diff options
author | Julien Gouesse <[email protected]> | 2015-11-28 14:20:15 +0100 |
---|---|---|
committer | Julien Gouesse <[email protected]> | 2015-11-28 14:20:15 +0100 |
commit | 245ee0238c841e60da215db9a40ccd04c65e40eb (patch) | |
tree | 92cb5c4bc2ef7440ea2daccecc490092a7bf12f8 /src/org/jogamp/vecmath/GMatrix.java | |
parent | 89caa5181fae34eaaec6d4e0a40c08ea5d38844e (diff) | |
parent | 0bc630ab20ae013225c0c93ff13733457724f143 (diff) |
Merge pull request #2 from scijava/package-prefix
Relocate package prefix to org.jogamp.vecmath
Diffstat (limited to 'src/org/jogamp/vecmath/GMatrix.java')
-rw-r--r-- | src/org/jogamp/vecmath/GMatrix.java | 3006 |
1 files changed, 3006 insertions, 0 deletions
diff --git a/src/org/jogamp/vecmath/GMatrix.java b/src/org/jogamp/vecmath/GMatrix.java new file mode 100644 index 0000000..2c7a6ae --- /dev/null +++ b/src/org/jogamp/vecmath/GMatrix.java @@ -0,0 +1,3006 @@ +/* + * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Sun designates this + * particular file as subject to the "Classpath" exception as provided + * by Sun in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +package org.jogamp.vecmath; + + +/** + * A double precision, general, dynamically-resizable, + * two-dimensional matrix class. Row and column numbering begins with + * zero. The representation is row major. + */ + +public class GMatrix implements java.io.Serializable, Cloneable { + + // Compatible with 1.1 + static final long serialVersionUID = 2777097312029690941L; + private static final boolean debug = false; + + int nRow; + int nCol; + + // double dereference is slow + double[][] values; + + private static final double EPS = 1.0E-10; + + /** + * Constructs an nRow by NCol identity matrix. + * Note that because row and column numbering begins with + * zero, nRow and nCol will be one larger than the maximum + * possible matrix index values. + * @param nRow number of rows in this matrix. + * @param nCol number of columns in this matrix. + */ + public GMatrix(int nRow, int nCol) + { + values = new double[nRow][nCol]; + this.nRow = nRow; + this.nCol = nCol; + + int i, j; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = 0.0; + } + } + + int l; + if (nRow < nCol) + l = nRow; + else + l = nCol; + + for (i = 0; i < l; i++) { + values[i][i] = 1.0; + } + } + + /** + * Constructs an nRow by nCol matrix initialized to the values + * in the matrix array. The array values are copied in one row at + * a time in row major fashion. The array should be at least + * nRow*nCol in length. + * Note that because row and column numbering begins with + * zero, nRow and nCol will be one larger than the maximum + * possible matrix index values. + * @param nRow number of rows in this matrix. + * @param nCol number of columns in this matrix. + * @param matrix a 1D array that specifies a matrix in row major fashion + */ + public GMatrix(int nRow, int nCol, double[] matrix) + { + values = new double[nRow][nCol]; + this.nRow = nRow; + this.nCol = nCol; + + int i, j; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = matrix[i*nCol+j]; + } + } + } + + /** + * Constructs a new GMatrix and copies the initial values + * from the parameter matrix. + * @param matrix the source of the initial values of the new GMatrix + */ + public GMatrix(GMatrix matrix) + { + nRow = matrix.nRow; + nCol = matrix.nCol; + values = new double[nRow][nCol]; + + int i, j; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = matrix.values[i][j]; + } + } + } + + /** + * Sets the value of this matrix to the result of multiplying itself + * with matrix m1 (this = this * m1). + * @param m1 the other matrix + */ + public final void mul(GMatrix m1) + { + int i, j, k; + + if (nCol != m1.nRow || nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix0")); + + double [][] tmp = new double[nRow][nCol]; + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + tmp[i][j] = 0.0; + for (k = 0; k < nCol; k++) { + tmp[i][j] += values[i][k]*m1.values[k][j]; + } + } + } + + values = tmp; + } + + /** + * Sets the value of this matrix to the result of multiplying + * the two argument matrices together (this = m1 * m2). + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void mul(GMatrix m1, GMatrix m2) + { + int i, j, k; + + if (m1.nCol != m2.nRow || nRow != m1.nRow || nCol != m2.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix1")); + + double[][] tmp = new double[nRow][nCol]; + + for (i = 0; i < m1.nRow; i++) { + for (j = 0; j < m2.nCol; j++) { + tmp[i][j] = 0.0; + for (k = 0; k < m1.nCol; k++) { + tmp[i][j] += m1.values[i][k]*m2.values[k][j]; + } + } + } + + values = tmp; + } + + /** + * Computes the outer product of the two vectors; multiplies the + * the first vector by the transpose of the second vector and places + * the matrix result into this matrix. This matrix must be + * be as big or bigger than getSize(v1)xgetSize(v2). + * @param v1 the first vector, treated as a row vector + * @param v2 the second vector, treated as a column vector + */ + public final void mul(GVector v1, GVector v2) + { + int i, j; + + if (nRow < v1.getSize()) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix2")); + + if (nCol < v2.getSize()) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix3")); + + for (i = 0; i < v1.getSize(); i++ ) { + for (j = 0; j < v2.getSize(); j++ ) { + values[i][j] = v1.values[i]*v2.values[j]; + } + } + } + + /** + * Sets the value of this matrix to sum of itself and matrix m1. + * @param m1 the other matrix + */ + public final void add(GMatrix m1) + { + int i, j; + + if (nRow != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix4")); + + if (nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix5")); + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = values[i][j] + m1.values[i][j]; + } + } + } + + /** + * Sets the value of this matrix to the matrix sum of matrices m1 and m2. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void add(GMatrix m1, GMatrix m2) + { + int i, j; + + if (m2.nRow != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix6")); + + if (m2.nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix7")); + + if (nCol != m1.nCol || nRow != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix8")); + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = m1.values[i][j] + m2.values[i][j]; + } + } + } + + /** + * Sets the value of this matrix to the matrix difference of itself + * and matrix m1 (this = this - m1). + * @param m1 the other matrix + */ + public final void sub(GMatrix m1) + { + int i, j; + if (nRow != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix9")); + + if (nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix28")); + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = values[i][j] - m1.values[i][j]; + } + } + } + + /** + * Sets the value of this matrix to the matrix difference + * of matrices m1 and m2 (this = m1 - m2). + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void sub(GMatrix m1, GMatrix m2) + { + int i, j; + if (m2.nRow != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix10")); + + if (m2.nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix11")); + + if (nRow != m1.nRow || nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix12")); + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = m1.values[i][j] - m2.values[i][j]; + } + } + } + + /** + * Negates the value of this matrix: this = -this. + */ + public final void negate() + { + int i, j; + for (i = 0; i < nRow; i++) { + for (j = 0;j < nCol; j++) { + values[i][j] = -values[i][j]; + } + } + } + + /** + * Sets the value of this matrix equal to the negation of + * of the GMatrix parameter. + * @param m1 The source matrix + */ + public final void negate(GMatrix m1) + { + int i, j; + if (nRow != m1.nRow || nCol != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix13")); + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = -m1.values[i][j]; + } + } + } + + /** + * Sets this GMatrix to the identity matrix. + */ + public final void setIdentity() + { + int i, j; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = 0.0; + } + } + + int l; + if (nRow < nCol) + l = nRow; + else + l = nCol; + + for (i = 0; i < l; i++) { + values[i][i] = 1.0; + } + } + + /** + * Sets all the values in this matrix to zero. + */ + public final void setZero() + { + int i, j; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = 0.0; + } + } + } + + /** + * Subtracts this matrix from the identity matrix and puts the values + * back into this (this = I - this). + */ + public final void identityMinus() + { + int i, j; + + for(i = 0; i < nRow; i++) { + for(j = 0; j < nCol; j++) { + values[i][j] = -values[i][j]; + } + } + + int l; + if( nRow < nCol) + l = nRow; + else + l = nCol; + + for(i = 0; i < l; i++) { + values[i][i] += 1.0; + } + } + + + /** + * Inverts this matrix in place. + */ + public final void invert() + { + invertGeneral(this); + } + + /** + * Inverts matrix m1 and places the new values into this matrix. Matrix + * m1 is not modified. + * @param m1 the matrix to be inverted + */ + public final void invert(GMatrix m1) + { + invertGeneral(m1); + } + + /** + * Copies a sub-matrix derived from this matrix into the target matrix. + * The upper left of the sub-matrix is located at (rowSource, colSource); + * the lower right of the sub-matrix is located at + * (lastRowSource,lastColSource). The sub-matrix is copied into the + * the target matrix starting at (rowDest, colDest). + * @param rowSource the top-most row of the sub-matrix + * @param colSource the left-most column of the sub-matrix + * @param numRow the number of rows in the sub-matrix + * @param numCol the number of columns in the sub-matrix + * @param rowDest the top-most row of the position of the copied + * sub-matrix within the target matrix + * @param colDest the left-most column of the position of the copied + * sub-matrix within the target matrix + * @param target the matrix into which the sub-matrix will be copied + */ + public final void copySubMatrix(int rowSource, int colSource, + int numRow, int numCol, int rowDest, + int colDest, GMatrix target) + { + int i, j; + + if (this != target) { + for (i = 0; i < numRow; i++) { + for (j = 0; j < numCol; j++) { + target.values[rowDest+i][colDest+j] = + values[rowSource+i][colSource+j]; + } + } + } else { + double[][] tmp = new double[numRow][numCol]; + for (i = 0; i < numRow; i++) { + for (j = 0; j < numCol; j++) { + tmp[i][j] = values[rowSource+i][colSource+j]; + } + } + for (i = 0; i < numRow; i++) { + for (j = 0; j < numCol; j++) { + target.values[rowDest+i][colDest+j] = tmp[i][j]; + } + } + } + } + + /** + * Changes the size of this matrix dynamically. If the size is increased + * no data values will be lost. If the size is decreased, only those data + * values whose matrix positions were eliminated will be lost. + * @param nRow number of desired rows in this matrix + * @param nCol number of desired columns in this matrix + */ + public final void setSize(int nRow, int nCol) + { + double[][] tmp = new double[nRow][nCol]; + int i, j, maxRow, maxCol; + + if (this.nRow < nRow) + maxRow = this.nRow; + else + maxRow = nRow; + + if (this.nCol < nCol) + maxCol = this.nCol; + else + maxCol = nCol; + + for (i = 0; i < maxRow; i++) { + for (j = 0; j < maxCol; j++) { + tmp[i][j] = values[i][j]; + } + } + + this.nRow = nRow; + this.nCol = nCol; + + values = tmp; + } + + /** + * Sets the value of this matrix to the values found in the array parameter. + * The values are copied in one row at a time, in row major + * fashion. The array should be at least equal in length to + * the number of matrix rows times the number of matrix columns + * in this matrix. + * @param matrix the row major source array + */ + public final void set(double[] matrix) + { + int i, j; + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = matrix[nCol*i+j]; + } + } + } + + /** + * Sets the value of this matrix to that of the Matrix3f provided. + * @param m1 the matrix + */ + public final void set(Matrix3f m1) + { + int i, j; + + if (nCol < 3 || nRow < 3) { // expand matrix if too small + nCol = 3; + nRow = 3; + values = new double[nRow][nCol]; + } + + values[0][0] = m1.m00; + values[0][1] = m1.m01; + values[0][2] = m1.m02; + + values[1][0] = m1.m10; + values[1][1] = m1.m11; + values[1][2] = m1.m12; + + values[2][0] = m1.m20; + values[2][1] = m1.m21; + values[2][2] = m1.m22; + + for (i = 3; i < nRow; i++) { // pad rest or matrix with zeros + for (j = 3; j < nCol; j++) { + values[i][j] = 0.0; + } + } + } + + /** + * Sets the value of this matrix to that of the Matrix3d provided. + * @param m1 the matrix + */ + public final void set(Matrix3d m1) + { + if (nRow < 3 || nCol < 3) { + values = new double[3][3]; + nRow = 3; + nCol = 3; + } + + values[0][0] = m1.m00; + values[0][1] = m1.m01; + values[0][2] = m1.m02; + + values[1][0] = m1.m10; + values[1][1] = m1.m11; + values[1][2] = m1.m12; + + values[2][0] = m1.m20; + values[2][1] = m1.m21; + values[2][2] = m1.m22; + + for (int i = 3; i < nRow; i++) { // pad rest or matrix with zeros + for(int j = 3; j < nCol; j++) { + values[i][j] = 0.0; + } + } + + } + + /** + * Sets the value of this matrix to that of the Matrix4f provided. + * @param m1 the matrix + */ + public final void set(Matrix4f m1) + { + if (nRow < 4 || nCol < 4) { + values = new double[4][4]; + nRow = 4; + nCol = 4; + } + + values[0][0] = m1.m00; + values[0][1] = m1.m01; + values[0][2] = m1.m02; + values[0][3] = m1.m03; + + values[1][0] = m1.m10; + values[1][1] = m1.m11; + values[1][2] = m1.m12; + values[1][3] = m1.m13; + + values[2][0] = m1.m20; + values[2][1] = m1.m21; + values[2][2] = m1.m22; + values[2][3] = m1.m23; + + values[3][0] = m1.m30; + values[3][1] = m1.m31; + values[3][2] = m1.m32; + values[3][3] = m1.m33; + + for (int i = 4 ; i < nRow; i++) { // pad rest or matrix with zeros + for (int j = 4; j < nCol; j++) { + values[i][j] = 0.0; + } + } + } + + /** + * Sets the value of this matrix to that of the Matrix4d provided. + * @param m1 the matrix + */ + public final void set(Matrix4d m1) + { + if (nRow < 4 || nCol < 4) { + values = new double[4][4]; + nRow = 4; + nCol = 4; + } + + values[0][0] = m1.m00; + values[0][1] = m1.m01; + values[0][2] = m1.m02; + values[0][3] = m1.m03; + + values[1][0] = m1.m10; + values[1][1] = m1.m11; + values[1][2] = m1.m12; + values[1][3] = m1.m13; + + values[2][0] = m1.m20; + values[2][1] = m1.m21; + values[2][2] = m1.m22; + values[2][3] = m1.m23; + + values[3][0] = m1.m30; + values[3][1] = m1.m31; + values[3][2] = m1.m32; + values[3][3] = m1.m33; + + for (int i = 4; i < nRow; i++) { // pad rest or matrix with zeros + for (int j = 4; j < nCol; j++) { + values[i][j] = 0.0; + } + } + } + + /** + * Sets the value of this matrix to the values found in matrix m1. + * @param m1 the source matrix + */ + public final void set(GMatrix m1) + { + int i, j; + + if (nRow < m1.nRow || nCol < m1.nCol) { + nRow = m1.nRow; + nCol = m1.nCol; + values = new double[nRow][nCol]; + } + + for (i = 0; i < Math.min(nRow, m1.nRow); i++) { + for (j = 0; j < Math.min(nCol, m1.nCol); j++) { + values[i][j] = m1.values[i][j]; + } + } + + for (i = m1.nRow; i < nRow; i++) { // pad rest or matrix with zeros + for (j = m1.nCol; j < nCol; j++) { + values[i][j] = 0.0; + } + } + } + + /** + * Returns the number of rows in this matrix. + * @return number of rows in this matrix + */ + public final int getNumRow() + { + return(nRow); + } + + /** + * Returns the number of colmuns in this matrix. + * @return number of columns in this matrix + */ + public final int getNumCol() + { + return(nCol); + } + + /** + * Retrieves the value at the specified row and column of this matrix. + * @param row the row number to be retrieved (zero indexed) + * @param column the column number to be retrieved (zero indexed) + * @return the value at the indexed element + */ + public final double getElement(int row, int column) + { + return(values[row][column]); + } + + + /** + * Modifies the value at the specified row and column of this matrix. + * @param row the row number to be modified (zero indexed) + * @param column the column number to be modified (zero indexed) + * @param value the new matrix element value + */ + public final void setElement(int row, int column, double value) + { + values[row][column] = value; + } + + /** + * Places the values of the specified row into the array parameter. + * @param row the target row number + * @param array the array into which the row values will be placed + */ + public final void getRow(int row, double[] array) + { + for (int i = 0; i < nCol; i++) { + array[i] = values[row][i]; + } + } + + /** + * Places the values of the specified row into the vector parameter. + * @param row the target row number + * @param vector the vector into which the row values will be placed + */ + public final void getRow(int row, GVector vector) + { + if (vector.getSize() < nCol) + vector.setSize(nCol); + + for (int i = 0; i < nCol; i++) { + vector.values[i] = values[row][i]; + } + } + + /** + * Places the values of the specified column into the array parameter. + * @param col the target column number + * @param array the array into which the column values will be placed + */ + public final void getColumn(int col, double[] array) + { + for (int i = 0; i < nRow; i++) { + array[i] = values[i][col]; + } + + } + + /** + * Places the values of the specified column into the vector parameter. + * @param col the target column number + * @param vector the vector into which the column values will be placed + */ + public final void getColumn(int col, GVector vector) + { + if (vector.getSize() < nRow) + vector.setSize(nRow); + + for (int i = 0; i < nRow; i++) { + vector.values[i] = values[i][col]; + } + } + + /** + * Places the values in the upper 3x3 of this GMatrix into + * the matrix m1. + * @param m1 The matrix that will hold the new values + */ + public final void get(Matrix3d m1) + { + if (nRow < 3 || nCol < 3) { + m1.setZero(); + if (nCol > 0) { + if (nRow > 0){ + m1.m00 = values[0][0]; + if (nRow > 1){ + m1.m10 = values[1][0]; + if( nRow > 2 ){ + m1.m20= values[2][0]; + } + } + } + if (nCol > 1) { + if (nRow > 0) { + m1.m01 = values[0][1]; + if (nRow > 1){ + m1.m11 = values[1][1]; + if (nRow > 2){ + m1.m21 = values[2][1]; + } + } + } + if (nCol > 2) { + if (nRow > 0) { + m1.m02 = values[0][2]; + if (nRow > 1) { + m1.m12 = values[1][2]; + if (nRow > 2) { + m1.m22 = values[2][2]; + } + } + } + } + } + } + } else { + m1.m00 = values[0][0]; + m1.m01 = values[0][1]; + m1.m02 = values[0][2]; + + m1.m10 = values[1][0]; + m1.m11 = values[1][1]; + m1.m12 = values[1][2]; + + m1.m20 = values[2][0]; + m1.m21 = values[2][1]; + m1.m22 = values[2][2]; + } + } + + /** + * Places the values in the upper 3x3 of this GMatrix into + * the matrix m1. + * @param m1 The matrix that will hold the new values + */ + public final void get(Matrix3f m1) + { + + if (nRow < 3 || nCol < 3) { + m1.setZero(); + if (nCol > 0) { + if (nRow > 0) { + m1.m00 = (float)values[0][0]; + if (nRow > 1) { + m1.m10 = (float)values[1][0]; + if (nRow > 2) { + m1.m20 = (float)values[2][0]; + } + } + } + if (nCol > 1) { + if (nRow > 0) { + m1.m01 = (float)values[0][1]; + if (nRow > 1){ + m1.m11 = (float)values[1][1]; + if (nRow > 2){ + m1.m21 = (float)values[2][1]; + } + } + } + if (nCol > 2) { + if (nRow > 0) { + m1.m02 = (float)values[0][2]; + if (nRow > 1) { + m1.m12 = (float)values[1][2]; + if (nRow > 2) { + m1.m22 = (float)values[2][2]; + } + } + } + } + } + } + } else { + m1.m00 = (float)values[0][0]; + m1.m01 = (float)values[0][1]; + m1.m02 = (float)values[0][2]; + + m1.m10 = (float)values[1][0]; + m1.m11 = (float)values[1][1]; + m1.m12 = (float)values[1][2]; + + m1.m20 = (float)values[2][0]; + m1.m21 = (float)values[2][1]; + m1.m22 = (float)values[2][2]; + } + } + + /** + * Places the values in the upper 4x4 of this GMatrix into + * the matrix m1. + * @param m1 The matrix that will hold the new values + */ + public final void get(Matrix4d m1) + { + if (nRow < 4 || nCol < 4) { + m1.setZero(); + if (nCol > 0) { + if (nRow > 0) { + m1.m00 = values[0][0]; + if (nRow > 1) { + m1.m10 = values[1][0]; + if (nRow > 2) { + m1.m20 = values[2][0]; + if (nRow > 3) { + m1.m30 = values[3][0]; + } + } + } + } + if (nCol > 1) { + if (nRow > 0) { + m1.m01 = values[0][1]; + if (nRow > 1) { + m1.m11 = values[1][1]; + if (nRow > 2) { + m1.m21 = values[2][1]; + if (nRow > 3) { + m1.m31 = values[3][1]; + } + } + } + } + if (nCol > 2) { + if (nRow > 0) { + m1.m02 = values[0][2]; + if (nRow > 1) { + m1.m12 = values[1][2]; + if (nRow > 2) { + m1.m22 = values[2][2]; + if (nRow > 3) { + m1.m32 = values[3][2]; + } + } + } + } + if (nCol > 3) { + if (nRow > 0) { + m1.m03 = values[0][3]; + if (nRow > 1) { + m1.m13 = values[1][3]; + if (nRow > 2) { + m1.m23 = values[2][3]; + if (nRow > 3) { + m1.m33 = values[3][3]; + } + } + } + } + } + } + } + } + } else { + m1.m00 = values[0][0]; + m1.m01 = values[0][1]; + m1.m02 = values[0][2]; + m1.m03 = values[0][3]; + + m1.m10 = values[1][0]; + m1.m11 = values[1][1]; + m1.m12 = values[1][2]; + m1.m13 = values[1][3]; + + m1.m20 = values[2][0]; + m1.m21 = values[2][1]; + m1.m22 = values[2][2]; + m1.m23 = values[2][3]; + + m1.m30 = values[3][0]; + m1.m31 = values[3][1]; + m1.m32 = values[3][2]; + m1.m33 = values[3][3]; + } + + } + + /** + * Places the values in the upper 4x4 of this GMatrix into + * the matrix m1. + * @param m1 The matrix that will hold the new values + */ + public final void get(Matrix4f m1) + { + + if (nRow < 4 || nCol < 4) { + m1.setZero(); + if (nCol > 0) { + if (nRow > 0) { + m1.m00 = (float)values[0][0]; + if (nRow > 1) { + m1.m10 = (float)values[1][0]; + if (nRow > 2) { + m1.m20 = (float)values[2][0]; + if (nRow > 3) { + m1.m30 = (float)values[3][0]; + } + } + } + } + if (nCol > 1) { + if (nRow > 0) { + m1.m01 = (float)values[0][1]; + if (nRow > 1) { + m1.m11 = (float)values[1][1]; + if (nRow > 2) { + m1.m21 = (float)values[2][1]; + if (nRow > 3) { + m1.m31 = (float)values[3][1]; + } + } + } + } + if (nCol > 2) { + if (nRow > 0) { + m1.m02 = (float)values[0][2]; + if (nRow > 1) { + m1.m12 = (float)values[1][2]; + if (nRow > 2) { + m1.m22 = (float)values[2][2]; + if (nRow > 3) { + m1.m32 = (float)values[3][2]; + } + } + } + } + if (nCol > 3) { + if (nRow > 0) { + m1.m03 = (float)values[0][3]; + if (nRow > 1) { + m1.m13 = (float)values[1][3]; + if (nRow > 2) { + m1.m23 = (float)values[2][3]; + if (nRow > 3) { + m1.m33 = (float)values[3][3]; + } + } + } + } + } + } + } + } + } else { + m1.m00 = (float)values[0][0]; + m1.m01 = (float)values[0][1]; + m1.m02 = (float)values[0][2]; + m1.m03 = (float)values[0][3]; + + m1.m10 = (float)values[1][0]; + m1.m11 = (float)values[1][1]; + m1.m12 = (float)values[1][2]; + m1.m13 = (float)values[1][3]; + + m1.m20 = (float)values[2][0]; + m1.m21 = (float)values[2][1]; + m1.m22 = (float)values[2][2]; + m1.m23 = (float)values[2][3]; + + m1.m30 = (float)values[3][0]; + m1.m31 = (float)values[3][1]; + m1.m32 = (float)values[3][2]; + m1.m33 = (float)values[3][3]; + } + } + + /** + * Places the values in the this GMatrix into the matrix m1; + * m1 should be at least as large as this GMatrix. + * @param m1 The matrix that will hold the new values + */ + public final void get(GMatrix m1) + { + int i, j, nc, nr; + + if (nCol < m1.nCol) + nc = nCol; + else + nc = m1.nCol; + + if (nRow < m1.nRow) + nr = nRow; + else + nr = m1.nRow; + + for (i = 0; i < nr; i++) { + for (j = 0; j < nc; j++) { + m1.values[i][j] = values[i][j]; + } + } + for (i = nr; i < m1.nRow; i++) { + for (j = 0; j < m1.nCol; j++) { + m1.values[i][j] = 0.0; + } + } + for (j = nc; j < m1.nCol; j++) { + for (i = 0; i < nr; i++) { + m1.values[i][j] = 0.0; + } + } + } + + /** + * Copy the values from the array into the specified row of this + * matrix. + * @param row the row of this matrix into which the array values + * will be copied. + * @param array the source array + */ + public final void setRow(int row, double[] array) + { + for (int i = 0; i < nCol; i++) { + values[row][i] = array[i]; + } + } + + /** + * Copy the values from the vector into the specified row of this + * matrix. + * @param row the row of this matrix into which the array values + * will be copied + * @param vector the source vector + */ + public final void setRow(int row, GVector vector) + { + for(int i = 0; i < nCol; i++) { + values[row][i] = vector.values[i]; + } + } + + /** + * Copy the values from the array into the specified column of this + * matrix. + * @param col the column of this matrix into which the array values + * will be copied + * @param array the source array + */ + public final void setColumn(int col, double[] array) + { + for(int i = 0; i < nRow; i++) { + values[i][col] = array[i]; + } + } + + /** + * Copy the values from the vector into the specified column of this + * matrix. + * @param col the column of this matrix into which the array values + * will be copied + * @param vector the source vector + */ + public final void setColumn(int col, GVector vector) + { + for(int i = 0; i < nRow; i++) { + values[i][col] = vector.values[i]; + } + + } + + /** + * Multiplies the transpose of matrix m1 times the transpose of matrix + * m2, and places the result into this. + * @param m1 The matrix on the left hand side of the multiplication + * @param m2 The matrix on the right hand side of the multiplication + */ + public final void mulTransposeBoth(GMatrix m1, GMatrix m2) + { + int i, j, k; + + if (m1.nRow != m2.nCol || nRow != m1.nCol || nCol != m2.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix14")); + + if (m1 == this || m2 == this) { + double[][] tmp = new double[nRow][nCol]; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + tmp[i][j] = 0.0; + for (k = 0; k < m1.nRow; k++) { + tmp[i][j] += m1.values[k][i]*m2.values[j][k]; + } + } + } + values = tmp; + } else { + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = 0.0; + for (k = 0; k < m1.nRow; k++) { + values[i][j] += m1.values[k][i]*m2.values[j][k]; + } + } + } + } + } + + /** + * Multiplies matrix m1 times the transpose of matrix m2, and + * places the result into this. + * @param m1 The matrix on the left hand side of the multiplication + * @param m2 The matrix on the right hand side of the multiplication + */ + public final void mulTransposeRight(GMatrix m1, GMatrix m2) + { + int i, j, k; + + if (m1.nCol != m2.nCol || nCol != m2.nRow || nRow != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix15")); + + if (m1 == this || m2 == this) { + double[][] tmp = new double[nRow][nCol]; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + tmp[i][j] = 0.0; + for (k = 0; k < m1.nCol; k++) { + tmp[i][j] += m1.values[i][k]*m2.values[j][k]; + } + } + } + values = tmp; + } else { + for (i = 0; i < nRow; i++) { + for (j = 0;j < nCol; j++) { + values[i][j] = 0.0; + for (k = 0; k < m1.nCol; k++) { + values[i][j] += m1.values[i][k]*m2.values[j][k]; + } + } + } + } + + } + + + /** + * Multiplies the transpose of matrix m1 times matrix m2, and + * places the result into this. + * @param m1 The matrix on the left hand side of the multiplication + * @param m2 The matrix on the right hand side of the multiplication + */ + public final void mulTransposeLeft(GMatrix m1, GMatrix m2) + { + int i, j, k; + + if (m1.nRow != m2.nRow || nCol != m2.nCol || nRow != m1.nCol) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix16")); + + if (m1 == this || m2 == this) { + double[][] tmp = new double[nRow][nCol]; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + tmp[i][j] = 0.0; + for (k = 0; k < m1.nRow; k++) { + tmp[i][j] += m1.values[k][i]*m2.values[k][j]; + } + } + } + values = tmp; + } else { + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = 0.0; + for (k = 0; k < m1.nRow; k++) { + values[i][j] += m1.values[k][i]*m2.values[k][j]; + } + } + } + } + } + + + /** + * Transposes this matrix in place. + */ + public final void transpose() + { + int i, j; + + if (nRow != nCol) { + double[][] tmp; + i=nRow; + nRow = nCol; + nCol = i; + tmp = new double[nRow][nCol]; + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + tmp[i][j] = values[j][i]; + } + } + values = tmp; + } else { + double swap; + for (i = 0; i < nRow; i++) { + for (j = 0; j < i; j++) { + swap = values[i][j]; + values[i][j] = values[j][i]; + values[j][i] = swap; + } + } + } + } + + /** + * Places the matrix values of the transpose of matrix m1 into this matrix. + * @param m1 the matrix to be transposed (but not modified) + */ + public final void transpose(GMatrix m1) + { + int i, j; + + if (nRow != m1.nCol || nCol != m1.nRow) + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix17")); + + if (m1 != this) { + for (i = 0; i < nRow; i++) { + for (j = 0;j < nCol; j++) { + values[i][j] = m1.values[j][i]; + } + } + } else { + transpose(); + } + } + + /** + * Returns a string that contains the values of this GMatrix. + * @return the String representation + */ + @Override + public String toString() + { + StringBuffer buffer = new StringBuffer(nRow*nCol*8); + + int i, j; + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + buffer.append(values[i][j]).append(" "); + } + buffer.append("\n"); + } + + return buffer.toString(); + } + + private static void checkMatrix( GMatrix m) + { + int i, j; + + for (i = 0; i < m.nRow; i++) { + for (j = 0; j < m.nCol; j++) { + if (Math.abs(m.values[i][j]) < 0.0000000001) { + System.out.print(" 0.0 "); + } else { + System.out.print(" " + m.values[i][j]); + } + } + System.out.print("\n"); + } + } + + + /** + * Returns a hash code value based on the data values in this + * object. Two different GMatrix objects with identical data + * values (i.e., GMatrix.equals returns true) will return the + * same hash number. Two GMatrix objects with different data + * members may return the same hash value, although this is not + * likely. + * @return the integer hash code value + */ + @Override + public int hashCode() { + long bits = 1L; + + bits = VecMathUtil.hashLongBits(bits, nRow); + bits = VecMathUtil.hashLongBits(bits, nCol); + + for (int i = 0; i < nRow; i++) { + for (int j = 0; j < nCol; j++) { + bits = VecMathUtil.hashDoubleBits(bits, values[i][j]); + } + } + + return VecMathUtil.hashFinish(bits); + } + + + /** + * Returns true if all of the data members of GMatrix m1 are + * equal to the corresponding data members in this GMatrix. + * @param m1 The matrix with which the comparison is made. + * @return true or false + */ + public boolean equals(GMatrix m1) + { + try { + int i, j; + + if (nRow != m1.nRow || nCol != m1.nCol) + return false; + + for (i = 0;i < nRow; i++) { + for (j = 0; j < nCol; j++) { + if (values[i][j] != m1.values[i][j]) + return false; + } + } + return true; + } + catch (NullPointerException e2) { + return false; + } + } + + /** + * Returns true if the Object o1 is of type GMatrix and all of the + * data members of o1 are equal to the corresponding data members in + * this GMatrix. + * @param o1 The object with which the comparison is made. + * @return true or false + */ + @Override + public boolean equals(Object o1) + { + try { + GMatrix m2 = (GMatrix) o1; + int i, j; + if (nRow != m2.nRow || nCol != m2.nCol) + return false; + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + if (values[i][j] != m2.values[i][j]) + return false; + } + } + return true; + } + catch (ClassCastException e1) { + return false; + } + catch (NullPointerException e2) { + return false; + } + } + + /** + * @deprecated Use epsilonEquals(GMatrix, double) instead + */ + public boolean epsilonEquals(GMatrix m1, float epsilon) { + return epsilonEquals(m1, (double)epsilon); + } + + /** + * Returns true if the L-infinite distance between this matrix + * and matrix m1 is less than or equal to the epsilon parameter, + * otherwise returns false. The L-infinite + * distance is equal to + * MAX[i=0,1,2, . . .n ; j=0,1,2, . . .n ; abs(this.m(i,j) - m1.m(i,j)] + * @param m1 The matrix to be compared to this matrix + * @param epsilon the threshold value + */ + public boolean epsilonEquals(GMatrix m1, double epsilon) + { + int i, j; + double diff; + if (nRow != m1.nRow || nCol != m1.nCol) + return false; + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + diff = values[i][j] - m1.values[i][j]; + if ((diff < 0 ? -diff : diff) > epsilon) + return false; + } + } + return true; + } + + /** + * Returns the trace of this matrix. + * @return the trace of this matrix + */ + public final double trace() + { + int i, l; + double t; + + if (nRow < nCol) + l = nRow; + else + l = nCol; + + t = 0.0; + for (i = 0; i < l; i++) { + t += values[i][i]; + } + return t; + } + + /** + * Finds the singular value decomposition (SVD) of this matrix + * such that this = U*W*transpose(V); and returns the rank of + * this matrix; the values of U,W,V are all overwritten. Note + * that the matrix V is output as V, and + * not transpose(V). If this matrix is mxn, then U is mxm, W + * is a diagonal matrix that is mxn, and V is nxn. Using the + * notation W = diag(w), then the inverse of this matrix is: + * inverse(this) = V*diag(1/w)*tranpose(U), where diag(1/w) + * is the same matrix as W except that the reciprocal of each + * of the diagonal components is used. + * @param U The computed U matrix in the equation this = U*W*transpose(V) + * @param W The computed W matrix in the equation this = U*W*transpose(V) + * @param V The computed V matrix in the equation this = U*W*transpose(V) + * @return The rank of this matrix. + */ + public final int SVD(GMatrix U, GMatrix W, GMatrix V) + { + // check for consistancy in dimensions + if (nCol != V.nCol || nCol != V.nRow) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix18")); + } + + if (nRow != U.nRow || nRow != U.nCol) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix25")); + } + + if (nRow != W.nRow || nCol != W.nCol) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix26")); + } + + // Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially + // addresses bug 4348562 for J3D 1.2.1. + // + // Does *not* fix the following problems reported in 4348562, + // which will wait for J3D 1.3: + // + // 1) no output of W + // 2) wrong transposition of U + // 3) wrong results for 4x4 matrices + // 4) slow performance + if (nRow == 2 && nCol == 2) { + if (values[1][0] == 0.0) { + U.setIdentity(); + V.setIdentity(); + + if (values[0][1] == 0.0) { + return 2; + } + + double[] sinl = new double[1]; + double[] sinr = new double[1]; + double[] cosl = new double[1]; + double[] cosr = new double[1]; + double[] single_values = new double[2]; + + single_values[0] = values[0][0]; + single_values[1] = values[1][1]; + + compute_2X2(values[0][0], values[0][1], values[1][1], + single_values, sinl, cosl, sinr, cosr, 0); + + update_u(0, U, cosl, sinl); + update_v(0, V, cosr, sinr); + + return 2; + } + // else call computeSVD() and check for 2x2 there + } + + return computeSVD(this, U, W, V); + } + + /** + * LU Decomposition: this matrix must be a square matrix and the + * LU GMatrix parameter must be the same size as this matrix. + * The matrix LU will be overwritten as the combination of a + * lower diagonal and upper diagonal matrix decompostion of this + * matrix; the diagonal + * elements of L (unity) are not stored. The GVector parameter + * records the row permutation effected by the partial pivoting, + * and is used as a parameter to the GVector method LUDBackSolve + * to solve sets of linear equations. + * This method returns +/- 1 depending on whether the number + * of row interchanges was even or odd, respectively. + * @param LU The matrix into which the lower and upper decompositions + * will be placed. + * @param permutation The row permutation effected by the partial + * pivoting + * @return +-1 depending on whether the number of row interchanges + * was even or odd respectively + */ + public final int LUD(GMatrix LU, GVector permutation) + { + int size = LU.nRow*LU.nCol; + double[] temp = new double[size]; + int[] even_row_exchange = new int[1]; + int[] row_perm = new int[LU.nRow]; + int i, j; + + if (nRow != nCol) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix19")); + } + + if (nRow != LU.nRow) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix27")); + } + + if (nCol != LU.nCol) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix27")); + } + + if (LU.nRow != permutation.getSize()) { + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix20")); + } + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + temp[i*nCol+j] = values[i][j]; + } + } + + // Calculate LU decomposition: Is the matrix singular? + if (!luDecomposition(LU.nRow, temp, row_perm, even_row_exchange)) { + // Matrix has no inverse + throw new SingularMatrixException + (VecMathI18N.getString("GMatrix21")); + } + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + LU.values[i][j] = temp[i*nCol+j]; + } + } + + for (i = 0; i < LU.nRow; i++){ + permutation.values[i] = (double)row_perm[i]; + } + + return even_row_exchange[0]; + } + + /** + * Sets this matrix to a uniform scale matrix; all of the + * values are reset. + * @param scale The new scale value + */ + public final void setScale(double scale) + { + int i, j, l; + + if (nRow < nCol) + l = nRow; + else + l = nCol; + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = 0.0; + } + } + + for (i = 0; i < l; i++) { + values[i][i] = scale; + } + } + + /** + * General invert routine. Inverts m1 and places the result in "this". + * Note that this routine handles both the "this" version and the + * non-"this" version. + * + * Also note that since this routine is slow anyway, we won't worry + * about allocating a little bit of garbage. + */ + final void invertGeneral(GMatrix m1) { + int size = m1.nRow*m1.nCol; + double temp[] = new double[size]; + double result[] = new double[size]; + int row_perm[] = new int[m1.nRow]; + int[] even_row_exchange = new int[1]; + int i, j; + + // Use LU decomposition and backsubstitution code specifically + // for floating-point nxn matrices. + if (m1.nRow != m1.nCol) { + // Matrix is either under or over determined + throw new MismatchedSizeException + (VecMathI18N.getString("GMatrix22")); + } + + // Copy source matrix to temp + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + temp[i*nCol+j] = m1.values[i][j]; + } + } + + // Calculate LU decomposition: Is the matrix singular? + if (!luDecomposition(m1.nRow, temp, row_perm, even_row_exchange)) { + // Matrix has no inverse + throw new SingularMatrixException + (VecMathI18N.getString("GMatrix21")); + } + + // Perform back substitution on the identity matrix + for (i = 0; i < size; i++) + result[i] = 0.0; + + for (i = 0; i < nCol; i++) + result[i+i*nCol] = 1.0; + + luBacksubstitution(m1.nRow, temp, row_perm, result); + + for (i = 0; i < nRow; i++) { + for (j = 0; j < nCol; j++) { + values[i][j] = result[i*nCol+j]; + } + } + } + + /** + * Given a nxn array "matrix0", this function replaces it with the + * LU decomposition of a row-wise permutation of itself. The input + * parameters are "matrix0" and "dim". The array "matrix0" is also + * an output parameter. The vector "row_perm[]" is an output + * parameter that contains the row permutations resulting from partial + * pivoting. The output parameter "even_row_xchg" is 1 when the + * number of row exchanges is even, or -1 otherwise. Assumes data + * type is always double. + * + * @return true if the matrix is nonsingular, or false otherwise. + */ + // + // Reference: Press, Flannery, Teukolsky, Vetterling, + // _Numerical_Recipes_in_C_, Cambridge University Press, + // 1988, pp 40-45. + // + static boolean luDecomposition(int dim, double[] matrix0, + int[] row_perm, int[] even_row_xchg) { + + double row_scale[] = new double[dim]; + + // Determine implicit scaling information by looping over rows + int i, j; + int ptr, rs, mtx; + double big, temp; + + ptr = 0; + rs = 0; + even_row_xchg[0] = 1; + + // For each row ... + i = dim; + while (i-- != 0) { + big = 0.0; + + // For each column, find the largest element in the row + j = dim; + while (j-- != 0) { + temp = matrix0[ptr++]; + temp = Math.abs(temp); + if (temp > big) { + big = temp; + } + } + + // Is the matrix singular? + if (big == 0.0) { + return false; + } + row_scale[rs++] = 1.0 / big; + } + + // For all columns, execute Crout's method + mtx = 0; + for (j = 0; j < dim; j++) { + int imax, k; + int target, p1, p2; + double sum; + + // Determine elements of upper diagonal matrix U + for (i = 0; i < j; i++) { + target = mtx + (dim*i) + j; + sum = matrix0[target]; + k = i; + p1 = mtx + (dim*i); + p2 = mtx + j; + while (k-- != 0) { + sum -= matrix0[p1] * matrix0[p2]; + p1++; + p2 += dim; + } + matrix0[target] = sum; + } + + // Search for largest pivot element and calculate + // intermediate elements of lower diagonal matrix L. + big = 0.0; + imax = -1; + for (i = j; i < dim; i++) { + target = mtx + (dim*i) + j; + sum = matrix0[target]; + k = j; + p1 = mtx + (dim*i); + p2 = mtx + j; + while (k-- != 0) { + sum -= matrix0[p1] * matrix0[p2]; + p1++; + p2 += dim; + } + matrix0[target] = sum; + + // Is this the best pivot so far? + if ((temp = row_scale[i] * Math.abs(sum)) >= big) { + big = temp; + imax = i; + } + } + + if (imax < 0) { + throw new RuntimeException(VecMathI18N.getString("GMatrix24")); + } + + // Is a row exchange necessary? + if (j != imax) { + // Yes: exchange rows + k = dim; + p1 = mtx + (dim*imax); + p2 = mtx + (dim*j); + while (k-- != 0) { + temp = matrix0[p1]; + matrix0[p1++] = matrix0[p2]; + matrix0[p2++] = temp; + } + + // Record change in scale factor + row_scale[imax] = row_scale[j]; + even_row_xchg[0] = -even_row_xchg[0]; // change exchange parity + } + + // Record row permutation + row_perm[j] = imax; + + // Is the matrix singular + if (matrix0[(mtx + (dim*j) + j)] == 0.0) { + return false; + } + + // Divide elements of lower diagonal matrix L by pivot + if (j != (dim-1)) { + temp = 1.0 / (matrix0[(mtx + (dim*j) + j)]); + target = mtx + (dim*(j+1)) + j; + i = (dim-1) - j; + while (i-- != 0) { + matrix0[target] *= temp; + target += dim; + } + } + + } + + return true; + } + + /** + * Solves a set of linear equations. The input parameters "matrix1", + * and "row_perm" come from luDecompostion and do not change + * here. The parameter "matrix2" is a set of column vectors assembled + * into a nxn matrix of floating-point values. The procedure takes each + * column of "matrix2" in turn and treats it as the right-hand side of the + * matrix equation Ax = LUx = b. The solution vector replaces the + * original column of the matrix. + * + * If "matrix2" is the identity matrix, the procedure replaces its contents + * with the inverse of the matrix from which "matrix1" was originally + * derived. + */ + // + // Reference: Press, Flannery, Teukolsky, Vetterling, + // _Numerical_Recipes_in_C_, Cambridge University Press, + // 1988, pp 44-45. + // + static void luBacksubstitution(int dim, double[] matrix1, + int[] row_perm, + double[] matrix2) { + + int i, ii, ip, j, k; + int rp; + int cv, rv, ri; + double tt; + + // rp = row_perm; + rp = 0; + + // For each column vector of matrix2 ... + for (k = 0; k < dim; k++) { + // cv = &(matrix2[0][k]); + cv = k; + ii = -1; + + // Forward substitution + for (i = 0; i < dim; i++) { + double sum; + + ip = row_perm[rp+i]; + sum = matrix2[cv+dim*ip]; + matrix2[cv+dim*ip] = matrix2[cv+dim*i]; + if (ii >= 0) { + // rv = &(matrix1[i][0]); + rv = i*dim; + for (j = ii; j <= i-1; j++) { + sum -= matrix1[rv+j] * matrix2[cv+dim*j]; + } + } + else if (sum != 0.0) { + ii = i; + } + matrix2[cv+dim*i] = sum; + } + + // Backsubstitution + for (i = 0; i < dim; i++) { + ri = (dim-1-i); + rv = dim*(ri); + tt = 0.0; + for(j=1;j<=i;j++) { + tt += matrix1[rv+dim-j] * matrix2[cv+dim*(dim-j)]; + } + matrix2[cv+dim*ri]= (matrix2[cv+dim*ri] - tt) / matrix1[rv+ri]; + } + } + } + + static int computeSVD(GMatrix mat, GMatrix U, GMatrix W, GMatrix V) { + int i, j, k; + int nr, nc, si; + + int converged, rank; + double cs, sn, r, mag,scale, t; + int eLength, sLength, vecLength; + + GMatrix tmp = new GMatrix(mat.nRow, mat.nCol); + GMatrix u = new GMatrix(mat.nRow, mat.nCol); + GMatrix v = new GMatrix(mat.nRow, mat.nCol); + GMatrix m = new GMatrix(mat); + + // compute the number of singular values + if (m.nRow >= m.nCol) { + sLength = m.nCol; + eLength = m.nCol-1; + }else { + sLength = m.nRow; + eLength = m.nRow; + } + + if (m.nRow > m.nCol) + vecLength = m.nRow; + else + vecLength = m.nCol; + + double[] vec = new double[vecLength]; + double[] single_values = new double[sLength]; + double[] e = new double[eLength]; + + if(debug) { + System.out.println("input to compute_svd = \n"+m.toString()); + } + + rank = 0; + + U.setIdentity(); + V.setIdentity(); + + nr = m.nRow; + nc = m.nCol; + + // householder reduction + for (si = 0; si < sLength; si++) { + // for each singular value + + if (nr > 1) { + // zero out column + if (debug) + System.out.println + ("*********************** U ***********************\n"); + + // compute reflector + mag = 0.0; + for (i = 0; i < nr; i++) { + mag += m.values[i+si][si] * m.values[i+si][si]; + if (debug) + System.out.println + ("mag = " + mag + " matrix.dot = " + + m.values[i+si][si] * m.values[i+si][si]); + } + + mag = Math.sqrt(mag); + if (m.values[si][si] == 0.0) { + vec[0] = mag; + } else { + vec[0] = m.values[si][si] + d_sign(mag, m.values[si][si]); + } + + for (i = 1; i < nr; i++) { + vec[i] = m.values[si+i][si]; + } + + scale = 0.0; + for (i = 0; i < nr; i++) { + if (debug) + System.out.println("vec["+i+"]="+vec[i]); + + scale += vec[i]*vec[i]; + } + + scale = 2.0/scale; + if (debug) + System.out.println("scale = "+scale); + + for (j = si; j < m.nRow; j++) { + for (k = si; k < m.nRow; k++) { + u.values[j][k] = -scale * vec[j-si]*vec[k-si]; + } + } + + for (i = si; i < m.nRow; i++){ + u.values[i][i] += 1.0; + } + + // compute s + t = 0.0; + for (i = si; i < m.nRow; i++){ + t += u.values[si][i] * m.values[i][si]; + } + m.values[si][si] = t; + + // apply reflector + for (j = si; j < m.nRow; j++) { + for (k = si+1; k < m.nCol; k++) { + tmp.values[j][k] = 0.0; + for (i = si; i < m.nCol; i++) { + tmp.values[j][k] += u.values[j][i] * m.values[i][k]; + } + } + } + + for (j = si; j < m.nRow; j++) { + for (k = si+1; k < m.nCol; k++) { + m.values[j][k] = tmp.values[j][k]; + } + } + + if (debug) { + System.out.println("U =\n" + U.toString()); + System.out.println("u =\n" + u.toString()); + } + + // update U matrix + for (j = si; j < m.nRow; j++) { + for (k = 0; k < m.nCol; k++) { + tmp.values[j][k] = 0.0; + for (i = si; i < m.nCol; i++) { + tmp.values[j][k] += u.values[j][i] * U.values[i][k]; + } + } + } + + for (j = si; j < m.nRow; j++) { + for (k = 0; k < m.nCol; k++) { + U.values[j][k] = tmp.values[j][k]; + } + } + + if (debug) { + System.out.println("single_values["+si+"] =\n" + + single_values[si]); + System.out.println("m =\n" + m.toString()); + System.out.println("U =\n" + U.toString()); + } + + nr--; + } + + if( nc > 2 ) { + // zero out row + if (debug) + System.out.println + ("*********************** V ***********************\n"); + + mag = 0.0; + for (i = 1; i < nc; i++){ + mag += m.values[si][si+i] * m.values[si][si+i]; + } + + if (debug) + System.out.println("mag = " + mag); + + // generate the reflection vector, compute the first entry and + // copy the rest from the row to be zeroed + mag = Math.sqrt(mag); + if (m.values[si][si+1] == 0.0) { + vec[0] = mag; + } else { + vec[0] = m.values[si][si+1] + + d_sign(mag, m.values[si][si+1]); + } + + for (i = 1; i < nc - 1; i++){ + vec[i] = m.values[si][si+i+1]; + } + + // use reflection vector to compute v matrix + scale = 0.0; + for (i = 0; i < nc - 1; i++){ + if( debug )System.out.println("vec["+i+"]="+vec[i]); + scale += vec[i]*vec[i]; + } + + scale = 2.0/scale; + if (debug) + System.out.println("scale = "+scale); + + for (j = si + 1; j < nc; j++) { + for (k = si+1; k < m.nCol; k++) { + v.values[j][k] = -scale * vec[j-si-1]*vec[k-si-1]; + } + } + + for (i = si + 1; i < m.nCol; i++){ + v.values[i][i] += 1.0; + } + + t=0.0; + for (i = si; i < m.nCol; i++){ + t += v.values[i][si+1] * m.values[si][i]; + } + m.values[si][si+1]=t; + + // apply reflector + for (j = si + 1; j < m.nRow; j++) { + for (k = si + 1; k < m.nCol; k++) { + tmp.values[j][k] = 0.0; + for (i = si + 1; i < m.nCol; i++) { + tmp.values[j][k] += v.values[i][k] * m.values[j][i]; + } + } + } + + for (j = si + 1; j < m.nRow; j++) { + for (k = si + 1; k < m.nCol; k++) { + m.values[j][k] = tmp.values[j][k]; + } + } + + if (debug) { + System.out.println("V =\n" + V.toString()); + System.out.println("v =\n" + v.toString()); + System.out.println("tmp =\n" + tmp.toString()); + } + + // update V matrix + for (j = 0; j < m.nRow; j++) { + for (k = si + 1; k < m.nCol; k++) { + tmp.values[j][k] = 0.0; + for (i = si + 1; i < m.nCol; i++) { + tmp.values[j][k] += v.values[i][k] * V.values[j][i]; + } + } + } + + if (debug) + System.out.println("tmp =\n" + tmp.toString()); + + for (j = 0;j < m.nRow; j++) { + for (k = si + 1; k < m.nCol; k++) { + V.values[j][k] = tmp.values[j][k]; + } + } + + if (debug) { + System.out.println("m =\n" + m.toString()); + System.out.println("V =\n" + V.toString()); + } + + nc--; + } + } + + for (i = 0; i < sLength; i++){ + single_values[i] = m.values[i][i]; + } + + for (i = 0; i < eLength; i++){ + e[i] = m.values[i][i+1]; + } + + // Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially + // addresses bug 4348562 for J3D 1.2.1. + // + // Does *not* fix the following problems reported in 4348562, + // which will wait for J3D 1.3: + // + // 1) no output of W + // 2) wrong transposition of U + // 3) wrong results for 4x4 matrices + // 4) slow performance + if (m.nRow == 2 && m.nCol == 2) { + double[] cosl = new double[1]; + double[] cosr = new double[1]; + double[] sinl = new double[1]; + double[] sinr = new double[1]; + + compute_2X2(single_values[0], e[0], single_values[1], + single_values, sinl, cosl, sinr, cosr, 0); + + update_u(0, U, cosl, sinl); + update_v(0, V, cosr, sinr); + + return 2; + } + + // compute_qr causes ArrayIndexOutOfBounds for 2x2 matrices + compute_qr (0, e.length-1, single_values, e, U, V); + + // compute rank = number of non zero singular values + rank = single_values.length; + + // sort by order of size of single values + // and check for zero's + return rank; + } + + static void compute_qr(int start, int end, double[] s, double[] e, + GMatrix u, GMatrix v) { + + int i, j, k, n, sl; + boolean converged; + double shift, r, utemp, vtemp, f, g; + double[] cosl = new double[1]; + double[] cosr = new double[1]; + double[] sinl = new double[1]; + double[] sinr = new double[1]; + GMatrix m = new GMatrix(u.nCol, v.nRow); + + final int MAX_INTERATIONS = 2; + final double CONVERGE_TOL = 4.89E-15; + + if (debug) { + System.out.println("start =" + start); + System.out.println("s =\n"); + for(i=0;i<s.length;i++) { + System.out.println(s[i]); + } + + System.out.println("\nes =\n"); + for (i = 0; i < e.length; i++) { + System.out.println(e[i]); + } + + for (i = 0; i < s.length; i++) { + m.values[i][i] = s[i]; + } + + for (i = 0; i < e.length; i++) { + m.values[i][i+1] = e[i]; + } + System.out.println("\nm =\n" + m.toString()); + } + + double c_b48 = 1.0; + double c_b71 = -1.0; + converged = false; + + if (debug) + print_svd(s, e, u, v); + + f = 0.0; + g = 0.0; + + for (k = 0; k < MAX_INTERATIONS && !converged;k++) { + for (i = start; i <= end; i++) { + + // if at start of iterfaction compute shift + if (i == start) { + if (e.length == s.length) + sl = end; + else + sl = end + 1; + + shift = compute_shift(s[sl-1], e[end], s[sl]); + + f = (Math.abs(s[i]) - shift) * + (d_sign(c_b48, s[i]) + shift/s[i]); + g = e[i]; + } + + r = compute_rot(f, g, sinr, cosr); + if (i != start) + e[i-1] = r; + + f = cosr[0] * s[i] + sinr[0] * e[i]; + e[i] = cosr[0] * e[i] - sinr[0] * s[i]; + g = sinr[0] * s[i+1]; + s[i+1] = cosr[0] * s[i+1]; + + // if (debug) print_se(s,e); + update_v (i, v, cosr, sinr); + if (debug) + print_m(m,u,v); + + r = compute_rot(f, g, sinl, cosl); + s[i] = r; + f = cosl[0] * e[i] + sinl[0] * s[i+1]; + s[i+1] = cosl[0] * s[i+1] - sinl[0] * e[i]; + + if( i < end) { + // if not last + g = sinl[0] * e[i+1]; + e[i+1] = cosl[0] * e[i+1]; + } + //if (debug) print_se(s,e); + + update_u(i, u, cosl, sinl); + if (debug) + print_m(m,u,v); + } + + // if extra off diagonal perform one more right side rotation + if (s.length == e.length) { + r = compute_rot(f, g, sinr, cosr); + f = cosr[0] * s[i] + sinr[0] * e[i]; + e[i] = cosr[0] * e[i] - sinr[0] * s[i]; + s[i+1] = cosr[0] * s[i+1]; + + update_v(i, v, cosr, sinr); + if (debug) + print_m(m,u,v); + } + + if (debug) { + System.out.println + ("\n*********************** iteration #" + k + + " ***********************\n"); + print_svd(s, e, u, v); + } + + // check for convergence on off diagonals and reduce + while ((end-start > 1) && (Math.abs(e[end]) < CONVERGE_TOL)) { + end--; + } + + // check if need to split + for (n = end - 2; n > start; n--) { + if (Math.abs(e[n]) < CONVERGE_TOL) { // split + compute_qr(n + 1, end, s, e, u, v); // do lower matrix + end = n - 1; // do upper matrix + + // check for convergence on off diagonals and reduce + while ((end - start > 1) && + (Math.abs(e[end]) < CONVERGE_TOL)) { + end--; + } + } + } + + if (debug) + System.out.println("start = " + start); + + if ((end - start <= 1) && (Math.abs(e[start+1]) < CONVERGE_TOL)) { + converged = true; + } else { + // check if zero on the diagonal + } + + } + + if (debug) + System.out.println("\n****call compute_2X2 ********************\n"); + + if (Math.abs(e[1]) < CONVERGE_TOL) { + compute_2X2(s[start], e[start], s[start+1], s, + sinl, cosl, sinr, cosr, 0); + e[start] = 0.0; + e[start+1] = 0.0; + } else { + } + + i = start; + update_u(i, u, cosl, sinl); + update_v(i, v, cosr, sinr); + + if(debug) { + System.out.println + ("\n*******after call compute_2X2 **********************\n"); + print_svd(s, e, u, v); + } + + return; + } + + private static void print_se(double[] s, double[] e) { + System.out.println("\ns =" + s[0] + " " + s[1] + " " + s[2]); + System.out.println("e =" + e[0] + " " + e[1]); + } + + private static void update_v(int index, GMatrix v, + double[] cosr, double[] sinr) { + int j; + double vtemp; + + for (j = 0; j < v.nRow; j++) { + vtemp = v.values[j][index]; + v.values[j][index] = + cosr[0]*vtemp + sinr[0]*v.values[j][index+1]; + v.values[j][index+1] = + -sinr[0]*vtemp + cosr[0]*v.values[j][index+1]; + } + } + + private static void chase_up(double[] s, double[] e, int k, GMatrix v) { + double f, g, r; + double[] cosr = new double[1]; + double[] sinr = new double[1]; + int i; + GMatrix t = new GMatrix(v.nRow, v.nCol); + GMatrix m = new GMatrix(v.nRow, v.nCol); + + if (debug) { + m.setIdentity(); + for (i = 0; i < s.length; i++) { + m.values[i][i] = s[i]; + } + for (i = 0; i < e.length; i++) { + m.values[i][i+1] = e[i]; + } + } + + f = e[k]; + g = s[k]; + + for (i = k; i > 0; i--) { + r = compute_rot(f, g, sinr, cosr); + f = -e[i-1] * sinr[0]; + g = s[i-1]; + s[i] = r; + e[i-1] = e[i-1] * cosr[0]; + update_v_split(i, k+1, v, cosr, sinr, t, m); + } + + s[i+1] = compute_rot(f, g, sinr, cosr); + update_v_split(i, k+1, v, cosr, sinr, t, m); + } + + private static void chase_across(double[] s, double[] e, int k, GMatrix u) { + double f, g, r; + double[] cosl = new double[1]; + double[] sinl = new double[1]; + int i; + GMatrix t = new GMatrix(u.nRow, u.nCol); + GMatrix m = new GMatrix(u.nRow, u.nCol); + + if (debug) { + m.setIdentity(); + for (i = 0; i < s.length; i++) { + m.values[i][i] = s[i]; + } + for (i = 0; i < e.length; i++) { + m.values[i][i+1] = e[i]; + } + } + + g = e[k]; + f = s[k+1]; + + for (i = k; i < u.nCol-2; i++){ + r = compute_rot(f, g, sinl, cosl); + g = -e[i+1] * sinl[0]; + f = s[i+2]; + s[i+1] = r; + e[i+1] = e[i+1] * cosl[0]; + update_u_split(k, i + 1, u, cosl, sinl, t, m); + } + + s[i+1] = compute_rot(f, g, sinl, cosl); + update_u_split(k, i + 1, u, cosl, sinl, t, m); + } + + private static void update_v_split(int topr, int bottomr, GMatrix v, + double[] cosr, double[] sinr, + GMatrix t, GMatrix m) { + int j; + double vtemp; + + for (j = 0; j < v.nRow; j++) { + vtemp = v.values[j][topr]; + v.values[j][topr] = cosr[0]*vtemp - sinr[0]*v.values[j][bottomr]; + v.values[j][bottomr] = sinr[0]*vtemp + cosr[0]*v.values[j][bottomr]; + } + + if (debug) { + t.setIdentity(); + for (j = 0; j < v.nRow; j++) { + vtemp = t.values[j][topr]; + t.values[j][topr] = + cosr[0]*vtemp - sinr[0]*t.values[j][bottomr]; + t.values[j][bottomr] = + sinr[0]*vtemp + cosr[0]*t.values[j][bottomr]; + } + } + + System.out.println("topr =" + topr); + System.out.println("bottomr =" + bottomr); + System.out.println("cosr =" + cosr[0]); + System.out.println("sinr =" + sinr[0]); + System.out.println("\nm ="); + checkMatrix(m); + System.out.println("\nv ="); + checkMatrix(t); + m.mul(m,t); + System.out.println("\nt*m ="); + checkMatrix(m); + } + + private static void update_u_split(int topr, int bottomr, GMatrix u, + double[] cosl, double[] sinl, + GMatrix t, GMatrix m) { + int j; + double utemp; + + for (j = 0; j < u.nCol; j++) { + utemp = u.values[topr][j]; + u.values[topr][j] = cosl[0]*utemp - sinl[0]*u.values[bottomr][j]; + u.values[bottomr][j] = sinl[0]*utemp + cosl[0]*u.values[bottomr][j]; + } + + if(debug) { + t.setIdentity(); + for (j = 0;j < u.nCol; j++) { + utemp = t.values[topr][j]; + t.values[topr][j] = + cosl[0]*utemp - sinl[0]*t.values[bottomr][j]; + t.values[bottomr][j] = + sinl[0]*utemp + cosl[0]*t.values[bottomr][j]; + } + } + System.out.println("\nm="); + checkMatrix(m); + System.out.println("\nu="); + checkMatrix(t); + m.mul(t,m); + System.out.println("\nt*m="); + checkMatrix(m); + } + + private static void update_u(int index, GMatrix u, + double[] cosl, double[] sinl) { + int j; + double utemp; + + for (j = 0; j < u.nCol; j++) { + utemp = u.values[index][j]; + u.values[index][j] = + cosl[0]*utemp + sinl[0]*u.values[index+1][j]; + u.values[index+1][j] = + -sinl[0]*utemp + cosl[0]*u.values[index+1][j]; + } + } + + private static void print_m(GMatrix m, GMatrix u, GMatrix v) { + GMatrix mtmp = new GMatrix(m.nCol, m.nRow); + + mtmp.mul(u, mtmp); + mtmp.mul(mtmp, v); + System.out.println("\n m = \n" + mtmp.toString(mtmp)); + + } + + private static String toString(GMatrix m) + { + StringBuffer buffer = new StringBuffer(m.nRow * m.nCol * 8); + int i, j; + + for (i = 0; i < m.nRow; i++) { + for(j = 0; j < m.nCol; j++) { + if (Math.abs(m.values[i][j]) < .000000001) { + buffer.append("0.0000 "); + } else { + buffer.append(m.values[i][j]).append(" "); + } + } + buffer.append("\n"); + } + return buffer.toString(); + } + + private static void print_svd(double[] s, double[] e, + GMatrix u, GMatrix v) { + int i; + GMatrix mtmp = new GMatrix(u.nCol, v.nRow); + + System.out.println(" \ns = "); + for (i = 0; i < s.length; i++) { + System.out.println(" " + s[i]); + } + + System.out.println(" \ne = "); + for (i = 0; i < e.length; i++) { + System.out.println(" " + e[i]); + } + + System.out.println(" \nu = \n" + u.toString()); + System.out.println(" \nv = \n" + v.toString()); + + mtmp.setIdentity(); + for (i = 0; i < s.length; i++) { + mtmp.values[i][i] = s[i]; + } + for (i = 0; i < e.length; i++) { + mtmp.values[i][i+1] = e[i]; + } + System.out.println(" \nm = \n"+mtmp.toString()); + + mtmp.mulTransposeLeft(u, mtmp); + mtmp.mulTransposeRight(mtmp, v); + + System.out.println(" \n u.transpose*m*v.transpose = \n" + + mtmp.toString()); + } + + static double max(double a, double b) { + if (a > b) + return a; + else + return b; + } + + static double min(double a, double b) { + if (a < b) + return a; + else + return b; + } + + static double compute_shift(double f, double g, double h) { + double d__1, d__2; + double fhmn, fhmx, c, fa, ga, ha, as, at, au; + double ssmin; + + fa = Math.abs(f); + ga = Math.abs(g); + ha = Math.abs(h); + fhmn = min(fa,ha); + fhmx = max(fa,ha); + + if (fhmn == 0.0) { + ssmin = 0.0; + if (fhmx == 0.0) { + } else { + d__1 = min(fhmx,ga) / max(fhmx,ga); + } + } else { + if (ga < fhmx) { + as = fhmn / fhmx + 1.0; + at = (fhmx - fhmn) / fhmx; + d__1 = ga / fhmx; + au = d__1 * d__1; + c = 2.0 / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au)); + ssmin = fhmn * c; + } else { + au = fhmx / ga; + if (au == 0.0) { + ssmin = fhmn * fhmx / ga; + } else { + as = fhmn / fhmx + 1.0; + at = (fhmx - fhmn) / fhmx; + d__1 = as * au; + d__2 = at * au; + c = 1.0 / (Math.sqrt(d__1 * d__1 + 1.0) + + Math.sqrt(d__2 * d__2 + 1.0)); + ssmin = fhmn * c * au; + ssmin += ssmin; + } + } + } + + return ssmin; + } + + static int compute_2X2(double f, double g, double h, + double[] single_values, double[] snl, double[] csl, + double[] snr, double[] csr, int index) { + + double c_b3 = 2.0; + double c_b4 = 1.0; + + double d__1; + int pmax; + double temp; + boolean swap; + double a, d, l, m, r, s, t, tsign, fa, ga, ha; + double ft, gt, ht, mm; + boolean gasmal; + double tt, clt, crt, slt, srt; + double ssmin,ssmax; + + ssmax = single_values[0]; + ssmin = single_values[1]; + clt = 0.0; + crt = 0.0; + slt = 0.0; + srt = 0.0; + tsign = 0.0; + + ft = f; + fa = Math.abs(ft); + ht = h; + ha = Math.abs(h); + + pmax = 1; + if (ha > fa) + swap = true; + else + swap = false; + + if (swap) { + pmax = 3; + temp = ft; + ft = ht; + ht = temp; + temp = fa; + fa = ha; + ha = temp; + + } + + gt = g; + ga = Math.abs(gt); + if (ga == 0.0) { + single_values[1] = ha; + single_values[0] = fa; + clt = 1.0; + crt = 1.0; + slt = 0.0; + srt = 0.0; + } else { + gasmal = true; + if (ga > fa) { + pmax = 2; + if (fa / ga < EPS) { + gasmal = false; + ssmax = ga; + + if (ha > 1.0) { + ssmin = fa / (ga / ha); + } else { + ssmin = fa / ga * ha; + } + clt = 1.0; + slt = ht / gt; + srt = 1.0; + crt = ft / gt; + } + } + if (gasmal) { + d = fa - ha; + if (d == fa) { + + l = 1.0; + } else { + l = d / fa; + } + + m = gt / ft; + t = 2.0 - l; + mm = m * m; + tt = t * t; + s = Math.sqrt(tt + mm); + + if (l == 0.0) { + r = Math.abs(m); + } else { + r = Math.sqrt(l * l + mm); + } + + a = (s + r) * 0.5; + if (ga > fa) { + pmax = 2; + if (fa / ga < EPS) { + gasmal = false; + ssmax = ga; + if (ha > 1.0) { + ssmin = fa / (ga / ha); + } else { + ssmin = fa / ga * ha; + } + clt = 1.0; + slt = ht / gt; + srt = 1.0; + crt = ft / gt; + } + } + if (gasmal) { + d = fa - ha; + if (d == fa) { + l = 1.0; + } else { + l = d / fa; + } + + m = gt / ft; + t = 2.0 - l; + + mm = m * m; + tt = t * t; + s = Math.sqrt(tt + mm); + + if (l == 0.) { + r = Math.abs(m); + } else { + r = Math.sqrt(l * l + mm); + } + + a = (s + r) * 0.5; + ssmin = ha / a; + ssmax = fa * a; + + if (mm == 0.0) { + if (l == 0.0) { + t = d_sign(c_b3, ft) * d_sign(c_b4, gt); + } else { + t = gt / d_sign(d, ft) + m / t; + } + } else { + t = (m / (s + t) + m / (r + l)) * (a + 1.0); + } + + l = Math.sqrt(t * t + 4.0); + crt = 2.0 / l; + srt = t / l; + clt = (crt + srt * m) / a; + slt = ht / ft * srt / a; + } + } + if (swap) { + csl[0] = srt; + snl[0] = crt; + csr[0] = slt; + snr[0] = clt; + } else { + csl[0] = clt; + snl[0] = slt; + csr[0] = crt; + snr[0] = srt; + } + + if (pmax == 1) { + tsign = d_sign(c_b4, csr[0]) * + d_sign(c_b4, csl[0]) * d_sign(c_b4, f); + } + if (pmax == 2) { + tsign = d_sign(c_b4, snr[0]) * + d_sign(c_b4, csl[0]) * d_sign(c_b4, g); + } + if (pmax == 3) { + tsign = d_sign(c_b4, snr[0]) * + d_sign(c_b4, snl[0]) * d_sign(c_b4, h); + } + + single_values[index] = d_sign(ssmax, tsign); + d__1 = tsign * d_sign(c_b4, f) * d_sign(c_b4, h); + single_values[index+1] = d_sign(ssmin, d__1); + } + + return 0; + } + + static double compute_rot(double f, double g, double[] sin, double[] cos) { + int i__1; + double d__1, d__2; + double cs, sn; + int i; + double scale; + int count; + double f1, g1; + double r; + final double safmn2 = 2.002083095183101E-146; + final double safmx2 = 4.994797680505588E+145; + + if (g == 0.0) { + cs = 1.0; + sn = 0.0; + r = f; + } else if (f == 0.0) { + cs = 0.0; + sn = 1.0; + r = g; + } else { + f1 = f; + g1 = g; + scale = max(Math.abs(f1),Math.abs(g1)); + if (scale >= safmx2) { + count = 0; + while(scale >= safmx2) { + ++count; + f1 *= safmn2; + g1 *= safmn2; + scale = max(Math.abs(f1), Math.abs(g1)); + } + r = Math.sqrt(f1*f1 + g1*g1); + cs = f1 / r; + sn = g1 / r; + i__1 = count; + for (i = 1; i <= count; ++i) { + r *= safmx2; + } + } else if (scale <= safmn2) { + count = 0; + while(scale <= safmn2) { + ++count; + f1 *= safmx2; + g1 *= safmx2; + scale = max(Math.abs(f1), Math.abs(g1)); + } + r = Math.sqrt(f1*f1 + g1*g1); + cs = f1 / r; + sn = g1 / r; + i__1 = count; + for (i = 1; i <= count; ++i) { + r *= safmn2; + } + } else { + r = Math.sqrt(f1*f1 + g1*g1); + cs = f1 / r; + sn = g1 / r; + } + if (Math.abs(f) > Math.abs(g) && cs < 0.0) { + cs = -cs; + sn = -sn; + r = -r; + } + } + sin[0] = sn; + cos[0] = cs; + return r; + } + + static double d_sign(double a, double b) { + double x; + x = (a >= 0 ? a : - a); + return (b >= 0 ? x : -x); + } + + /** + * Creates a new object of the same class as this object. + * + * @return a clone of this instance. + * @exception OutOfMemoryError if there is not enough memory. + * @see java.lang.Cloneable + * @since vecmath 1.3 + */ + @Override + public Object clone() { + GMatrix m1 = null; + try { + m1 = (GMatrix)super.clone(); + } catch (CloneNotSupportedException e) { + // this shouldn't happen, since we are Cloneable + throw new InternalError(); + } + + // Also need to clone array of values + m1.values = new double[nRow][nCol]; + for (int i = 0; i < nRow; i++) { + for(int j = 0; j < nCol; j++) { + m1.values[i][j] = values[i][j]; + } + } + + return m1; + } + +} |