summaryrefslogtreecommitdiffstats
path: root/src/org/jogamp/vecmath/Quat4f.java
diff options
context:
space:
mode:
authorCurtis Rueden <[email protected]>2015-11-18 09:10:28 -0600
committerCurtis Rueden <[email protected]>2015-11-27 22:55:12 -0600
commit0bc630ab20ae013225c0c93ff13733457724f143 (patch)
tree92cb5c4bc2ef7440ea2daccecc490092a7bf12f8 /src/org/jogamp/vecmath/Quat4f.java
parent89caa5181fae34eaaec6d4e0a40c08ea5d38844e (diff)
Relocate package prefix to org.jogamp.vecmath
Updating the package prefix avoids clashes with old versions of Java 3D. This is especially important on OS X, where Java 3D 1.3 is sometimes present on the java.ext.path, taking precedence over the classpath.
Diffstat (limited to 'src/org/jogamp/vecmath/Quat4f.java')
-rw-r--r--src/org/jogamp/vecmath/Quat4f.java689
1 files changed, 689 insertions, 0 deletions
diff --git a/src/org/jogamp/vecmath/Quat4f.java b/src/org/jogamp/vecmath/Quat4f.java
new file mode 100644
index 0000000..0aa33a5
--- /dev/null
+++ b/src/org/jogamp/vecmath/Quat4f.java
@@ -0,0 +1,689 @@
+/*
+ * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+package org.jogamp.vecmath;
+
+
+/**
+ * A 4 element unit quaternion represented by single precision floating
+ * point x,y,z,w coordinates. The quaternion is always normalized.
+ *
+ */
+public class Quat4f extends Tuple4f implements java.io.Serializable {
+
+ // Combatible with 1.1
+ static final long serialVersionUID = 2675933778405442383L;
+
+ final static double EPS = 0.000001;
+ final static double EPS2 = 1.0e-30;
+ final static double PIO2 = 1.57079632679;
+
+ /**
+ * Constructs and initializes a Quat4f from the specified xyzw coordinates.
+ * @param x the x coordinate
+ * @param y the y coordinate
+ * @param z the z coordinate
+ * @param w the w scalar component
+ */
+ public Quat4f(float x, float y, float z, float w)
+ {
+ float mag;
+ mag = (float)(1.0/Math.sqrt( x*x + y*y + z*z + w*w ));
+ this.x = x*mag;
+ this.y = y*mag;
+ this.z = z*mag;
+ this.w = w*mag;
+
+ }
+
+ /**
+ * Constructs and initializes a Quat4f from the array of length 4.
+ * @param q the array of length 4 containing xyzw in order
+ */
+ public Quat4f(float[] q)
+ {
+ float mag;
+ mag = (float)(1.0/Math.sqrt( q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3] ));
+ x = q[0]*mag;
+ y = q[1]*mag;
+ z = q[2]*mag;
+ w = q[3]*mag;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Quat4f.
+ * @param q1 the Quat4f containing the initialization x y z w data
+ */
+ public Quat4f(Quat4f q1)
+ {
+ super(q1);
+ }
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Quat4d.
+ * @param q1 the Quat4d containing the initialization x y z w data
+ */
+ public Quat4f(Quat4d q1)
+ {
+ super(q1);
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Tuple4f.
+ * @param t1 the Tuple4f containing the initialization x y z w data
+ */
+ public Quat4f(Tuple4f t1)
+ {
+ float mag;
+ mag = (float)(1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w ));
+ x = t1.x*mag;
+ y = t1.y*mag;
+ z = t1.z*mag;
+ w = t1.w*mag;
+
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f from the specified Tuple4d.
+ * @param t1 the Tuple4d containing the initialization x y z w data
+ */
+ public Quat4f(Tuple4d t1)
+ {
+ double mag;
+ mag = 1.0/Math.sqrt( t1.x*t1.x + t1.y*t1.y + t1.z*t1.z + t1.w*t1.w );
+ x = (float)(t1.x*mag);
+ y = (float)(t1.y*mag);
+ z = (float)(t1.z*mag);
+ w = (float)(t1.w*mag);
+ }
+
+
+ /**
+ * Constructs and initializes a Quat4f to (0.0,0.0,0.0,0.0).
+ */
+ public Quat4f()
+ {
+ super();
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the conjugate of quaternion q1.
+ * @param q1 the source vector
+ */
+ public final void conjugate(Quat4f q1)
+ {
+ this.x = -q1.x;
+ this.y = -q1.y;
+ this.z = -q1.z;
+ this.w = q1.w;
+ }
+
+ /**
+ * Sets the value of this quaternion to the conjugate of itself.
+ */
+ public final void conjugate()
+ {
+ this.x = -this.x;
+ this.y = -this.y;
+ this.z = -this.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * quaternions q1 and q2 (this = q1 * q2).
+ * Note that this is safe for aliasing (e.g. this can be q1 or q2).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mul(Quat4f q1, Quat4f q2)
+ {
+ if (this != q1 && this != q2) {
+ this.w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ this.x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ this.y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ } else {
+ float x, y, w;
+
+ w = q1.w*q2.w - q1.x*q2.x - q1.y*q2.y - q1.z*q2.z;
+ x = q1.w*q2.x + q2.w*q1.x + q1.y*q2.z - q1.z*q2.y;
+ y = q1.w*q2.y + q2.w*q1.y - q1.x*q2.z + q1.z*q2.x;
+ this.z = q1.w*q2.z + q2.w*q1.z + q1.x*q2.y - q1.y*q2.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion product of
+ * itself and q1 (this = this * q1).
+ * @param q1 the other quaternion
+ */
+ public final void mul(Quat4f q1)
+ {
+ float x, y, w;
+
+ w = this.w*q1.w - this.x*q1.x - this.y*q1.y - this.z*q1.z;
+ x = this.w*q1.x + q1.w*this.x + this.y*q1.z - this.z*q1.y;
+ y = this.w*q1.y + q1.w*this.y - this.x*q1.z + this.z*q1.x;
+ this.z = this.w*q1.z + q1.w*this.z + this.x*q1.y - this.y*q1.x;
+ this.w = w;
+ this.x = x;
+ this.y = y;
+ }
+
+
+ /**
+ * Multiplies quaternion q1 by the inverse of quaternion q2 and places
+ * the value into this quaternion. The value of both argument quaternions
+ * is preservered (this = q1 * q2^-1).
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ */
+ public final void mulInverse(Quat4f q1, Quat4f q2)
+ {
+ Quat4f tempQuat = new Quat4f(q2);
+
+ tempQuat.inverse();
+ this.mul(q1, tempQuat);
+ }
+
+
+
+ /**
+ * Multiplies this quaternion by the inverse of quaternion q1 and places
+ * the value into this quaternion. The value of the argument quaternion
+ * is preserved (this = this * q^-1).
+ * @param q1 the other quaternion
+ */
+ public final void mulInverse(Quat4f q1)
+ {
+ Quat4f tempQuat = new Quat4f(q1);
+
+ tempQuat.inverse();
+ this.mul(tempQuat);
+ }
+
+
+
+ /**
+ * Sets the value of this quaternion to quaternion inverse of quaternion q1.
+ * @param q1 the quaternion to be inverted
+ */
+ public final void inverse(Quat4f q1)
+ {
+ float norm;
+
+ norm = 1.0f/(q1.w*q1.w + q1.x*q1.x + q1.y*q1.y + q1.z*q1.z);
+ this.w = norm*q1.w;
+ this.x = -norm*q1.x;
+ this.y = -norm*q1.y;
+ this.z = -norm*q1.z;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the quaternion inverse of itself.
+ */
+ public final void inverse()
+ {
+ float norm;
+
+ norm = 1.0f/(this.w*this.w + this.x*this.x + this.y*this.y + this.z*this.z);
+ this.w *= norm;
+ this.x *= -norm;
+ this.y *= -norm;
+ this.z *= -norm;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the normalized value
+ * of quaternion q1.
+ * @param q1 the quaternion to be normalized.
+ */
+ public final void normalize(Quat4f q1)
+ {
+ float norm;
+
+ norm = (q1.x*q1.x + q1.y*q1.y + q1.z*q1.z + q1.w*q1.w);
+
+ if (norm > 0.0f) {
+ norm = 1.0f/(float)Math.sqrt(norm);
+ this.x = norm*q1.x;
+ this.y = norm*q1.y;
+ this.z = norm*q1.z;
+ this.w = norm*q1.w;
+ } else {
+ this.x = (float) 0.0;
+ this.y = (float) 0.0;
+ this.z = (float) 0.0;
+ this.w = (float) 0.0;
+ }
+ }
+
+
+ /**
+ * Normalizes the value of this quaternion in place.
+ */
+ public final void normalize()
+ {
+ float norm;
+
+ norm = (this.x*this.x + this.y*this.y + this.z*this.z + this.w*this.w);
+
+ if (norm > 0.0f) {
+ norm = 1.0f / (float)Math.sqrt(norm);
+ this.x *= norm;
+ this.y *= norm;
+ this.z *= norm;
+ this.w *= norm;
+ } else {
+ this.x = (float) 0.0;
+ this.y = (float) 0.0;
+ this.z = (float) 0.0;
+ this.w = (float) 0.0;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix4f
+ */
+ public final void set(Matrix4f m1)
+ {
+ float ww = 0.25f*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt((double)ww);
+ ww = 0.25f/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5f*(m1.m11 + m1.m22);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt((double) ww);
+ ww = 1.0f/(2.0f*this.x);
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5f*(1.0f - m1.m22);
+
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt((double) ww);
+ this.z = m1.m21/(2.0f*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix4d
+ */
+ public final void set(Matrix4d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + m1.m33);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (float) ((m1.m21 - m1.m12)*ww);
+ this.y = (float) ((m1.m02 - m1.m20)*ww);
+ this.z = (float) ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = (float)(m1.m10*ww);
+ this.z = (float)(m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt(ww);
+ this.z = (float) (m1.m21/(2.0*(double)(this.y)));
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix3f
+ */
+ public final void set(Matrix3f m1)
+ {
+ float ww = 0.25f*(m1.m00 + m1.m11 + m1.m22 + 1.0f);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt((double) ww);
+ ww = 0.25f/this.w;
+ this.x = (m1.m21 - m1.m12)*ww;
+ this.y = (m1.m02 - m1.m20)*ww;
+ this.z = (m1.m10 - m1.m01)*ww;
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5f*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt((double) ww);
+ ww = 0.5f/this.x;
+ this.y = m1.m10*ww;
+ this.z = m1.m20*ww;
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5f*(1.0f - m1.m22);
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt((double) ww);
+ this.z = m1.m21/(2.0f*this.y);
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the rotational component of
+ * the passed matrix.
+ * @param m1 the Matrix3d
+ */
+ public final void set(Matrix3d m1)
+ {
+ double ww = 0.25*(m1.m00 + m1.m11 + m1.m22 + 1.0f);
+
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.w = (float) Math.sqrt(ww);
+ ww = 0.25/this.w;
+ this.x = (float) ((m1.m21 - m1.m12)*ww);
+ this.y = (float) ((m1.m02 - m1.m20)*ww);
+ this.z = (float) ((m1.m10 - m1.m01)*ww);
+ return;
+ }
+ } else {
+ this.w = 0;
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.w = 0;
+ ww = -0.5*(m1.m11 + m1.m22);
+ if (ww >= 0) {
+ if (ww >= EPS2) {
+ this.x = (float) Math.sqrt(ww);
+ ww = 0.5/this.x;
+ this.y = (float) (m1.m10*ww);
+ this.z = (float) (m1.m20*ww);
+ return;
+ }
+ } else {
+ this.x = 0;
+ this.y = 0;
+ this.z = 1;
+ return;
+ }
+
+ this.x = 0;
+ ww = 0.5*(1.0 - m1.m22);
+ if (ww >= EPS2) {
+ this.y = (float) Math.sqrt(ww);
+ this.z = (float) (m1.m21/(2.0*(double)(this.y)));
+ return;
+ }
+
+ this.y = 0;
+ this.z = 1;
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4f a)
+ {
+ float mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+ amag = (float)Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z);
+ if (amag < EPS ) {
+ w = 0.0f;
+ x = 0.0f;
+ y = 0.0f;
+ z = 0.0f;
+ } else {
+ amag = 1.0f/amag;
+ mag = (float)Math.sin(a.angle/2.0);
+ w = (float)Math.cos(a.angle/2.0);
+ x = a.x*amag*mag;
+ y = a.y*amag*mag;
+ z = a.z*amag*mag;
+ }
+ }
+
+
+ /**
+ * Sets the value of this quaternion to the equivalent rotation
+ * of the AxisAngle argument.
+ * @param a the AxisAngle to be emulated
+ */
+ public final void set(AxisAngle4d a)
+ {
+ float mag,amag;
+ // Quat = cos(theta/2) + sin(theta/2)(roation_axis)
+
+ amag = (float)(1.0/Math.sqrt( a.x*a.x + a.y*a.y + a.z*a.z));
+
+ if (amag < EPS ) {
+ w = 0.0f;
+ x = 0.0f;
+ y = 0.0f;
+ z = 0.0f;
+ } else {
+ amag = 1.0f/amag;
+ mag = (float)Math.sin(a.angle/2.0);
+ w = (float)Math.cos(a.angle/2.0);
+ x = (float)a.x*amag*mag;
+ y = (float)a.y*amag*mag;
+ z = (float)a.z*amag*mag;
+ }
+
+ }
+
+
+ /**
+ * Performs a great circle interpolation between this quaternion
+ * and the quaternion parameter and places the result into this
+ * quaternion.
+ * @param q1 the other quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4f q1, float alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+
+ double dot,s1,s2,om,sinom;
+
+ dot = x*q1.x + y*q1.y + z*q1.z + w*q1.w;
+
+ if ( dot < 0 ) {
+ // negate quaternion
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ dot = -dot;
+ }
+
+ if ( (1.0 - dot) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+
+ w = (float)(s1*w + s2*q1.w);
+ x = (float)(s1*x + s2*q1.x);
+ y = (float)(s1*y + s2*q1.y);
+ z = (float)(s1*z + s2*q1.z);
+ }
+
+
+
+ /**
+ * Performs a great circle interpolation between quaternion q1
+ * and quaternion q2 and places the result into this quaternion.
+ * @param q1 the first quaternion
+ * @param q2 the second quaternion
+ * @param alpha the alpha interpolation parameter
+ */
+ public final void interpolate(Quat4f q1, Quat4f q2, float alpha) {
+ // From "Advanced Animation and Rendering Techniques"
+ // by Watt and Watt pg. 364, function as implemented appeared to be
+ // incorrect. Fails to choose the same quaternion for the double
+ // covering. Resulting in change of direction for rotations.
+ // Fixed function to negate the first quaternion in the case that the
+ // dot product of q1 and this is negative. Second case was not needed.
+
+ double dot,s1,s2,om,sinom;
+
+ dot = q2.x*q1.x + q2.y*q1.y + q2.z*q1.z + q2.w*q1.w;
+
+ if ( dot < 0 ) {
+ // negate quaternion
+ q1.x = -q1.x; q1.y = -q1.y; q1.z = -q1.z; q1.w = -q1.w;
+ dot = -dot;
+ }
+
+ if ( (1.0 - dot) > EPS ) {
+ om = Math.acos(dot);
+ sinom = Math.sin(om);
+ s1 = Math.sin((1.0-alpha)*om)/sinom;
+ s2 = Math.sin( alpha*om)/sinom;
+ } else{
+ s1 = 1.0 - alpha;
+ s2 = alpha;
+ }
+ w = (float)(s1*q1.w + s2*q2.w);
+ x = (float)(s1*q1.x + s2*q2.x);
+ y = (float)(s1*q1.y + s2*q2.y);
+ z = (float)(s1*q1.z + s2*q2.z);
+ }
+
+}
+
+
+
+