a.angle/2.0);
+ w = (float)Math.cos(a.angle/2.0);
+ x = a.x*amag*mag;
+ y = a.y*amag*mag;
+ z = a.z*amag*mag;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4d a)
+ {
+ float mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+
+ amag = (float)(1.0/Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z));
+
+ if (amag < EPS ) {
+ w = 0.0f;
+ x = 0.0f;
+ y = 0.0f;
+ z = 0.0f;
+ } else {
+ amag = 1.0f/amag;
+ mag = (float)Math.sin(a.angle/2.0);
+ w = (float)Math.cos(a.angle/2.0);
+ x = (float)a.x*amag*mag;
+ y = (float)a.y*amag*mag;
+ z = (float)a.z*amag*mag;
+ }
+
+ }
+
+
+ /**
+ * Performs a great circle interpolation between this quaternion
+ * and the quaternion parameter and places the result into this
+ * quaternion.
+ * @param q1 the other quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4f q1, float alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+
+ double dot,s1,s2,om,sinom;
+
+ dot = x*q1.x + y*q1.y + z*q1.z + w*q1.w;
+
+ if ( dot < 0 ) {
+ // switch the quaterion values
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ }
+
+ if ( (1.0 - Math.abs(dot) ) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+
+ w = (float)(s1*w + s2*q1.w);
+ x = (float)(s1*x + s2*q1.x);
+ y = (float)(s1*y + s2*q1.y);
+ z = (float)(s1*z + s2*q1.z);
+ }
+
+
+
+ /**
+ * Performs a great circle interpolation between quaternion q1
+ * and quaternion q2 and places the result into this quaternion.
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4f q1, Quat4f q2, float alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+
+ double dot,s1,s2,om,sinom;
+
+ dot = q2.x*q1.x + q2.y*q1.y + q2.z*q1.z + q2.w*q1.w;
+
+ if ( dot < 0 ) {
+ // switch the quaterion values
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ }
+
+ if ( (1.0 - Math.abs(dot) ) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+ w = (float)(s1*q1.w + s2*q2.w);
+ x = (float)(s1*q1.x + s2*q2.x);
+ y = (float)(s1*q1.y + s2*q2.y);
+ z = (float)(s1*q1.z + s2*q2.z);
+ }
+
+}
+
+
+
+
diff --git a/src/javax/vecmath/SingularMatrixException.java b/src/javax/vecmath/SingularMatrixException.java
new file mode 100644
index 0000000..339ba31
--- /dev/null
+++ b/src/javax/vecmath/SingularMatrixException.java
@@ -0,0 +1,35 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+/**
+ * Indicates that inverse of a matrix can not be computed.
+ */
+public class SingularMatrixException extends RuntimeException{
+
+/**
+ * Create the exception object with default values.
+ */
+ public SingularMatrixException(){
+ }
+
+/**
+ * Create the exception object that outputs message.
+ * @param str the message string to be output.
+ */
+ public SingularMatrixException(String str){
+
+ super(str);
+ }
+
+}
diff --git a/src/javax/vecmath/TexCoord2f.java b/src/javax/vecmath/TexCoord2f.java
new file mode 100644
index 0000000..7defa9f
--- /dev/null
+++ b/src/javax/vecmath/TexCoord2f.java
@@ -0,0 +1,77 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 2-element vector that is represented by single-precision floating
+ * point x,y coordinates.
+ *
+ */
+public class TexCoord2f extends Tuple2f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 7998248474800032487L;
+
+ /**
+ * Constructs and initializes a TexCoord2f from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public TexCoord2f(float x, float y)
+ {
+ super(x,y);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord2f from the specified array.
+ * @param v the array of length 2 containing xy in order
+ */
+ public TexCoord2f(float[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord2f from the specified TexCoord2f.
+ * @param v1 the TexCoord2f containing the initialization x y data
+ */
+ public TexCoord2f(TexCoord2f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord2f from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public TexCoord2f(Tuple2f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord2f to (0,0).
+ */
+ public TexCoord2f()
+ {
+ super();
+ }
+
+
+}
diff --git a/src/javax/vecmath/TexCoord3f.java b/src/javax/vecmath/TexCoord3f.java
new file mode 100644
index 0000000..05268c8
--- /dev/null
+++ b/src/javax/vecmath/TexCoord3f.java
@@ -0,0 +1,88 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3 element texture coordinate that is represented by single precision
+ * floating point x,y,z coordinates.
+ *
+ */
+public class TexCoord3f extends Tuple3f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = -3517736544731446513L;
+
+ /**
+ * Constructs and initializes a TexCoord3f from the specified xyz
+ * coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public TexCoord3f(float x, float y, float z)
+ {
+ super(x,y,z);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord3f from the array of length 3.
+ * @param v the array of length 3 containing xyz in order
+ */
+ public TexCoord3f(float[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord3f from the specified TexCoord3f.
+ * @param v1 the TexCoord3f containing the initialization x y z data
+ */
+ public TexCoord3f(TexCoord3f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord3f from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public TexCoord3f(Tuple3f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord3f from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public TexCoord3f(Tuple3d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord3f to (0,0,0).
+ */
+ public TexCoord3f()
+ {
+ super();
+ }
+
+}
diff --git a/src/javax/vecmath/TexCoord4f.java b/src/javax/vecmath/TexCoord4f.java
new file mode 100644
index 0000000..845888f
--- /dev/null
+++ b/src/javax/vecmath/TexCoord4f.java
@@ -0,0 +1,90 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4 element texture coordinate that is represented by single precision
+ * floating point x,y,z,w coordinates.
+ *
+ * @since Java 3D 1.3
+ */
+public class TexCoord4f extends Tuple4f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = -3517736544731446513L;
+
+ /**
+ * Constructs and initializes a TexCoord4f from the specified xyzw
+ * coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public TexCoord4f(float x, float y, float z, float w)
+ {
+ super(x,y,z,w);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord4f from the array of length 4.
+ * @param v the array of length w containing xyzw in order
+ */
+ public TexCoord4f(float[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord4f from the specified TexCoord4f.
+ * @param v1 the TexCoord4f containing the initialization x y z w data
+ */
+ public TexCoord4f(TexCoord4f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public TexCoord4f(Tuple4f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public TexCoord4f(Tuple4d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a TexCoord4f to (0,0,0,0).
+ */
+ public TexCoord4f()
+ {
+ super();
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple2d.java b/src/javax/vecmath/Tuple2d.java
new file mode 100644
index 0000000..21f7da7
--- /dev/null
+++ b/src/javax/vecmath/Tuple2d.java
@@ -0,0 +1,537 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A generic 2-element tuple that is represented by double-precision
+ * floating point x,y coordinates.
+ *
+ */
+public abstract class Tuple2d implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = 6205762482756093838L;
+
+ /**
+ * The x coordinate.
+ */
+ public double x;
+
+ /**
+ * The y coordinate.
+ */
+ public double y;
+
+
+ /**
+ * Constructs and initializes a Tuple2d from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Tuple2d(double x, double y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2d from the specified array.
+ * @param t the array of length 2 containing xy in order
+ */
+ public Tuple2d(double[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2d from the specified Tuple2d.
+ * @param t1 the Tuple2d containing the initialization x y data
+ */
+ public Tuple2d(Tuple2d t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2d from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public Tuple2d(Tuple2f t1)
+ {
+ this.x = (double) t1.x;
+ this.y = (double) t1.y;
+ }
+
+ /**
+ * Constructs and initializes a Tuple2d to (0,0).
+ */
+ public Tuple2d()
+ {
+ this.x = 0.0;
+ this.y = 0.0;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public final void set(double x, double y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Sets the value of this tuple from the 2 values specified in
+ * the array.
+ * @param t the array of length 2 containing xy in order
+ */
+ public final void set(double[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of the Tuple2d argument.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple2d t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of Tuple2f t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple2f t1)
+ {
+ this.x = (double) t1.x;
+ this.y = (double) t1.y;
+ }
+
+ /**
+ * Copies the value of the elements of this tuple into the array t.
+ * @param t the array that will contain the values of the vector
+ */
+ public final void get(double[] t)
+ {
+ t[0] = this.x;
+ t[1] = this.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple2d t1, Tuple2d t2)
+ {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector sum of itself and tuple t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple2d t1)
+ {
+ this.x += t1.x;
+ this.y += t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector difference of
+ * tuple t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple2d t1, Tuple2d t2)
+ {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector difference of
+ * itself and tuple t1 (this = this - t1).
+ * @param t1 the other vector
+ */
+ public final void sub(Tuple2d t1)
+ {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source vector
+ */
+ public final void negate(Tuple2d t1)
+ {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ }
+
+
+ /**
+ * Negates the value of this vector in place.
+ */
+ public final void negate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(double s, Tuple2d t1)
+ {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself.
+ * @param s the scalar value
+ */
+ public final void scale(double s)
+ {
+ this.x *= s;
+ this.y *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 and then adds tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(double s, Tuple2d t1, Tuple2d t2)
+ {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(double s, Tuple2d t1)
+ {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ }
+
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple2d objects with identical data values
+ * (i.e., Tuple2d.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + Double.doubleToLongBits(x);
+ bits = 31L * bits + Double.doubleToLongBits(y);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Returns true if all of the data members of Tuple2d t1 are
+ * equal to the corresponding data members in this Tuple2d.
+ * @param t1 the vector with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple2d t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y);
+ }
+ catch (NullPointerException e2) {return false;}
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple2d and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple2d.
+ * @param t1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple2d t2 = (Tuple2d) t1;
+ return(this.x == t2.x && this.y == t2.y);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this tuple
+ * and tuple t1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to MAX[abs(x1-x2), abs(y1-y2)].
+ * @param t1 the tuple to be compared to this tuple
+ * @param epsilon the threshold value
+ * @return true or false
+ */
+ public boolean epsilonEquals(Tuple2d t1, double epsilon)
+ {
+ double diff;
+
+ diff = x - t1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - t1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+ }
+
+ /**
+ * Returns a string that contains the values of this Tuple2d.
+ * The form is (x,y).
+ * @return the String representation
+ */
+ public String toString()
+ {
+ return("(" + this.x + ", " + this.y + ")");
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(double min, double max, Tuple2d t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ){
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ){
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(double min, Tuple2d t)
+ {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(double max, Tuple2d t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple2d t)
+ {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ }
+
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(double min, double max)
+ {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ){
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ){
+ y = min;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(double min)
+ {
+ if( x < min ) x=min;
+ if( y < min ) y=min;
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(double max)
+ {
+ if( x > max ) x=max;
+ if( y > max ) y=max;
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute()
+ {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ }
+
+
+ /**
+ * Linearly interpolates between tuples t1 and t2 and places the
+ * result into this tuple: this = (1-alpha)*t1 + alpha*t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple2d t1, Tuple2d t2, double alpha)
+ {
+ this.x = (1-alpha)*t1.x + alpha*t2.x;
+ this.y = (1-alpha)*t1.y + alpha*t2.y;
+ }
+
+
+ /**
+ * Linearly interpolates between this tuple and tuple t1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*t1.
+ * @param t1 the first tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple2d t1, double alpha)
+ {
+ this.x = (1-alpha)*this.x + alpha*t1.x;
+ this.y = (1-alpha)*this.y + alpha*t1.y;
+
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple2f.java b/src/javax/vecmath/Tuple2f.java
new file mode 100644
index 0000000..b482d80
--- /dev/null
+++ b/src/javax/vecmath/Tuple2f.java
@@ -0,0 +1,541 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A generic 2-element tuple that is represented by single-precision
+ * floating point x,y coordinates.
+ *
+ */
+public abstract class Tuple2f implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = 9011180388985266884L;
+
+ /**
+ * The x coordinate.
+ */
+ public float x;
+
+ /**
+ * The y coordinate.
+ */
+ public float y;
+
+
+ /**
+ * Constructs and initializes a Tuple2f from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Tuple2f(float x, float y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2f from the specified array.
+ * @param t the array of length 2 containing xy in order
+ */
+ public Tuple2f(float[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2f from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public Tuple2f(Tuple2f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2f from the specified Tuple2d.
+ * @param t1 the Tuple2d containing the initialization x y data
+ */
+ public Tuple2f(Tuple2d t1)
+ {
+ this.x = (float) t1.x;
+ this.y = (float) t1.y;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple2f to (0,0).
+ */
+ public Tuple2f()
+ {
+ this.x = (float) 0.0;
+ this.y = (float) 0.0;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public final void set(float x, float y)
+ {
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Sets the value of this tuple from the 2 values specified in
+ * the array.
+ * @param t the array of length 2 containing xy in order
+ */
+ public final void set(float[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of the Tuple2f argument.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple2f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of the Tuple2d argument.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple2d t1)
+ {
+ this.x = (float) t1.x;
+ this.y = (float) t1.y;
+ }
+
+
+ /**
+ * Copies the value of the elements of this tuple into the array t.
+ * @param t the array that will contain the values of the vector
+ */
+ public final void get(float[] t)
+ {
+ t[0] = this.x;
+ t[1] = this.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple2f t1, Tuple2f t2)
+ {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector sum of itself and tuple t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple2f t1)
+ {
+ this.x += t1.x;
+ this.y += t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector difference of
+ * tuple t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple2f t1, Tuple2f t2)
+ {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector difference of
+ * itself and tuple t1 (this = this - t1).
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple2f t1)
+ {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple2f t1)
+ {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ }
+
+
+ /**
+ * Negates the value of this vector in place.
+ */
+ public final void negate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(float s, Tuple2f t1)
+ {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself.
+ * @param s the scalar value
+ */
+ public final void scale(float s)
+ {
+ this.x *= s;
+ this.y *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 and then adds tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(float s, Tuple2f t1, Tuple2f t2)
+ {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(float s, Tuple2f t1)
+ {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ }
+
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple2f objects with identical data values
+ * (i.e., Tuple2f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)Float.floatToIntBits(x);
+ bits = 31L * bits + (long)Float.floatToIntBits(y);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Returns true if all of the data members of Tuple2f t1 are
+ * equal to the corresponding data members in this Tuple2f.
+ * @param t1 the vector with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple2f t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y);
+ }
+ catch (NullPointerException e2) {return false;}
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple2f and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple2f.
+ * @param t1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple2f t2 = (Tuple2f) t1;
+ return(this.x == t2.x && this.y == t2.y);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this tuple
+ * and tuple t1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to MAX[abs(x1-x2), abs(y1-y2)].
+ * @param t1 the tuple to be compared to this tuple
+ * @param epsilon the threshold value
+ * @return true or false
+ */
+ public boolean epsilonEquals(Tuple2f t1, float epsilon)
+ {
+ float diff;
+
+ diff = x - t1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - t1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+ }
+
+ /**
+ * Returns a string that contains the values of this Tuple2f.
+ * The form is (x,y).
+ * @return the String representation
+ */
+ public String toString()
+ {
+ return("(" + this.x + ", " + this.y + ")");
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(float min, float max, Tuple2f t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ){
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ){
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(float min, Tuple2f t)
+ {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(float max, Tuple2f t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple2f t)
+ {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ }
+
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(float min, float max)
+ {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ){
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ){
+ y = min;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(float min)
+ {
+ if( x < min ) x=min;
+ if( y < min ) y=min;
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(float max)
+ {
+ if( x > max ) x=max;
+ if( y > max ) y=max;
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute()
+ {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ }
+
+
+ /**
+ * Linearly interpolates between tuples t1 and t2 and places the
+ * result into this tuple: this = (1-alpha)*t1 + alpha*t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple2f t1, Tuple2f t2, float alpha)
+ {
+ this.x = (1-alpha)*t1.x + alpha*t2.x;
+ this.y = (1-alpha)*t1.y + alpha*t2.y;
+
+ }
+
+
+ /**
+ * Linearly interpolates between this tuple and tuple t1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*t1.
+ * @param t1 the first tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple2f t1, float alpha)
+ {
+
+ this.x = (1-alpha)*this.x + alpha*t1.x;
+ this.y = (1-alpha)*this.y + alpha*t1.y;
+
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple3b.java b/src/javax/vecmath/Tuple3b.java
new file mode 100644
index 0000000..2615160
--- /dev/null
+++ b/src/javax/vecmath/Tuple3b.java
@@ -0,0 +1,229 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A three byte tuple. Note that Java defines a byte as a signed integer
+ * in the range [-128, 127]. However, colors are more typically
+ * represented by values in the range [0, 255]. Java 3D recognizes this
+ * and, in those cases where Tuple3b is used to represent color, treats
+ * the bytes as if the range were [0, 255]---in other words, as if the
+ * bytes were unsigned.
+ * Values greater than 127 can be assigned to a byte variable using a
+ * type cast. For example:
+ * <ul>byteVariable = (byte) intValue; // intValue can be > 127</ul>
+ * If intValue is greater than 127, then byteVariable will be negative. The
+ * correct value will be extracted when it is used (by masking off the upper
+ * bits).
+ */
+public abstract class Tuple3b implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = -483782685323607044L;
+
+ /**
+ * The first value.
+ */
+ public byte x;
+
+ /**
+ * The second value.
+ */
+ public byte y;
+
+ /**
+ * The third value.
+ */
+ public byte z;
+
+
+ /**
+ * Constructs and initializes a Tuple3b from the specified three values.
+ * @param b1 the first value
+ * @param b2 the second value
+ * @param b3 the third value
+ */
+ public Tuple3b(byte b1, byte b2, byte b3)
+ {
+ this.x = b1;
+ this.y = b2;
+ this.z = b3;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3b from input array of length 3.
+ * @param t the array of length 3 containing b1 b2 b3 in order
+ */
+ public Tuple3b(byte[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3b from the specified Tuple3b.
+ * @param t1 the Tuple3b containing the initialization x y z data
+ */
+ public Tuple3b(Tuple3b t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3b to (0,0,0).
+ */
+ public Tuple3b()
+ {
+ this.x = (byte) 0;
+ this.y = (byte) 0;
+ this.z = (byte) 0;
+ }
+
+
+ /**
+ * Returns a string that contains the values of this Tuple3b.
+ * @return a String with the values
+ */
+ public String toString()
+ {
+ return("(" + ((int)this.x & 0xff) +
+ ", " + ((int)this.y & 0xff) +
+ ", " + ((int)this.z & 0xff) + ")");
+ }
+
+
+ /**
+ * Places the value of the x,y,z components of this Tuple3b
+ * into the array of length 3.
+ * @param t array of length 3 into which the component values are copied
+ */
+ public final void get(byte[] t)
+ {
+
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ }
+
+
+ /**
+ * Places the value of the x,y,z components of this tuple into
+ * the tuple t1.
+ * @param t1 the tuple into which the values are placed
+ */
+ public final void get(Tuple3b t1)
+ {
+ t1.x = this.x;
+ t1.y = this.y;
+ t1.z = this.z;
+ }
+
+
+ /**
+ * Sets the value of the data members of this tuple to the value
+ * of the argument tuple t1.
+ * @param t1 the source tuple for the memberwise copy
+ */
+ public final void set(Tuple3b t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+
+ /**
+ * Sets the value of the x,y,z, data members of this tuple to the
+ * values in the array t of length 3.
+ * @param t array of length 3 which is the source for the memberwise copy
+ */
+ public final void set(byte[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+
+ /**
+ * Returns true if all of the data members of tuple t1 are equal to
+ * the corresponding data members in this tuple.
+ * @param t1 the tuple with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple3b t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y && this.z == t1.z);
+ }
+ catch (NullPointerException e2) {return false;}
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple3b and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple3b.
+ * @param t1 the object with which the comparison is made
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple3b t2 = (Tuple3b) t1;
+ return(this.x == t2.x && this.y == t2.y && this.z == t2.z);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+
+ }
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple3b objects with identical data values
+ * (i.e., Tuple3b.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ return ((((int)x & 0xff) << 0) |
+ (((int)y & 0xff) << 8) |
+ (((int)z & 0xff) << 16));
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple3d.java b/src/javax/vecmath/Tuple3d.java
new file mode 100644
index 0000000..23d31dc
--- /dev/null
+++ b/src/javax/vecmath/Tuple3d.java
@@ -0,0 +1,667 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A generic 3-element tuple that is represented by double-precision
+ * floating point x,y,z coordinates.
+ *
+ */
+public abstract class Tuple3d implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = 5542096614926168415L;
+
+ /**
+ * The x coordinate.
+ */
+ public double x;
+
+ /**
+ * The y coordinate.
+ */
+ public double y;
+
+ /**
+ * The z coordinate.
+ */
+ public double z;
+
+
+ /**
+ * Constructs and initializes a Tuple3d from the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Tuple3d(double x, double y, double z)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ /**
+ * Constructs and initializes a Tuple3d from the array of length 3.
+ * @param t the array of length 3 containing xyz in order
+ */
+ public Tuple3d(double[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+ /**
+ * Constructs and initializes a Tuple3d from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Tuple3d(Tuple3d t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+ /**
+ * Constructs and initializes a Tuple3d from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Tuple3d(Tuple3f t1)
+ {
+ this.x = (double) t1.x;
+ this.y = (double) t1.y;
+ this.z = (double) t1.z;
+ }
+
+ /**
+ * Constructs and initializes a Tuple3d to (0,0,0).
+ */
+ public Tuple3d()
+ {
+ this.x = (double) 0.0;
+ this.y = (double) 0.0;
+ this.z = (double) 0.0;
+ }
+
+ /**
+ * Sets the value of this tuple to the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public final void set(double x, double y, double z)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ /**
+ * Sets the value of this tuple to the value of the xyz coordinates
+ * located in the array of length 3.
+ * @param t the array of length 3 containing xyz in order
+ */
+ public final void set(double[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple3d t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple3f t1)
+ {
+ this.x = (double) t1.x;
+ this.y = (double) t1.y;
+ this.z = (double) t1.z;
+ }
+
+ /**
+ * Copies the x,y,z coordinates of this tuple into the array t
+ * of length 3.
+ * @param t the target array
+ */
+ public final void get(double[] t)
+ {
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ }
+
+
+ /**
+ * Copies the x,y,z coordinates of this tuple into the tuple t.
+ * @param t the Tuple3d object into which the values of this object are copied
+ */
+ public final void get(Tuple3d t)
+ {
+ t.x = this.x;
+ t.y = this.y;
+ t.z = this.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple3d t1, Tuple3d t2)
+ {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ this.z = t1.z + t2.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of itself and t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple3d t1)
+ {
+ this.x += t1.x;
+ this.y += t1.y;
+ this.z += t1.z;
+ }
+
+ /**
+ * Sets the value of this tuple to the difference of tuples
+ * t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple3d t1, Tuple3d t2)
+ {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ this.z = t1.z - t2.z;
+ }
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of itself and t1 (this = this - t1).
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple3d t1)
+ {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ this.z -= t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple3d t1)
+ {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ this.z = -t1.z;
+ }
+
+
+ /**
+ * Negates the value of this tuple in place.
+ */
+ public final void negate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(double s, Tuple3d t1)
+ {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ this.z = s*t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself.
+ * @param s the scalar value
+ */
+ public final void scale(double s)
+ {
+ this.x *= s;
+ this.y *= s;
+ this.z *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 and then adds tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(double s, Tuple3d t1, Tuple3d t2)
+ {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ this.z = s*t1.z + t2.z;
+ }
+
+
+ /**
+ * @deprecated Use scaleAdd(double,Tuple3d) instead
+ */
+ public final void scaleAdd(double s, Tuple3f t1) {
+ scaleAdd(s, new Point3d(t1));
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(double s, Tuple3d t1) {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ this.z = s*this.z + t1.z;
+ }
+
+
+
+ /**
+ * Returns a string that contains the values of this Tuple3d.
+ * The form is (x,y,z).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ")";
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple3d objects with identical data values
+ * (i.e., Tuple3d.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + Double.doubleToLongBits(x);
+ bits = 31L * bits + Double.doubleToLongBits(y);
+ bits = 31L * bits + Double.doubleToLongBits(z);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Returns true if all of the data members of Tuple3d t1 are
+ * equal to the corresponding data members in this Tuple3d.
+ * @param t1 the tuple with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple3d t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y && this.z == t1.z);
+ }
+ catch (NullPointerException e2) {return false;}
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple3d and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple3d.
+ * @param t1 the Object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple3d t2 = (Tuple3d) t1;
+ return(this.x == t2.x && this.y == t2.y && this.z == t2.z);
+ }
+ catch (ClassCastException e1) {return false;}
+ catch (NullPointerException e2) {return false;}
+
+ }
+
+ /**
+ * Returns true if the L-infinite distance between this tuple
+ * and tuple t1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)].
+ * @param t1 the tuple to be compared to this tuple
+ * @param epsilon the threshold value
+ * @return true or false
+ */
+ public boolean epsilonEquals(Tuple3d t1, double epsilon)
+ {
+ double diff;
+
+ diff = x - t1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - t1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = z - t1.z;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+
+ }
+
+
+ /**
+ * @deprecated Use clamp(double,double,Tuple3d) instead
+ */
+ public final void clamp(float min, float max, Tuple3d t) {
+ clamp((double)min, (double)max, t);
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(double min, double max, Tuple3d t) {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ){
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ){
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else if( t.z < min ){
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ }
+
+
+ /**
+ * @deprecated Use clampMin(double,Tuple3d) instead
+ */
+ public final void clampMin(float min, Tuple3d t) {
+ clampMin((double)min, t);
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(double min, Tuple3d t) {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ }
+
+
+ /**
+ * @deprecated Use clampMax(double,Tuple3d) instead
+ */
+ public final void clampMax(float max, Tuple3d t) {
+ clampMax((double)max, t);
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(double max, Tuple3d t) {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else {
+ z = t.z;
+ }
+
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple3d t)
+ {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ z = Math.abs(t.z);
+
+ }
+
+
+ /**
+ * @deprecated Use clamp(double,double) instead
+ */
+ public final void clamp(float min, float max) {
+ clamp((double)min, (double)max);
+ }
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(double min, double max) {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ){
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ){
+ y = min;
+ }
+
+ if( z > max ) {
+ z = max;
+ } else if( z < min ){
+ z = min;
+ }
+
+ }
+
+
+ /**
+ * @deprecated Use clampMin(double) instead
+ */
+ public final void clampMin(float min) {
+ clampMin((double)min);
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(double min) {
+ if( x < min ) x=min;
+ if( y < min ) y=min;
+ if( z < min ) z=min;
+
+ }
+
+
+ /**
+ * @deprecated Use clampMax(double) instead
+ */
+ public final void clampMax(float max) {
+ clampMax((double)max);
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(double max) {
+ if( x > max ) x=max;
+ if( y > max ) y=max;
+ if( z > max ) z=max;
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute()
+ {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ z = Math.abs(z);
+ }
+
+
+ /**
+ * @deprecated Use interpolate(Tuple3d,Tuple3d,double) instead
+ */
+ public final void interpolate(Tuple3d t1, Tuple3d t2, float alpha) {
+ interpolate(t1, t2, (double)alpha);
+ }
+
+
+ /**
+ * Linearly interpolates between tuples t1 and t2 and places the
+ * result into this tuple: this = (1-alpha)*t1 + alpha*t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple3d t1, Tuple3d t2, double alpha) {
+ this.x = (1-alpha)*t1.x + alpha*t2.x;
+ this.y = (1-alpha)*t1.y + alpha*t2.y;
+ this.z = (1-alpha)*t1.z + alpha*t2.z;
+ }
+
+
+ /**
+ * @deprecated Use interpolate(Tuple3d,double) instead
+ */
+ public final void interpolate(Tuple3d t1, float alpha) {
+ interpolate(t1, (double)alpha);
+ }
+
+
+ /**
+ * Linearly interpolates between this tuple and tuple t1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*t1.
+ * @param t1 the first tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple3d t1, double alpha) {
+ this.x = (1-alpha)*this.x + alpha*t1.x;
+ this.y = (1-alpha)*this.y + alpha*t1.y;
+ this.z = (1-alpha)*this.z + alpha*t1.z;
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple3f.java b/src/javax/vecmath/Tuple3f.java
new file mode 100644
index 0000000..4e96f4b
--- /dev/null
+++ b/src/javax/vecmath/Tuple3f.java
@@ -0,0 +1,621 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A generic 3-element tuple that is represented by single precision-floating
+ * point x,y,z coordinates.
+ *
+ */
+public abstract class Tuple3f implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID=5019834619484343712L;
+
+ /**
+ * The x coordinate.
+ */
+ public float x;
+
+ /**
+ * The y coordinate.
+ */
+ public float y;
+
+ /**
+ * The z coordinate.
+ */
+ public float z;
+
+
+ /**
+ * Constructs and initializes a Tuple3f from the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Tuple3f(float x, float y, float z)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3f from the array of length 3.
+ * @param t the array of length 3 containing xyz in order
+ */
+ public Tuple3f(float[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3f from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Tuple3f(Tuple3f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3f from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Tuple3f(Tuple3d t1)
+ {
+ this.x = (float) t1.x;
+ this.y = (float) t1.y;
+ this.z = (float) t1.z;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3f to (0,0,0).
+ */
+ public Tuple3f()
+ {
+ this.x = 0.0f;
+ this.y = 0.0f;
+ this.z = 0.0f;
+ }
+
+
+ /**
+ * Returns a string that contains the values of this Tuple3f.
+ * The form is (x,y,z).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ")";
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public final void set(float x, float y, float z)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the xyz coordinates specified in
+ * the array of length 3.
+ * @param t the array of length 3 containing xyz in order
+ */
+ public final void set(float[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple3f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple3d t1)
+ {
+ this.x = (float) t1.x;
+ this.y = (float) t1.y;
+ this.z = (float) t1.z;
+ }
+
+
+ /**
+ * Gets the value of this tuple and copies the values into t.
+ * @param t the array of length 3 into which the values are copied
+ */
+ public final void get(float[] t)
+ {
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ }
+
+
+ /**
+ * Gets the value of this tuple and copies the values into t.
+ * @param t the Tuple3f object into which the values of this object are copied
+ */
+ public final void get(Tuple3f t)
+ {
+ t.x = this.x;
+ t.y = this.y;
+ t.z = this.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple3f t1, Tuple3f t2)
+ {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ this.z = t1.z + t2.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector sum of itself and tuple t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple3f t1)
+ {
+ this.x += t1.x;
+ this.y += t1.y;
+ this.z += t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector difference
+ * of tuples t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple3f t1, Tuple3f t2)
+ {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ this.z = t1.z - t2.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the vector difference of
+ * itself and tuple t1 (this = this - t1) .
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple3f t1)
+ {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ this.z -= t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple3f t1)
+ {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ this.z = -t1.z;
+ }
+
+
+ /**
+ * Negates the value of this tuple in place.
+ */
+ public final void negate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this vector to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(float s, Tuple3f t1)
+ {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ this.z = s*t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of the scale factor with this.
+ * @param s the scalar value
+ */
+ public final void scale(float s)
+ {
+ this.x *= s;
+ this.y *= s;
+ this.z *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 and then adds tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be scaled and added
+ * @param t2 the tuple to be added without a scale
+ */
+ public final void scaleAdd(float s, Tuple3f t1, Tuple3f t2)
+ {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ this.z = s*t1.z + t2.z;
+ }
+
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(float s, Tuple3f t1)
+ {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ this.z = s*this.z + t1.z;
+ }
+
+
+ /**
+ * Returns true if the Object t1 is of type Tuple3f and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple3f.
+ * @param t1 the vector with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple3f t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y && this.z == t1.z);
+ }
+ catch (NullPointerException e2) {return false;}
+ }
+ /**
+ * Returns true if the Object t1 is of type Tuple3f and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple3f.
+ * @param t1 the Object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple3f t2 = (Tuple3f) t1;
+ return(this.x == t2.x && this.y == t2.y && this.z == t2.z);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+ }
+
+
+ /**
+ * Returns true if the L-infinite distance between this tuple
+ * and tuple t1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)].
+ * @param t1 the tuple to be compared to this tuple
+ * @param epsilon the threshold value
+ * @return true or false
+ */
+ public boolean epsilonEquals(Tuple3f t1, float epsilon)
+ {
+ float diff;
+
+ diff = x - t1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - t1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = z - t1.z;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple3f objects with identical data values
+ * (i.e., Tuple3f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)Float.floatToIntBits(x);
+ bits = 31L * bits + (long)Float.floatToIntBits(y);
+ bits = 31L * bits + (long)Float.floatToIntBits(z);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(float min, float max, Tuple3f t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ){
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ){
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else if( t.z < min ){
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(float min, Tuple3f t)
+ {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(float max, Tuple3f t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else {
+ z = t.z;
+ }
+
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple3f t)
+ {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ z = Math.abs(t.z);
+ }
+
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(float min, float max)
+ {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ){
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ){
+ y = min;
+ }
+
+ if( z > max ) {
+ z = max;
+ } else if( z < min ){
+ z = min;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(float min)
+ {
+ if( x < min ) x=min;
+ if( y < min ) y=min;
+ if( z < min ) z=min;
+
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(float max)
+ {
+ if( x > max ) x=max;
+ if( y > max ) y=max;
+ if( z > max ) z=max;
+
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute()
+ {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ z = Math.abs(z);
+
+ }
+
+
+ /**
+ * Linearly interpolates between tuples t1 and t2 and places the
+ * result into this tuple: this = (1-alpha)*t1 + alpha*t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple3f t1, Tuple3f t2, float alpha)
+ {
+ this.x = (1-alpha)*t1.x + alpha*t2.x;
+ this.y = (1-alpha)*t1.y + alpha*t2.y;
+ this.z = (1-alpha)*t1.z + alpha*t2.z;
+
+
+ }
+
+
+ /**
+ * Linearly interpolates between this tuple and tuple t1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*t1.
+ * @param t1 the first tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Tuple3f t1, float alpha)
+ {
+ this.x = (1-alpha)*this.x + alpha*t1.x;
+ this.y = (1-alpha)*this.y + alpha*t1.y;
+ this.z = (1-alpha)*this.z + alpha*t1.z;
+
+
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple3i.java b/src/javax/vecmath/Tuple3i.java
new file mode 100644
index 0000000..d0321a4
--- /dev/null
+++ b/src/javax/vecmath/Tuple3i.java
@@ -0,0 +1,502 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3-element tuple represented by signed integer x,y,z
+ * coordinates.
+ *
+ * @since Java 3D 1.2
+ */
+public abstract class Tuple3i implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = -732740491767276200L;
+
+ /**
+ * The x coordinate.
+ */
+ public int x;
+
+ /**
+ * The y coordinate.
+ */
+ public int y;
+
+ /**
+ * The z coordinate.
+ */
+ public int z;
+
+
+ /**
+ * Constructs and initializes a Tuple3i from the specified
+ * x, y, and z coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Tuple3i(int x, int y, int z) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3i from the array of length 3.
+ * @param t the array of length 3 containing x, y, and z in order.
+ */
+ public Tuple3i(int[] t) {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3i from the specified Tuple3i.
+ * @param t1 the Tuple3i containing the initialization x, y, and z
+ * data.
+ */
+ public Tuple3i(Tuple3i t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple3i to (0,0,0).
+ */
+ public Tuple3i() {
+ this.x = 0;
+ this.y = 0;
+ this.z = 0;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified x, y, and z
+ * coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public final void set(int x, int y, int z) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified coordinates in the
+ * array of length 3.
+ * @param t the array of length 3 containing x, y, and z in order.
+ */
+ public final void set(int[] t) {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple3i t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ }
+
+
+ /**
+ * Copies the values of this tuple into the array t.
+ * @param t is the array
+ */
+ public final void get(int[] t) {
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ }
+
+
+ /**
+ * Copies the values of this tuple into the tuple t.
+ * @param t is the target tuple
+ */
+ public final void get(Tuple3i t) {
+ t.x = this.x;
+ t.y = this.y;
+ t.z = this.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple3i t1, Tuple3i t2) {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ this.z = t1.z + t2.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of itself and t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple3i t1) {
+ this.x += t1.x;
+ this.y += t1.y;
+ this.z += t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of tuples t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple3i t1, Tuple3i t2) {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ this.z = t1.z - t2.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of itself and t1 (this = this - t1).
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple3i t1) {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ this.z -= t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple3i t1) {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ this.z = -t1.z;
+ }
+
+
+ /**
+ * Negates the value of this tuple in place.
+ */
+ public final void negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(int s, Tuple3i t1) {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ this.z = s*t1.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of the scale factor with this.
+ * @param s the scalar value
+ */
+ public final void scale(int s) {
+ this.x *= s;
+ this.y *= s;
+ this.z *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 plus tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(int s, Tuple3i t1, Tuple3i t2) {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ this.z = s*t1.z + t2.z;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(int s, Tuple3i t1) {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ this.z = s*this.z + t1.z;
+ }
+
+
+ /**
+ * Returns a string that contains the values of this Tuple3i.
+ * The form is (x,y,z).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ")";
+ }
+
+
+ /**
+ * Returns true if the Object t1 is of type Tuple3i and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple3i.
+ * @param t1 the object with which the comparison is made
+ */
+ public boolean equals(Object t1) {
+ try {
+ Tuple3i t2 = (Tuple3i) t1;
+ return(this.x == t2.x && this.y == t2.y && this.z == t2.z);
+ }
+ catch (NullPointerException e2) {
+ return false;
+ }
+ catch (ClassCastException e1) {
+ return false;
+ }
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple3i objects with identical data values
+ * (i.e., Tuple3i.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)x;
+ bits = 31L * bits + (long)y;
+ bits = 31L * bits + (long)z;
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(int min, int max, Tuple3i t) {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(int min, Tuple3i t) {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(int max, Tuple3i t) {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else {
+ z = t.z;
+ }
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple3i t) {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ z = Math.abs(t.z);
+ }
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(int min, int max) {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ) {
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ) {
+ y = min;
+ }
+
+ if( z > max ) {
+ z = max;
+ } else if( z < min ) {
+ z = min;
+ }
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(int min) {
+ if (x < min)
+ x=min;
+
+ if (y < min)
+ y = min;
+
+ if (z < min)
+ z = min;
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(int max) {
+ if (x > max)
+ x = max;
+
+ if (y > max)
+ y = max;
+
+ if (z > max)
+ z = max;
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute() {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ z = Math.abs(z);
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple4b.java b/src/javax/vecmath/Tuple4b.java
new file mode 100644
index 0000000..8945665
--- /dev/null
+++ b/src/javax/vecmath/Tuple4b.java
@@ -0,0 +1,246 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A four byte tuple. Note that Java defines a byte as a signed integer
+ * in the range [-128, 127]. However, colors are more typically
+ * represented by values in the range [0, 255]. Java 3D recognizes this
+ * and, in those cases where Tuple4b is used to represent color, treats
+ * the bytes as if the range were [0, 255]---in other words, as if the
+ * bytes were unsigned.
+ * Values greater than 127 can be assigned to a byte variable using a
+ * type cast. For example:
+ * <ul>byteVariable = (byte) intValue; // intValue can be > 127</ul>
+ * If intValue is greater than 127, then byteVariable will be negative. The
+ * correct value will be extracted when it is used (by masking off the upper
+ * bits).
+ */
+public abstract class Tuple4b implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = -8226727741811898211L;
+
+ /**
+ * The first value.
+ */
+ public byte x;
+
+ /**
+ * The second value.
+ */
+ public byte y;
+
+ /**
+ * The third value.
+ */
+ public byte z;
+
+ /**
+ * The fourth value.
+ */
+ public byte w;
+
+
+ /**
+ * Constructs and initializes a Tuple4b from the specified four values.
+ * @param b1 the first value
+ * @param b2 the second value
+ * @param b3 the third value
+ * @param b4 the fourth value
+ */
+ public Tuple4b(byte b1, byte b2, byte b3, byte b4)
+ {
+ this.x = b1;
+ this.y = b2;
+ this.z = b3;
+ this.w = b4;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4b from the array of length 4.
+ * @param t the array of length 4 containing b1 b2 b3 b4 in order
+ */
+ public Tuple4b(byte[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4b from the specified Tuple4b.
+ * @param t1 the Tuple4b containing the initialization x y z w data
+ */
+ public Tuple4b(Tuple4b t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4b to (0,0,0,0).
+ */
+ public Tuple4b()
+ {
+ this.x = (byte) 0;
+ this.y = (byte) 0;
+ this.z = (byte) 0;
+ this.w = (byte) 0;
+ }
+
+
+ /**
+ * Returns a string that contains the values of this Tuple4b.
+ * @return the String representation
+ */
+ public String toString()
+ {
+ return("(" + ((int)this.x & 0xff) +
+ ", " + ((int)this.y & 0xff) +
+ ", " + ((int)this.z & 0xff) +
+ ", " + ((int)this.w & 0xff) + ")");
+ }
+
+
+ /**
+ * Places the value of the x,y,z,w components of this Tuple4b
+ * into the array of length 4.
+ * @param b array of length 4 into which the values are placed
+ */
+ public final void get(byte[] b)
+ {
+ b[0] = this.x;
+ b[1] = this.y;
+ b[2] = this.z;
+ b[3] = this.w;
+ }
+
+
+ /**
+ * Places the value of the x,y,z,w components of this
+ * Tuple4b into the tuple t1.
+ * @param t1 tuple into which the values are placed
+ */
+ public final void get(Tuple4b t1)
+ {
+ t1.x = this.x;
+ t1.y = this.y;
+ t1.z = this.z;
+ t1.w = this.w;
+ }
+
+
+ /**
+ * Sets the value of the data members of this tuple to the value
+ * of the argument tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void set(Tuple4b t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Sets the value of the data members of this tuple to the value
+ * of the array b of length 4.
+ * @param b the source array of length 4
+ */
+ public final void set(byte[] b)
+ {
+ this.x = b[0];
+ this.y = b[1];
+ this.z = b[2];
+ this.w = b[3];
+ }
+
+
+ /**
+ * Returns true if all of the data members of tuple t1 are equal to
+ * the corresponding data members in this tuple.
+ * @param t1 the tuple with which the comparison is made
+ */
+ public boolean equals(Tuple4b t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y &&
+ this.z == t1.z && this.w == t1.w);
+ }
+ catch (NullPointerException e2) {return false;}
+
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple4b and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple4b.
+ * @param t1 the object with which the comparison is made
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple4b t2 = (Tuple4b) t1;
+ return(this.x == t2.x && this.y == t2.y &&
+ this.z == t2.z && this.w == t2.w);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple4b objects with identical data values
+ * (i.e., Tuple4b.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ return ((((int)x & 0xff) << 0) |
+ (((int)y & 0xff) << 8) |
+ (((int)z & 0xff) << 16) |
+ (((int)w & 0xff) << 24));
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple4d.java b/src/javax/vecmath/Tuple4d.java
new file mode 100644
index 0000000..063e130
--- /dev/null
+++ b/src/javax/vecmath/Tuple4d.java
@@ -0,0 +1,751 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4 element tuple represented by double precision floating point
+ * x,y,z,w coordinates.
+ *
+ */
+public abstract class Tuple4d implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = -4748953690425311052L;
+
+ /**
+ * The x coordinate.
+ */
+ public double x;
+
+ /**
+ * The y coordinate.
+ */
+ public double y;
+
+ /**
+ * The z coordinate.
+ */
+ public double z;
+
+ /**
+ * The w coordinate.
+ */
+ public double w;
+
+
+ /**
+ * Constructs and initializes a Tuple4d from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Tuple4d(double x, double y, double z, double w)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4d from the coordinates contained
+ * in the array.
+ * @param t the array of length 4 containing xyzw in order
+ */
+ public Tuple4d(double[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4d from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Tuple4d(Tuple4d t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4d from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Tuple4d(Tuple4f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4d to (0,0,0,0).
+ */
+ public Tuple4d()
+ {
+ this.x = 0.0;
+ this.y = 0.0;
+ this.z = 0.0;
+ this.w = 0.0;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public final void set(double x, double y, double z, double w)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified xyzw coordinates.
+ * @param t the array of length 4 containing xyzw in order
+ */
+ public final void set(double[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple4d t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple4f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Gets the value of this tuple and places it into the array t of
+ * length four in x,y,z,w order.
+ * @param t the array of length four
+ */
+ public final void get(double[] t)
+ {
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ t[3] = this.w;
+ }
+
+
+ /**
+ * Gets the value of this tuple and places it into the Tuple4d
+ * argument of
+ * length four in x,y,z,w order.
+ * @param t the Tuple into which the values will be copied
+ */
+ public final void get(Tuple4d t)
+ {
+ t.x = this.x;
+ t.y = this.y;
+ t.z = this.z;
+ t.w = this.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the tuple sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple4d t1, Tuple4d t2)
+ {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ this.z = t1.z + t2.z;
+ this.w = t1.w + t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of itself and tuple t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple4d t1)
+ {
+ this.x += t1.x;
+ this.y += t1.y;
+ this.z += t1.z;
+ this.w += t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of tuples t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple4d t1, Tuple4d t2)
+ {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ this.z = t1.z - t2.z;
+ this.w = t1.w - t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference of itself
+ * and tuple t1 (this = this - t1).
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple4d t1)
+ {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ this.z -= t1.z;
+ this.w -= t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple4d t1)
+ {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ this.z = -t1.z;
+ this.w = -t1.w;
+ }
+
+
+ /**
+ * Negates the value of this tuple in place.
+ */
+ public final void negate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ this.w = -this.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of the scale factor with the tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(double s, Tuple4d t1)
+ {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ this.z = s*t1.z;
+ this.w = s*t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of the scale factor with this.
+ * @param s the scalar value
+ */
+ public final void scale(double s)
+ {
+ this.x *= s;
+ this.y *= s;
+ this.z *= s;
+ this.w *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication by s
+ * of tuple t1 plus tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(double s, Tuple4d t1, Tuple4d t2)
+ {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ this.z = s*t1.z + t2.z;
+ this.w = s*t1.w + t2.w;
+ }
+
+
+
+ /**
+ * @deprecated Use scaleAdd(double,Tuple4d) instead
+ */
+ public final void scaleAdd(float s, Tuple4d t1) {
+ scaleAdd((double)s, t1);
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(double s, Tuple4d t1) {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ this.z = s*this.z + t1.z;
+ this.w = s*this.w + t1.w;
+ }
+
+
+
+ /**
+ * Returns a string that contains the values of this Tuple4d.
+ * The form is (x,y,z,w).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.w + ")";
+ }
+
+
+ /**
+ * Returns true if all of the data members of Tuple4d t1 are
+ * equal to the corresponding data members in this Tuple4d.
+ * @param t1 the tuple with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple4d t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y && this.z == t1.z
+ && this.w == t1.w);
+ }
+ catch (NullPointerException e2) {return false;}
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple4d and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple4d.
+ * @param t1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+
+ Tuple4d t2 = (Tuple4d) t1;
+ return(this.x == t2.x && this.y == t2.y &&
+ this.z == t2.z && this.w == t2.w);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+ }
+
+
+ /**
+ * Returns true if the L-infinite distance between this tuple
+ * and tuple t1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(w1-w2)].
+ * @param t1 the tuple to be compared to this tuple
+ * @param epsilon the threshold value
+ * @return true or false
+ */
+ public boolean epsilonEquals(Tuple4d t1, double epsilon)
+ {
+ double diff;
+
+ diff = x - t1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - t1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = z - t1.z;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = w - t1.w;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple4d objects with identical data values
+ * (i.e., Tuple4d.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + Double.doubleToLongBits(x);
+ bits = 31L * bits + Double.doubleToLongBits(y);
+ bits = 31L * bits + Double.doubleToLongBits(z);
+ bits = 31L * bits + Double.doubleToLongBits(w);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * @deprecated Use clamp(double,double,Tuple4d) instead
+ */
+ public final void clamp(float min, float max, Tuple4d t) {
+ clamp((double)min, (double)max, t);
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(double min, double max, Tuple4d t) {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ){
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ){
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else if( t.z < min ){
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w > max ) {
+ w = max;
+ } else if( t.w < min ){
+ w = min;
+ } else {
+ w = t.w;
+ }
+
+ }
+
+
+ /**
+ * @deprecated Use clampMin(double,Tuple4d) instead
+ */
+ public final void clampMin(float min, Tuple4d t) {
+ clampMin((double)min, t);
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(double min, Tuple4d t) {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w < min ) {
+ w = min;
+ } else {
+ w = t.w;
+ }
+
+ }
+
+
+ /**
+ * @deprecated Use clampMax(double,Tuple4d) instead
+ */
+ public final void clampMax(float max, Tuple4d t) {
+ clampMax((double)max, t);
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(double max, Tuple4d t) {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w > max ) {
+ w = max;
+ } else {
+ w = t.z;
+ }
+
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple4d t)
+ {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ z = Math.abs(t.z);
+ w = Math.abs(t.w);
+
+ }
+
+
+
+ /**
+ * @deprecated Use clamp(double,double) instead
+ */
+ public final void clamp(float min, float max) {
+ clamp((double)min, (double)max);
+ }
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(double min, double max) {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ){
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ){
+ y = min;
+ }
+
+ if( z > max ) {
+ z = max;
+ } else if( z < min ){
+ z = min;
+ }
+
+ if( w > max ) {
+ w = max;
+ } else if( w < min ){
+ w = min;
+ }
+
+ }
+
+
+ /**
+ * @deprecated Use clampMin(double) instead
+ */
+ public final void clampMin(float min) {
+ clampMin((double)min);
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(double min) {
+ if( x < min ) x=min;
+ if( y < min ) y=min;
+ if( z < min ) z=min;
+ if( w < min ) w=min;
+ }
+
+
+ /**
+ * @deprecated Use clampMax(double) instead
+ */
+ public final void clampMax(float max) {
+ clampMax((double)max);
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(double max) {
+ if( x > max ) x=max;
+ if( y > max ) y=max;
+ if( z > max ) z=max;
+ if( w > max ) w=max;
+
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute()
+ {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ z = Math.abs(z);
+ w = Math.abs(w);
+
+ }
+
+
+ /**
+ * @deprecated Use interpolate(Tuple4d,Tuple4d,double) instead
+ */
+ public void interpolate(Tuple4d t1, Tuple4d t2, float alpha) {
+ interpolate(t1, t2, (double)alpha);
+ }
+
+
+ /**
+ * Linearly interpolates between tuples t1 and t2 and places the
+ * result into this tuple: this = (1-alpha)*t1 + alpha*t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public void interpolate(Tuple4d t1, Tuple4d t2, double alpha) {
+ this.x = (1-alpha)*t1.x + alpha*t2.x;
+ this.y = (1-alpha)*t1.y + alpha*t2.y;
+ this.z = (1-alpha)*t1.z + alpha*t2.z;
+ this.w = (1-alpha)*t1.w + alpha*t2.w;
+ }
+
+
+ /**
+ * @deprecated Use interpolate(Tuple4d,double) instead
+ */
+ public void interpolate(Tuple4d t1, float alpha) {
+ interpolate(t1, (double)alpha);
+ }
+
+
+ /**
+ * Linearly interpolates between this tuple and tuple t1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*t1.
+ * @param t1 the first tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public void interpolate(Tuple4d t1, double alpha) {
+ this.x = (1-alpha)*this.x + alpha*t1.x;
+ this.y = (1-alpha)*this.y + alpha*t1.y;
+ this.z = (1-alpha)*this.z + alpha*t1.z;
+ this.w = (1-alpha)*this.w + alpha*t1.w;
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple4f.java b/src/javax/vecmath/Tuple4f.java
new file mode 100644
index 0000000..fea4e31
--- /dev/null
+++ b/src/javax/vecmath/Tuple4f.java
@@ -0,0 +1,682 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4-element tuple represented by single-precision floating point x,y,z,w
+ * coordinates.
+ *
+ */
+public abstract class Tuple4f implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = 7068460319248845763L;
+
+ /**
+ * The x coordinate.
+ */
+ public float x;
+
+ /**
+ * The y coordinate.
+ */
+ public float y;
+
+ /**
+ * The z coordinate.
+ */
+ public float z;
+
+ /**
+ * The w coordinate.
+ */
+ public float w;
+
+
+ /**
+ * Constructs and initializes a Tuple4f from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Tuple4f(float x, float y, float z, float w)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4f from the array of length 4.
+ * @param t the array of length 4 containing xyzw in order
+ */
+ public Tuple4f(float[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Tuple4f(Tuple4f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Tuple4f(Tuple4d t1)
+ {
+ this.x = (float) t1.x;
+ this.y = (float) t1.y;
+ this.z = (float) t1.z;
+ this.w = (float) t1.w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4f to (0,0,0,0).
+ */
+ public Tuple4f()
+ {
+ this.x = 0.0f;
+ this.y = 0.0f;
+ this.z = 0.0f;
+ this.w = 0.0f;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public final void set(float x, float y, float z, float w)
+ {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified coordinates in the
+ * array of length 4.
+ * @param t the array of length 4 containing xyzw in order
+ */
+ public final void set(float[] t)
+ {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple4f t1)
+ {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple4d t1)
+ {
+ this.x = (float) t1.x;
+ this.y = (float) t1.y;
+ this.z = (float) t1.z;
+ this.w = (float) t1.w;
+ }
+
+
+ /**
+ * Copies the values of this tuple into the array t.
+ * @param t the array
+ */
+ public final void get(float[] t)
+ {
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ t[3] = this.w;
+ }
+
+
+ /**
+ * Copies the values of this tuple into the tuple t.
+ * @param t the target tuple
+ */
+ public final void get(Tuple4f t)
+ {
+ t.x = this.x;
+ t.y = this.y;
+ t.z = this.z;
+ t.w = this.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple4f t1, Tuple4f t2)
+ {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ this.z = t1.z + t2.z;
+ this.w = t1.w + t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of itself and t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple4f t1)
+ {
+ this.x += t1.x;
+ this.y += t1.y;
+ this.z += t1.z;
+ this.w += t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of tuples t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple4f t1, Tuple4f t2)
+ {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ this.z = t1.z - t2.z;
+ this.w = t1.w - t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of itself and t1 (this = this - t1).
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple4f t1)
+ {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ this.z -= t1.z;
+ this.w -= t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple4f t1)
+ {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ this.z = -t1.z;
+ this.w = -t1.w;
+ }
+
+
+ /**
+ * Negates the value of this tuple in place.
+ */
+ public final void negate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ this.w = -this.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(float s, Tuple4f t1)
+ {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ this.z = s*t1.z;
+ this.w = s*t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of the scale factor with this.
+ * @param s the scalar value
+ */
+ public final void scale(float s)
+ {
+ this.x *= s;
+ this.y *= s;
+ this.z *= s;
+ this.w *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 plus tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(float s, Tuple4f t1, Tuple4f t2)
+ {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ this.z = s*t1.z + t2.z;
+ this.w = s*t1.w + t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(float s, Tuple4f t1)
+ {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ this.z = s*this.z + t1.z;
+ this.w = s*this.w + t1.w;
+ }
+
+
+
+ /**
+ * Returns a string that contains the values of this Tuple4f.
+ * The form is (x,y,z,w).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.w + ")";
+ }
+
+ /**
+ * Returns true if all of the data members of Tuple4f t1 are
+ * equal to the corresponding data members in this Tuple4f.
+ * @param t1 the vector with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Tuple4f t1)
+ {
+ try {
+ return(this.x == t1.x && this.y == t1.y && this.z == t1.z
+ && this.w == t1.w);
+ }
+ catch (NullPointerException e2) {return false;}
+ }
+
+ /**
+ * Returns true if the Object t1 is of type Tuple4f and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple4f.
+ * @param t1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1)
+ {
+ try {
+ Tuple4f t2 = (Tuple4f) t1;
+ return(this.x == t2.x && this.y == t2.y &&
+ this.z == t2.z && this.w == t2.w);
+ }
+ catch (NullPointerException e2) {return false;}
+ catch (ClassCastException e1) {return false;}
+ }
+
+
+ /**
+ * Returns true if the L-infinite distance between this tuple
+ * and tuple t1 is less than or equal to the epsilon parameter,
+ * otherwise returns false. The L-infinite
+ * distance is equal to
+ * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(w1-w2)].
+ * @param t1 the tuple to be compared to this tuple
+ * @param epsilon the threshold value
+ * @return true or false
+ */
+ public boolean epsilonEquals(Tuple4f t1, float epsilon)
+ {
+ float diff;
+
+ diff = x - t1.x;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = y - t1.y;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = z - t1.z;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ diff = w - t1.w;
+ if((diff<0?-diff:diff) > epsilon) return false;
+
+ return true;
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple4f objects with identical data values
+ * (i.e., Tuple4f.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)Float.floatToIntBits(x);
+ bits = 31L * bits + (long)Float.floatToIntBits(y);
+ bits = 31L * bits + (long)Float.floatToIntBits(z);
+ bits = 31L * bits + (long)Float.floatToIntBits(w);
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(float min, float max, Tuple4f t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ){
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ){
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else if( t.z < min ){
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w > max ) {
+ w = max;
+ } else if( t.w < min ){
+ w = min;
+ } else {
+ w = t.w;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(float min, Tuple4f t)
+ {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w < min ) {
+ w = min;
+ } else {
+ w = t.w;
+ }
+
+
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(float max, Tuple4f t)
+ {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w > max ) {
+ w = max;
+ } else {
+ w = t.z;
+ }
+
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple4f t)
+ {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ z = Math.abs(t.z);
+ w = Math.abs(t.w);
+ }
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(float min, float max)
+ {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ){
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ){
+ y = min;
+ }
+
+ if( z > max ) {
+ z = max;
+ } else if( z < min ){
+ z = min;
+ }
+
+ if( w > max ) {
+ w = max;
+ } else if( w < min ){
+ w = min;
+ }
+
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(float min)
+ {
+ if( x < min ) x=min;
+ if( y < min ) y=min;
+ if( z < min ) z=min;
+ if( w < min ) w=min;
+
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(float max)
+ {
+ if( x > max ) x=max;
+ if( y > max ) y=max;
+ if( z > max ) z=max;
+ if( w > max ) w=max;
+
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute()
+ {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ z = Math.abs(z);
+ w = Math.abs(w);
+ }
+
+
+ /**
+ * Linearly interpolates between tuples t1 and t2 and places the
+ * result into this tuple: this = (1-alpha)*t1 + alpha*t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public void interpolate(Tuple4f t1, Tuple4f t2, float alpha)
+ {
+ this.x = (1-alpha)*t1.x + alpha*t2.x;
+ this.y = (1-alpha)*t1.y + alpha*t2.y;
+ this.z = (1-alpha)*t1.z + alpha*t2.z;
+ this.w = (1-alpha)*t1.w + alpha*t2.w;
+
+ }
+
+
+ /**
+ * Linearly interpolates between this tuple and tuple t1 and
+ * places the result into this tuple: this = (1-alpha)*this + alpha*t1.
+ * @param t1 the first tuple
+ * @param alpha the alpha interpolation parameter
+ */
+ public void interpolate(Tuple4f t1, float alpha)
+ {
+ this.x = (1-alpha)*this.x + alpha*t1.x;
+ this.y = (1-alpha)*this.y + alpha*t1.y;
+ this.z = (1-alpha)*this.z + alpha*t1.z;
+ this.w = (1-alpha)*this.w + alpha*t1.w;
+
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/Tuple4i.java b/src/javax/vecmath/Tuple4i.java
new file mode 100644
index 0000000..a066ac9
--- /dev/null
+++ b/src/javax/vecmath/Tuple4i.java
@@ -0,0 +1,567 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4-element tuple represented by signed integer x,y,z,w
+ * coordinates.
+ *
+ * @since Java 3D 1.2
+ */
+public abstract class Tuple4i implements java.io.Serializable, Cloneable {
+
+ static final long serialVersionUID = 8064614250942616720L;
+
+ /**
+ * The x coordinate.
+ */
+ public int x;
+
+ /**
+ * The y coordinate.
+ */
+ public int y;
+
+ /**
+ * The z coordinate.
+ */
+ public int z;
+
+ /**
+ * The w coordinate.
+ */
+ public int w;
+
+
+ /**
+ * Constructs and initializes a Tuple4i from the specified
+ * x, y, z, and w coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Tuple4i(int x, int y, int z, int w) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4i from the array of length 4.
+ * @param t the array of length 4 containing x, y, z, and w in order.
+ */
+ public Tuple4i(int[] t) {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4i from the specified Tuple4i.
+ * @param t1 the Tuple4i containing the initialization x, y, z,
+ * and w data.
+ */
+ public Tuple4i(Tuple4i t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Constructs and initializes a Tuple4i to (0,0,0,0).
+ */
+ public Tuple4i() {
+ this.x = 0;
+ this.y = 0;
+ this.z = 0;
+ this.w = 0;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified x, y, z, and w
+ * coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public final void set(int x, int y, int z, int w) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the specified coordinates in the
+ * array of length 4.
+ * @param t the array of length 4 containing x, y, z, and w in order.
+ */
+ public final void set(int[] t) {
+ this.x = t[0];
+ this.y = t[1];
+ this.z = t[2];
+ this.w = t[3];
+ }
+
+
+ /**
+ * Sets the value of this tuple to the value of tuple t1.
+ * @param t1 the tuple to be copied
+ */
+ public final void set(Tuple4i t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = t1.w;
+ }
+
+
+ /**
+ * Copies the values of this tuple into the array t.
+ * @param t the array
+ */
+ public final void get(int[] t) {
+ t[0] = this.x;
+ t[1] = this.y;
+ t[2] = this.z;
+ t[3] = this.w;
+ }
+
+
+ /**
+ * Copies the values of this tuple into the tuple t.
+ * @param t the target tuple
+ */
+ public final void get(Tuple4i t) {
+ t.x = this.x;
+ t.y = this.y;
+ t.z = this.z;
+ t.w = this.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of tuples t1 and t2.
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void add(Tuple4i t1, Tuple4i t2) {
+ this.x = t1.x + t2.x;
+ this.y = t1.y + t2.y;
+ this.z = t1.z + t2.z;
+ this.w = t1.w + t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the sum of itself and t1.
+ * @param t1 the other tuple
+ */
+ public final void add(Tuple4i t1) {
+ this.x += t1.x;
+ this.y += t1.y;
+ this.z += t1.z;
+ this.w += t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of tuples t1 and t2 (this = t1 - t2).
+ * @param t1 the first tuple
+ * @param t2 the second tuple
+ */
+ public final void sub(Tuple4i t1, Tuple4i t2) {
+ this.x = t1.x - t2.x;
+ this.y = t1.y - t2.y;
+ this.z = t1.z - t2.z;
+ this.w = t1.w - t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the difference
+ * of itself and t1 (this = this - t1).
+ * @param t1 the other tuple
+ */
+ public final void sub(Tuple4i t1) {
+ this.x -= t1.x;
+ this.y -= t1.y;
+ this.z -= t1.z;
+ this.w -= t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the negation of tuple t1.
+ * @param t1 the source tuple
+ */
+ public final void negate(Tuple4i t1) {
+ this.x = -t1.x;
+ this.y = -t1.y;
+ this.z = -t1.z;
+ this.w = -t1.w;
+ }
+
+
+ /**
+ * Negates the value of this tuple in place.
+ */
+ public final void negate() {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ this.w = -this.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1.
+ * @param s the scalar value
+ * @param t1 the source tuple
+ */
+ public final void scale(int s, Tuple4i t1) {
+ this.x = s*t1.x;
+ this.y = s*t1.y;
+ this.z = s*t1.z;
+ this.w = s*t1.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of the scale factor with this.
+ * @param s the scalar value
+ */
+ public final void scale(int s) {
+ this.x *= s;
+ this.y *= s;
+ this.z *= s;
+ this.w *= s;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of tuple t1 plus tuple t2 (this = s*t1 + t2).
+ * @param s the scalar value
+ * @param t1 the tuple to be multipled
+ * @param t2 the tuple to be added
+ */
+ public final void scaleAdd(int s, Tuple4i t1, Tuple4i t2) {
+ this.x = s*t1.x + t2.x;
+ this.y = s*t1.y + t2.y;
+ this.z = s*t1.z + t2.z;
+ this.w = s*t1.w + t2.w;
+ }
+
+
+ /**
+ * Sets the value of this tuple to the scalar multiplication
+ * of itself and then adds tuple t1 (this = s*this + t1).
+ * @param s the scalar value
+ * @param t1 the tuple to be added
+ */
+ public final void scaleAdd(int s, Tuple4i t1) {
+ this.x = s*this.x + t1.x;
+ this.y = s*this.y + t1.y;
+ this.z = s*this.z + t1.z;
+ this.w = s*this.w + t1.w;
+ }
+
+
+ /**
+ * Returns a string that contains the values of this Tuple4i.
+ * The form is (x,y,z,w).
+ * @return the String representation
+ */
+ public String toString() {
+ return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.w + ")";
+ }
+
+
+ /**
+ * Returns true if the Object t1 is of type Tuple4i and all of the
+ * data members of t1 are equal to the corresponding data members in
+ * this Tuple4i.
+ * @param t1 the object with which the comparison is made
+ * @return true or false
+ */
+ public boolean equals(Object t1) {
+ try {
+ Tuple4i t2 = (Tuple4i) t1;
+ return(this.x == t2.x && this.y == t2.y &&
+ this.z == t2.z && this.w == t2.w);
+ }
+ catch (NullPointerException e2) {
+ return false;
+ }
+ catch (ClassCastException e1) {
+ return false;
+ }
+ }
+
+
+ /**
+ * Returns a hash code value based on the data values in this
+ * object. Two different Tuple4i objects with identical data values
+ * (i.e., Tuple4i.equals returns true) will return the same hash
+ * code value. Two objects with different data members may return the
+ * same hash value, although this is not likely.
+ * @return the integer hash code value
+ */
+ public int hashCode() {
+ long bits = 1L;
+ bits = 31L * bits + (long)x;
+ bits = 31L * bits + (long)y;
+ bits = 31L * bits + (long)z;
+ bits = 31L * bits + (long)w;
+ return (int) (bits ^ (bits >> 32));
+ }
+
+
+ /**
+ * Clamps the tuple parameter to the range [low, high] and
+ * places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clamp(int min, int max, Tuple4i t) {
+ if( t.x > max ) {
+ x = max;
+ } else if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w > max ) {
+ w = max;
+ } else if( t.w < min ) {
+ w = min;
+ } else {
+ w = t.w;
+ }
+ }
+
+
+ /**
+ * Clamps the minimum value of the tuple parameter to the min
+ * parameter and places the values into this tuple.
+ * @param min the lowest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMin(int min, Tuple4i t) {
+ if( t.x < min ) {
+ x = min;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y < min ) {
+ y = min;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z < min ) {
+ z = min;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w < min ) {
+ w = min;
+ } else {
+ w = t.w;
+ }
+
+
+ }
+
+
+ /**
+ * Clamps the maximum value of the tuple parameter to the max
+ * parameter and places the values into this tuple.
+ * @param max the highest value in the tuple after clamping
+ * @param t the source tuple, which will not be modified
+ */
+ public final void clampMax(int max, Tuple4i t) {
+ if( t.x > max ) {
+ x = max;
+ } else {
+ x = t.x;
+ }
+
+ if( t.y > max ) {
+ y = max;
+ } else {
+ y = t.y;
+ }
+
+ if( t.z > max ) {
+ z = max;
+ } else {
+ z = t.z;
+ }
+
+ if( t.w > max ) {
+ w = max;
+ } else {
+ w = t.z;
+ }
+ }
+
+
+ /**
+ * Sets each component of the tuple parameter to its absolute
+ * value and places the modified values into this tuple.
+ * @param t the source tuple, which will not be modified
+ */
+ public final void absolute(Tuple4i t) {
+ x = Math.abs(t.x);
+ y = Math.abs(t.y);
+ z = Math.abs(t.z);
+ w = Math.abs(t.w);
+ }
+
+
+ /**
+ * Clamps this tuple to the range [low, high].
+ * @param min the lowest value in this tuple after clamping
+ * @param max the highest value in this tuple after clamping
+ */
+ public final void clamp(int min, int max) {
+ if( x > max ) {
+ x = max;
+ } else if( x < min ) {
+ x = min;
+ }
+
+ if( y > max ) {
+ y = max;
+ } else if( y < min ) {
+ y = min;
+ }
+
+ if( z > max ) {
+ z = max;
+ } else if( z < min ) {
+ z = min;
+ }
+
+ if( w > max ) {
+ w = max;
+ } else if( w < min ) {
+ w = min;
+ }
+ }
+
+
+ /**
+ * Clamps the minimum value of this tuple to the min parameter.
+ * @param min the lowest value in this tuple after clamping
+ */
+ public final void clampMin(int min) {
+ if (x < min)
+ x=min;
+
+ if (y < min)
+ y = min;
+
+ if (z < min)
+ z = min;
+
+ if (w < min)
+ w = min;
+ }
+
+
+ /**
+ * Clamps the maximum value of this tuple to the max parameter.
+ * @param max the highest value in the tuple after clamping
+ */
+ public final void clampMax(int max) {
+ if (x > max)
+ x = max;
+
+ if (y > max)
+ y = max;
+
+ if (z > max)
+ z = max;
+
+ if (w > max)
+ w = max;
+ }
+
+
+ /**
+ * Sets each component of this tuple to its absolute value.
+ */
+ public final void absolute() {
+ x = Math.abs(x);
+ y = Math.abs(y);
+ z = Math.abs(z);
+ w = Math.abs(w);
+ }
+
+ /**
+ * Creates a new object of the same class as this object.
+ *
+ * @return a clone of this instance.
+ * @exception OutOfMemoryError if there is not enough memory.
+ * @see java.lang.Cloneable
+ * @since Java 3D 1.3
+ */
+ public Object clone() {
+ // Since there are no arrays we can just use Object.clone()
+ try {
+ return super.clone();
+ } catch (CloneNotSupportedException e) {
+ // this shouldn't happen, since we are Cloneable
+ throw new InternalError();
+ }
+ }
+
+}
diff --git a/src/javax/vecmath/VecMathI18N.java b/src/javax/vecmath/VecMathI18N.java
new file mode 100644
index 0000000..d142325
--- /dev/null
+++ b/src/javax/vecmath/VecMathI18N.java
@@ -0,0 +1,31 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.io.*;
+import java.util.*;
+
+
+class VecMathI18N {
+ static String getString(String key) {
+ String s;
+ try {
+ s = (String) ResourceBundle.getBundle("javax.vecmath.ExceptionStrings").getString(key);
+ }
+ catch (MissingResourceException e) {
+ System.err.println("VecMathI18N: Error looking up: " + key);
+ s = key;
+ }
+ return s;
+ }
+}
diff --git a/src/javax/vecmath/Vector2d.java b/src/javax/vecmath/Vector2d.java
new file mode 100644
index 0000000..1a5ca68
--- /dev/null
+++ b/src/javax/vecmath/Vector2d.java
@@ -0,0 +1,168 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 2-element vector that is represented by double-precision floating
+ * point x,y coordinates.
+ *
+ */
+public class Vector2d extends Tuple2d implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 8572646365302599857L;
+
+ /**
+ * Constructs and initializes a Vector2d from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Vector2d(double x, double y)
+ {
+ super(x,y);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2d from the specified array.
+ * @param v the array of length 2 containing xy in order
+ */
+ public Vector2d(double[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2d from the specified Vector2d.
+ * @param v1 the Vector2d containing the initialization x y data
+ */
+ public Vector2d(Vector2d v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2d from the specified Vector2f.
+ * @param v1 the Vector2f containing the initialization x y data
+ */
+ public Vector2d(Vector2f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2d from the specified Tuple2d.
+ * @param t1 the Tuple2d containing the initialization x y data
+ */
+ public Vector2d(Tuple2d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2d from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public Vector2d(Tuple2f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2d to (0,0).
+ */
+ public Vector2d()
+ {
+ super();
+ }
+
+
+ /**
+ * Computes the dot product of the this vector and vector v1.
+ * @param v1 the other vector
+ */
+ public final double dot(Vector2d v1)
+ {
+ return (this.x*v1.x + this.y*v1.y);
+ }
+
+
+ /**
+ * Returns the length of this vector.
+ * @return the length of this vector
+ */
+ public final double length()
+ {
+ return (double) Math.sqrt(this.x*this.x + this.y*this.y);
+ }
+
+ /**
+ * Returns the squared length of this vector.
+ * @return the squared length of this vector
+ */
+ public final double lengthSquared()
+ {
+ return (this.x*this.x + this.y*this.y);
+ }
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(Vector2d v1)
+ {
+ double norm;
+
+ norm = (double) (1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y));
+ this.x = v1.x*norm;
+ this.y = v1.y*norm;
+ }
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ double norm;
+
+ norm = (double)
+ (1.0/Math.sqrt(this.x*this.x + this.y*this.y));
+ this.x *= norm;
+ this.y *= norm;
+ }
+
+
+ /**
+ * Returns the angle in radians between this vector and the vector
+ * parameter; the return value is constrained to the range [0,PI].
+ * @param v1 the other vector
+ * @return the angle in radians in the range [0,PI]
+ */
+ public final double angle(Vector2d v1)
+ {
+ double vDot = this.dot(v1) / ( this.length()*v1.length() );
+ if( vDot < -1.0) vDot = -1.0;
+ if( vDot > 1.0) vDot = 1.0;
+ return((double) (Math.acos( vDot )));
+
+ }
+
+
+}
diff --git a/src/javax/vecmath/Vector2f.java b/src/javax/vecmath/Vector2f.java
new file mode 100644
index 0000000..9ee8183
--- /dev/null
+++ b/src/javax/vecmath/Vector2f.java
@@ -0,0 +1,168 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 2-element vector that is represented by single-precision floating
+ * point x,y coordinates.
+ *
+ */
+public class Vector2f extends Tuple2f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = -2168194326883512320L;
+
+ /**
+ * Constructs and initializes a Vector2f from the specified xy coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ */
+ public Vector2f(float x, float y)
+ {
+ super(x,y);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2f from the specified array.
+ * @param v the array of length 2 containing xy in order
+ */
+ public Vector2f(float[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2f from the specified Vector2f.
+ * @param v1 the Vector2f containing the initialization x y data
+ */
+ public Vector2f(Vector2f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2f from the specified Vector2d.
+ * @param v1 the Vector2d containing the initialization x y data
+ */
+ public Vector2f(Vector2d v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2f from the specified Tuple2f.
+ * @param t1 the Tuple2f containing the initialization x y data
+ */
+ public Vector2f(Tuple2f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector2f from the specified Tuple2d.
+ * @param t1 the Tuple2d containing the initialization x y data
+ */
+ public Vector2f(Tuple2d t1)
+ {
+ super(t1);
+ }
+
+
+
+ /**
+ * Constructs and initializes a Vector2f to (0,0).
+ */
+ public Vector2f()
+ {
+ super();
+ }
+
+
+ /**
+ * Computes the dot product of the this vector and vector v1.
+ * @param v1 the other vector
+ */
+ public final float dot(Vector2f v1)
+ {
+ return (this.x*v1.x + this.y*v1.y);
+ }
+
+
+ /**
+ * Returns the length of this vector.
+ * @return the length of this vector
+ */
+ public final float length()
+ {
+ return (float) Math.sqrt(this.x*this.x + this.y*this.y);
+ }
+
+ /**
+ * Returns the squared length of this vector.
+ * @return the squared length of this vector
+ */
+ public final float lengthSquared()
+ {
+ return (this.x*this.x + this.y*this.y);
+ }
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(Vector2f v1)
+ {
+ float norm;
+
+ norm = (float) (1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y));
+ this.x = v1.x*norm;
+ this.y = v1.y*norm;
+ }
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ float norm;
+
+ norm = (float)
+ (1.0/Math.sqrt(this.x*this.x + this.y*this.y));
+ this.x *= norm;
+ this.y *= norm;
+ }
+
+
+ /**
+ * Returns the angle in radians between this vector and the vector
+ * parameter; the return value is constrained to the range [0,PI].
+ * @param v1 the other vector
+ * @return the angle in radians in the range [0,PI]
+ */
+ public final float angle(Vector2f v1)
+ {
+ double vDot = this.dot(v1) / ( this.length()*v1.length() );
+ if( vDot < -1.0) vDot = -1.0;
+ if( vDot > 1.0) vDot = 1.0;
+ return((float) (Math.acos( vDot )));
+ }
+
+
+}
diff --git a/src/javax/vecmath/Vector3d.java b/src/javax/vecmath/Vector3d.java
new file mode 100644
index 0000000..79a4dfd
--- /dev/null
+++ b/src/javax/vecmath/Vector3d.java
@@ -0,0 +1,191 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3-element vector that is represented by double-precision floating point
+ * x,y,z coordinates. If this value represents a normal, then it should
+ * be normalized.
+ *
+ */
+public class Vector3d extends Tuple3d implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 3761969948420550442L;
+
+ /**
+ * Constructs and initializes a Vector3d from the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Vector3d(double x, double y, double z)
+ {
+ super(x,y,z);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3d from the array of length 3.
+ * @param v the array of length 3 containing xyz in order
+ */
+ public Vector3d(double[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3d from the specified Vector3d.
+ * @param v1 the Vector3d containing the initialization x y z data
+ */
+ public Vector3d(Vector3d v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3d from the specified Vector3f.
+ * @param v1 the Vector3f containing the initialization x y z data
+ */
+ public Vector3d(Vector3f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3d from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Vector3d(Tuple3f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3d from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Vector3d(Tuple3d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3d to (0,0,0).
+ */
+ public Vector3d()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets this vector to the vector cross product of vectors v1 and v2.
+ * @param v1 the first vector
+ * @param v2 the second vector
+ */
+ public final void cross(Vector3d v1, Vector3d v2)
+ {
+ double x,y;
+
+ x = v1.y*v2.z - v1.z*v2.y;
+ y = v2.x*v1.z - v2.z*v1.x;
+ this.z = v1.x*v2.y - v1.y*v2.x;
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(Vector3d v1)
+ {
+ double norm;
+
+ norm = 1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z);
+ this.x = v1.x*norm;
+ this.y = v1.y*norm;
+ this.z = v1.z*norm;
+ }
+
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ double norm;
+
+ norm = 1.0/Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ }
+
+
+ /**
+ * Returns the dot product of this vector and vector v1.
+ * @param v1 the other vector
+ * @return the dot product of this and v1
+ */
+ public final double dot(Vector3d v1)
+ {
+ return (this.x*v1.x + this.y*v1.y + this.z*v1.z);
+ }
+
+
+ /**
+ * Returns the squared length of this vector.
+ * @return the squared length of this vector
+ */
+ public final double lengthSquared()
+ {
+ return (this.x*this.x + this.y*this.y + this.z*this.z);
+ }
+
+
+ /**
+ * Returns the length of this vector.
+ * @return the length of this vector
+ */
+ public final double length()
+ {
+ return Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
+ }
+
+
+ /**
+ * Returns the angle in radians between this vector and the vector
+ * parameter; the return value is constrained to the range [0,PI].
+ * @param v1 the other vector
+ * @return the angle in radians in the range [0,PI]
+ */
+ public final double angle(Vector3d v1)
+ {
+ double vDot = this.dot(v1) / ( this.length()*v1.length() );
+ if( vDot < -1.0) vDot = -1.0;
+ if( vDot > 1.0) vDot = 1.0;
+ return((double) (Math.acos( vDot )));
+ }
+
+
+}
diff --git a/src/javax/vecmath/Vector3f.java b/src/javax/vecmath/Vector3f.java
new file mode 100644
index 0000000..1b9a4fd
--- /dev/null
+++ b/src/javax/vecmath/Vector3f.java
@@ -0,0 +1,186 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 3-element vector that is represented by single-precision floating point
+ * x,y,z coordinates. If this value represents a normal, then it should
+ * be normalized.
+ *
+ */
+public class Vector3f extends Tuple3f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = -7031930069184524614L;
+
+ /**
+ * Constructs and initializes a Vector3f from the specified xyz coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ */
+ public Vector3f(float x, float y, float z)
+ {
+ super(x,y,z);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3f from the array of length 3.
+ * @param v the array of length 3 containing xyz in order
+ */
+ public Vector3f(float[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3f from the specified Vector3f.
+ * @param v1 the Vector3f containing the initialization x y z data
+ */
+ public Vector3f(Vector3f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3f from the specified Vector3d.
+ * @param v1 the Vector3d containing the initialization x y z data
+ */
+ public Vector3f(Vector3d v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3f from the specified Tuple3f.
+ * @param t1 the Tuple3f containing the initialization x y z data
+ */
+ public Vector3f(Tuple3f t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3f from the specified Tuple3d.
+ * @param t1 the Tuple3d containing the initialization x y z data
+ */
+ public Vector3f(Tuple3d t1) {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector3f to (0,0,0).
+ */
+ public Vector3f()
+ {
+ super();
+ }
+
+
+ /**
+ * Returns the squared length of this vector.
+ * @return the squared length of this vector
+ */
+ public final float lengthSquared()
+ {
+ return (this.x*this.x + this.y*this.y + this.z*this.z);
+ }
+
+ /**
+ * Returns the length of this vector.
+ * @return the length of this vector
+ */
+ public final float length()
+ {
+ return (float)
+ Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z);
+ }
+
+
+ /**
+ * Sets this vector to be the vector cross product of vectors v1 and v2.
+ * @param v1 the first vector
+ * @param v2 the second vector
+ */
+ public final void cross(Vector3f v1, Vector3f v2)
+ {
+ float x,y;
+
+ x = v1.y*v2.z - v1.z*v2.y;
+ y = v2.x*v1.z - v2.z*v1.x;
+ this.z = v1.x*v2.y - v1.y*v2.x;
+ this.x = x;
+ this.y = y;
+ }
+
+ /**
+ * Computes the dot product of this vector and vector v1.
+ * @param v1 the other vector
+ * @return the dot product of this vector and v1
+ */
+ public final float dot(Vector3f v1)
+ {
+ return (this.x*v1.x + this.y*v1.y + this.z*v1.z);
+ }
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(Vector3f v1)
+ {
+ float norm;
+
+ norm = (float) (1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z));
+ this.x = v1.x*norm;
+ this.y = v1.y*norm;
+ this.z = v1.z*norm;
+ }
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ float norm;
+
+ norm = (float)
+ (1.0/Math.sqrt(this.x*this.x + this.y*this.y + this.z*this.z));
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ }
+
+
+ /**
+ * Returns the angle in radians between this vector and the vector
+ * parameter; the return value is constrained to the range [0,PI].
+ * @param v1 the other vector
+ * @return the angle in radians in the range [0,PI]
+ */
+ public final float angle(Vector3f v1)
+ {
+ double vDot = this.dot(v1) / ( this.length()*v1.length() );
+ if( vDot < -1.0) vDot = -1.0;
+ if( vDot > 1.0) vDot = 1.0;
+ return((float) (Math.acos( vDot )));
+ }
+
+}
diff --git a/src/javax/vecmath/Vector4d.java b/src/javax/vecmath/Vector4d.java
new file mode 100644
index 0000000..e56997d
--- /dev/null
+++ b/src/javax/vecmath/Vector4d.java
@@ -0,0 +1,205 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4-element vector represented by double-precision floating point
+ * x,y,z,w coordinates.
+ *
+ */
+public class Vector4d extends Tuple4d implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 3938123424117448700L;
+
+ /**
+ * Constructs and initializes a Vector4d from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Vector4d(double x, double y, double z, double w)
+ {
+ super(x,y,z,w);
+ }
+
+ /**
+ * Constructs and initializes a Vector4d from the coordinates contained
+ * in the array.
+ * @param v the array of length 4 containing xyzw in order
+ */
+ public Vector4d(double[] v)
+ {
+ super(v);
+ }
+
+ /**
+ * Constructs and initializes a Vector4d from the specified Vector4d.
+ * @param v1 the Vector4d containing the initialization x y z w data
+ */
+ public Vector4d(Vector4d v1)
+ {
+ super(v1);
+ }
+
+ /**
+ * Constructs and initializes a Vector4d from the specified Vector4f.
+ * @param v1 the Vector4f containing the initialization x y z w data
+ */
+ public Vector4d(Vector4f v1)
+ {
+ super(v1);
+ }
+
+ /**
+ * Constructs and initializes a Vector4d from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Vector4d(Tuple4f t1)
+ {
+ super(t1);
+ }
+
+ /**
+ * Constructs and initializes a Vector4d from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Vector4d(Tuple4d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4d from the specified Tuple3d.
+ * The x,y,z components of this vector are set to the corresponding
+ * components of tuple t1. The w component of this vector
+ * is set to 0.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public Vector4d(Tuple3d t1) {
+ super(t1.x, t1.y, t1.z, 0.0);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4d to (0,0,0,0).
+ */
+ public Vector4d()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the x,y,z components of this vector to the corresponding
+ * components of tuple t1. The w component of this vector
+ * is set to 0.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Tuple3d t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = 0.0;
+ }
+
+
+ /**
+ * Returns the length of this vector.
+ * @return the length of this vector
+ */
+ public final double length()
+ {
+ return Math.sqrt(this.x*this.x + this.y*this.y +
+ this.z*this.z + this.w*this.w);
+ }
+
+
+ /**
+ * Returns the squared length of this vector.
+ * @return the squared length of this vector
+ */
+ public final double lengthSquared()
+ {
+ return (this.x*this.x + this.y*this.y +
+ this.z*this.z + this.w*this.w);
+ }
+
+
+ /**
+ * Returns the dot product of this vector and vector v1.
+ * @param v1 the other vector
+ * @return the dot product of this vector and vector v1
+ */
+ public final double dot(Vector4d v1)
+ {
+ return (this.x*v1.x + this.y*v1.y + this.z*v1.z + this.w*v1.w);
+ }
+
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(Vector4d v1)
+ {
+ double norm;
+
+ norm = 1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z + v1.w*v1.w);
+ this.x = v1.x*norm;
+ this.y = v1.y*norm;
+ this.z = v1.z*norm;
+ this.w = v1.w*norm;
+ }
+
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ double norm;
+
+ norm = 1.0/Math.sqrt(this.x*this.x + this.y*this.y +
+ this.z*this.z + this.w*this.w);
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ this.w *= norm;
+ }
+
+
+ /**
+ * Returns the (4-space) angle in radians between this vector and
+ * the vector parameter; the return value is constrained to the
+ * range [0,PI].
+ * @param v1 the other vector
+ * @return the angle in radians in the range [0,PI]
+ */
+ public final double angle(Vector4d v1)
+ {
+ double vDot = this.dot(v1) / ( this.length()*v1.length() );
+ if( vDot < -1.0) vDot = -1.0;
+ if( vDot > 1.0) vDot = 1.0;
+ return((double) (Math.acos( vDot )));
+ }
+
+}
diff --git a/src/javax/vecmath/Vector4f.java b/src/javax/vecmath/Vector4f.java
new file mode 100644
index 0000000..9ff885e
--- /dev/null
+++ b/src/javax/vecmath/Vector4f.java
@@ -0,0 +1,209 @@
+/*
+ * $RCSfile$
+ *
+ * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved.
+ *
+ * Use is subject to license terms.
+ *
+ * $Revision$
+ * $Date$
+ * $State$
+ */
+
+package javax.vecmath;
+
+import java.lang.Math;
+
+/**
+ * A 4-element vector represented by single-precision floating point x,y,z,w
+ * coordinates.
+ *
+ */
+public class Vector4f extends Tuple4f implements java.io.Serializable {
+
+ // Compatible with 1.1
+ static final long serialVersionUID = 8749319902347760659L;
+
+ /**
+ * Constructs and initializes a Vector4f from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w coordinate
+ */
+ public Vector4f(float x, float y, float z, float w)
+ {
+ super(x,y,z,w);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f from the array of length 4.
+ * @param v the array of length 4 containing xyzw in order
+ */
+ public Vector4f(float[] v)
+ {
+ super(v);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f from the specified Vector4f.
+ * @param v1 the Vector4f containing the initialization x y z w data
+ */
+ public Vector4f(Vector4f v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f from the specified Vector4d.
+ * @param v1 the Vector4d containing the initialization x y z w data
+ */
+ public Vector4f(Vector4d v1)
+ {
+ super(v1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Vector4f(Tuple4f t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Vector4f(Tuple4d t1)
+ {
+ super(t1);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f from the specified Tuple3f.
+ * The x,y,z components of this vector are set to the corresponding
+ * components of tuple t1. The w component of this vector
+ * is set to 0.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public Vector4f(Tuple3f t1) {
+ super(t1.x, t1.y, t1.z, 0.0f);
+ }
+
+
+ /**
+ * Constructs and initializes a Vector4f to (0,0,0,0).
+ */
+ public Vector4f()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the x,y,z components of this vector to the corresponding
+ * components of tuple t1. The w component of this vector
+ * is set to 0.
+ * @param t1 the tuple to be copied
+ *
+ * @since Java 3D 1.2
+ */
+ public final void set(Tuple3f t1) {
+ this.x = t1.x;
+ this.y = t1.y;
+ this.z = t1.z;
+ this.w = 0.0f;
+ }
+
+
+ /**
+ * Returns the length of this vector.
+ * @return the length of this vector as a float
+ */
+ public final float length()
+ {
+ return
+ (float) Math.sqrt(this.x*this.x + this.y*this.y +
+ this.z*this.z + this.w*this.w);
+ }
+
+ /**
+ * Returns the squared length of this vector
+ * @return the squared length of this vector as a float
+ */
+ public final float lengthSquared()
+ {
+ return (this.x*this.x + this.y*this.y +
+ this.z*this.z + this.w*this.w);
+ }
+
+ /**
+ * returns the dot product of this vector and v1
+ * @param v1 the other vector
+ * @return the dot product of this vector and v1
+ */
+ public final float dot(Vector4f v1)
+ {
+ return (this.x*v1.x + this.y*v1.y + this.z*v1.z + this.w*v1.w);
+ }
+
+
+ /**
+ * Sets the value of this vector to the normalization of vector v1.
+ * @param v1 the un-normalized vector
+ */
+ public final void normalize(Vector4f v1)
+ {
+ float norm;
+
+ norm = (float) (1.0/Math.sqrt(v1.x*v1.x + v1.y*v1.y +
+ v1.z*v1.z + v1.w*v1.w));
+ this.x = v1.x*norm;
+ this.y = v1.y*norm;
+ this.z = v1.z*norm;
+ this.w = v1.w*norm;
+ }
+
+
+ /**
+ * Normalizes this vector in place.
+ */
+ public final void normalize()
+ {
+ float norm;
+
+ norm = (float) (1.0/Math.sqrt(this.x*this.x + this.y*this.y +
+ this.z*this.z + this.w*this.w));
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ this.w *= norm;
+ }
+
+
+ /**
+ * Returns the (4-space) angle in radians between this vector and
+ * the vector parameter; the return value is constrained to the
+ * range [0,PI].
+ * @param v1 the other vector
+ * @return the angle in radians in the range [0,PI]
+ */
+ public final float angle(Vector4f v1)
+ {
+ double vDot = this.dot(v1) / ( this.length()*v1.length() );
+ if( vDot < -1.0) vDot = -1.0;
+ if( vDot > 1.0) vDot = 1.0;
+ return((float) (Math.acos( vDot )));
+ }
+
+}