diff options
Diffstat (limited to 'src/javax/vecmath/Matrix3f.java')
-rw-r--r-- | src/javax/vecmath/Matrix3f.java | 2096 |
1 files changed, 2096 insertions, 0 deletions
diff --git a/src/javax/vecmath/Matrix3f.java b/src/javax/vecmath/Matrix3f.java new file mode 100644 index 0000000..155d5e1 --- /dev/null +++ b/src/javax/vecmath/Matrix3f.java @@ -0,0 +1,2096 @@ +/* + * $RCSfile$ + * + * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved. + * + * Use is subject to license terms. + * + * $Revision$ + * $Date$ + * $State$ + */ + +package javax.vecmath; + +import java.lang.Math; + +/** + * A single precision floating point 3 by 3 matrix. + * Primarily to support 3D rotations. + * + */ +public class Matrix3f implements java.io.Serializable, Cloneable { + + // Compatible with 1.1 + static final long serialVersionUID = 329697160112089834L; + + /** + * The first matrix element in the first row. + */ + public float m00; + + /** + * The second matrix element in the first row. + */ + public float m01; + + /** + * The third matrix element in the first row. + */ + public float m02; + + /** + * The first matrix element in the second row. + */ + public float m10; + + /** + * The second matrix element in the second row. + */ + public float m11; + + /** + * The third matrix element in the second row. + */ + public float m12; + + /** + * The first matrix element in the third row. + */ + public float m20; + + /** + * The second matrix element in the third row. + */ + public float m21; + + /** + * The third matrix element in the third row. + */ + public float m22; + /* + double[] tmp = new double[9]; // scratch matrix + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + */ + private static final double EPS = 1.0E-8; + + + + /** + * Constructs and initializes a Matrix3f from the specified nine values. + * @param m00 the [0][0] element + * @param m01 the [0][1] element + * @param m02 the [0][2] element + * @param m10 the [1][0] element + * @param m11 the [1][1] element + * @param m12 the [1][2] element + * @param m20 the [2][0] element + * @param m21 the [2][1] element + * @param m22 the [2][2] element + */ + public Matrix3f(float m00, float m01, float m02, + float m10, float m11, float m12, + float m20, float m21, float m22) + { + this.m00 = m00; + this.m01 = m01; + this.m02 = m02; + + this.m10 = m10; + this.m11 = m11; + this.m12 = m12; + + this.m20 = m20; + this.m21 = m21; + this.m22 = m22; + + } + + /** + * Constructs and initializes a Matrix3f from the specified + * nine-element array. this.m00 =v[0], this.m01=v[1], etc. + * @param v the array of length 9 containing in order + */ + public Matrix3f(float[] v) + { + this.m00 = v[ 0]; + this.m01 = v[ 1]; + this.m02 = v[ 2]; + + this.m10 = v[ 3]; + this.m11 = v[ 4]; + this.m12 = v[ 5]; + + this.m20 = v[ 6]; + this.m21 = v[ 7]; + this.m22 = v[ 8]; + + } + + /** + * Constructs a new matrix with the same values as the + * Matrix3d parameter. + * @param m1 the source matrix + */ + public Matrix3f(Matrix3d m1) + { + this.m00 = (float)m1.m00; + this.m01 = (float)m1.m01; + this.m02 = (float)m1.m02; + + this.m10 = (float)m1.m10; + this.m11 = (float)m1.m11; + this.m12 = (float)m1.m12; + + this.m20 = (float)m1.m20; + this.m21 = (float)m1.m21; + this.m22 = (float)m1.m22; + + } + + + /** + * Constructs a new matrix with the same values as the + * Matrix3f parameter. + * @param m1 the source matrix + */ + public Matrix3f(Matrix3f m1) + { + this.m00 = m1.m00; + this.m01 = m1.m01; + this.m02 = m1.m02; + + this.m10 = m1.m10; + this.m11 = m1.m11; + this.m12 = m1.m12; + + this.m20 = m1.m20; + this.m21 = m1.m21; + this.m22 = m1.m22; + + } + + + /** + * Constructs and initializes a Matrix3f to all zeros. + */ + public Matrix3f() + { + this.m00 = (float) 0.0; + this.m01 = (float) 0.0; + this.m02 = (float) 0.0; + + this.m10 = (float) 0.0; + this.m11 = (float) 0.0; + this.m12 = (float) 0.0; + + this.m20 = (float) 0.0; + this.m21 = (float) 0.0; + this.m22 = (float) 0.0; + + } + + /** + * Returns a string that contains the values of this Matrix3f. + * @return the String representation + */ + public String toString() { + return + this.m00 + ", " + this.m01 + ", " + this.m02 + "\n" + + this.m10 + ", " + this.m11 + ", " + this.m12 + "\n" + + this.m20 + ", " + this.m21 + ", " + this.m22 + "\n"; + } + + /** + * Sets this Matrix3f to identity. + */ + public final void setIdentity() + { + this.m00 = (float) 1.0; + this.m01 = (float) 0.0; + this.m02 = (float) 0.0; + + this.m10 = (float) 0.0; + this.m11 = (float) 1.0; + this.m12 = (float) 0.0; + + this.m20 = (float) 0.0; + this.m21 = (float) 0.0; + this.m22 = (float) 1.0; + } + + /** + * Sets the scale component of the current matrix by factoring + * out the current scale (by doing an SVD) and multiplying by + * the new scale. + * @param scale the new scale amount + */ + public final void setScale(float scale) + { + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + getScaleRotate( tmp_scale, tmp_rot ); + + this.m00 = (float)(tmp_rot[0] * scale); + this.m01 = (float)(tmp_rot[1] * scale); + this.m02 = (float)(tmp_rot[2] * scale); + + this.m10 = (float)(tmp_rot[3] * scale); + this.m11 = (float)(tmp_rot[4] * scale); + this.m12 = (float)(tmp_rot[5] * scale); + + this.m20 = (float)(tmp_rot[6] * scale); + this.m21 = (float)(tmp_rot[7] * scale); + this.m22 = (float)(tmp_rot[8] * scale); + + } + + /** + * Sets the specified element of this matrix3f to the value provided. + * @param row the row number to be modified (zero indexed) + * @param column the column number to be modified (zero indexed) + * @param value the new value + */ + public final void setElement(int row, int column, float value) + { + switch (row) + { + case 0: + switch(column) + { + case 0: + this.m00 = value; + break; + case 1: + this.m01 = value; + break; + case 2: + this.m02 = value; + break; + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0")); + } + break; + + case 1: + switch(column) + { + case 0: + this.m10 = value; + break; + case 1: + this.m11 = value; + break; + case 2: + this.m12 = value; + break; + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0")); + } + break; + + case 2: + switch(column) + { + case 0: + this.m20 = value; + break; + case 1: + this.m21 = value; + break; + case 2: + this.m22 = value; + break; + default: + + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0")); + } + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f0")); + } + } + + /** + * Copies the matrix values in the specified row into the vector parameter. + * @param row the matrix row + * @param v the vector into which the matrix row values will be copied + */ + public final void getRow(int row, Vector3f v) { + if( row == 0 ) { + v.x = m00; + v.y = m01; + v.z = m02; + } else if(row == 1) { + v.x = m10; + v.y = m11; + v.z = m12; + } else if(row == 2) { + v.x = m20; + v.y = m21; + v.z = m22; + } else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f1")); + } + + } + + /** + * Copies the matrix values in the specified row into the array parameter. + * @param row the matrix row + * @param v the array into which the matrix row values will be copied + */ + public final void getRow(int row, float v[]) { + if( row == 0 ) { + v[0] = m00; + v[1] = m01; + v[2] = m02; + } else if(row == 1) { + v[0] = m10; + v[1] = m11; + v[2] = m12; + } else if(row == 2) { + v[0] = m20; + v[1] = m21; + v[2] = m22; + } else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f1")); + } + + } + + /** + * Copies the matrix values in the specified column into the vector + * parameter. + * @param column the matrix column + * @param v the vector into which the matrix row values will be copied + */ + public final void getColumn(int column, Vector3f v) { + if( column == 0 ) { + v.x = m00; + v.y = m10; + v.z = m20; + } else if(column == 1) { + v.x = m01; + v.y = m11; + v.z = m21; + }else if(column == 2){ + v.x = m02; + v.y = m12; + v.z = m22; + } else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f3")); + } + + } + + /** + * Copies the matrix values in the specified column into the array + * parameter. + * @param column the matrix column + * @param v the array into which the matrix row values will be copied + */ + public final void getColumn(int column, float v[]) { + if( column == 0 ) { + v[0] = m00; + v[1] = m10; + v[2] = m20; + } else if(column == 1) { + v[0] = m01; + v[1] = m11; + v[2] = m21; + }else if(column == 2) { + v[0] = m02; + v[1] = m12; + v[2] = m22; + }else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f3")); + } + } + + /** + * Retrieves the value at the specified row and column of this + * matrix. + * @param row the row number to be retrieved (zero indexed) + * @param column the column number to be retrieved (zero indexed) + * @return the value at the indexed element. + */ + public final float getElement(int row, int column) + { + switch (row) + { + case 0: + switch(column) + { + case 0: + return(this.m00); + case 1: + return(this.m01); + case 2: + return(this.m02); + default: + break; + } + break; + case 1: + switch(column) + { + case 0: + return(this.m10); + case 1: + return(this.m11); + case 2: + return(this.m12); + default: + break; + } + break; + + case 2: + switch(column) + { + case 0: + return(this.m20); + case 1: + return(this.m21); + case 2: + return(this.m22); + default: + break; + } + break; + + default: + break; + } + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f5")); + } + + /** + * Sets the specified row of this matrix3f to the three values provided. + * @param row the row number to be modified (zero indexed) + * @param x the first column element + * @param y the second column element + * @param z the third column element + */ + public final void setRow(int row, float x, float y, float z) + { + switch (row) { + case 0: + this.m00 = x; + this.m01 = y; + this.m02 = z; + break; + + case 1: + this.m10 = x; + this.m11 = y; + this.m12 = z; + break; + + case 2: + this.m20 = x; + this.m21 = y; + this.m22 = z; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6")); + } + } + + /** + * Sets the specified row of this matrix3f to the Vector provided. + * @param row the row number to be modified (zero indexed) + * @param v the replacement row + */ + public final void setRow(int row, Vector3f v) + { + switch (row) { + case 0: + this.m00 = v.x; + this.m01 = v.y; + this.m02 = v.z; + break; + + case 1: + this.m10 = v.x; + this.m11 = v.y; + this.m12 = v.z; + break; + + case 2: + this.m20 = v.x; + this.m21 = v.y; + this.m22 = v.z; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6")); + } + } + + /** + * Sets the specified row of this matrix3f to the three values provided. + * @param row the row number to be modified (zero indexed) + * @param v the replacement row + */ + public final void setRow(int row, float v[]) + { + switch (row) { + case 0: + this.m00 = v[0]; + this.m01 = v[1]; + this.m02 = v[2]; + break; + + case 1: + this.m10 = v[0]; + this.m11 = v[1]; + this.m12 = v[2]; + break; + + case 2: + this.m20 = v[0]; + this.m21 = v[1]; + this.m22 = v[2]; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f6")); + } + } + + /** + * Sets the specified column of this matrix3f to the three values provided. + * @param column the column number to be modified (zero indexed) + * @param x the first row element + * @param y the second row element + * @param z the third row element + */ + public final void setColumn(int column, float x, float y, float z) + { + switch (column) { + case 0: + this.m00 = x; + this.m10 = y; + this.m20 = z; + break; + + case 1: + this.m01 = x; + this.m11 = y; + this.m21 = z; + break; + + case 2: + this.m02 = x; + this.m12 = y; + this.m22 = z; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9")); + } + } + + /** + * Sets the specified column of this matrix3f to the vector provided. + * @param column the column number to be modified (zero indexed) + * @param v the replacement column + */ + public final void setColumn(int column, Vector3f v) + { + switch (column) { + case 0: + this.m00 = v.x; + this.m10 = v.y; + this.m20 = v.z; + break; + + case 1: + this.m01 = v.x; + this.m11 = v.y; + this.m21 = v.z; + break; + + case 2: + this.m02 = v.x; + this.m12 = v.y; + this.m22 = v.z; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9")); + } + } + + /** + * Sets the specified column of this matrix3f to the three values provided. + * @param column the column number to be modified (zero indexed) + * @param v the replacement column + */ + public final void setColumn(int column, float v[]) + { + switch (column) { + case 0: + this.m00 = v[0]; + this.m10 = v[1]; + this.m20 = v[2]; + break; + + case 1: + this.m01 = v[0]; + this.m11 = v[1]; + this.m21 = v[2]; + break; + + case 2: + this.m02 = v[0]; + this.m12 = v[1]; + this.m22 = v[2]; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix3f9")); + } + } + + /** + * Performs an SVD normalization of this matrix to calculate + * and return the uniform scale factor. If the matrix has non-uniform + * scale factors, the largest of the x, y, and z scale factors will + * be returned. This matrix is not modified. + * @return the scale factor of this matrix + */ + public final float getScale() + { + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate(tmp_scale, tmp_rot); + + return( (float)Matrix3d.max3(tmp_scale )); + + } + + /** + * Adds a scalar to each component of this matrix. + * @param scalar the scalar adder + */ + public final void add(float scalar) + { + m00 += scalar; + m01 += scalar; + m02 += scalar; + m10 += scalar; + m11 += scalar; + m12 += scalar; + m20 += scalar; + m21 += scalar; + m22 += scalar; + } + + /** + * Adds a scalar to each component of the matrix m1 and places + * the result into this. Matrix m1 is not modified. + * @param scalar the scalar adder. + * @param m1 the original matrix values + */ + public final void add(float scalar, Matrix3f m1) + { + this.m00 = m1.m00 + scalar; + this.m01 = m1.m01 + scalar; + this.m02 = m1.m02 + scalar; + this.m10 = m1.m10 + scalar; + this.m11 = m1.m11 + scalar; + this.m12 = m1.m12 + scalar; + this.m20 = m1.m20 + scalar; + this.m21 = m1.m21 + scalar; + this.m22 = m1.m22 + scalar; + } + + /** + * Sets the value of this matrix to the matrix sum of matrices m1 and m2. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void add(Matrix3f m1, Matrix3f m2) + { + this.m00 = m1.m00 + m2.m00; + this.m01 = m1.m01 + m2.m01; + this.m02 = m1.m02 + m2.m02; + + this.m10 = m1.m10 + m2.m10; + this.m11 = m1.m11 + m2.m11; + this.m12 = m1.m12 + m2.m12; + + this.m20 = m1.m20 + m2.m20; + this.m21 = m1.m21 + m2.m21; + this.m22 = m1.m22 + m2.m22; + } + + /** + * Sets the value of this matrix to the matrix sum of itself and + * matrix m1. + * @param m1 the other matrix + */ + public final void add(Matrix3f m1) + { + this.m00 += m1.m00; + this.m01 += m1.m01; + this.m02 += m1.m02; + + this.m10 += m1.m10; + this.m11 += m1.m11; + this.m12 += m1.m12; + + this.m20 += m1.m20; + this.m21 += m1.m21; + this.m22 += m1.m22; + } + + /** + * Sets the value of this matrix to the matrix difference + * of matrices m1 and m2. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void sub(Matrix3f m1, Matrix3f m2) + { + this.m00 = m1.m00 - m2.m00; + this.m01 = m1.m01 - m2.m01; + this.m02 = m1.m02 - m2.m02; + + this.m10 = m1.m10 - m2.m10; + this.m11 = m1.m11 - m2.m11; + this.m12 = m1.m12 - m2.m12; + + this.m20 = m1.m20 - m2.m20; + this.m21 = m1.m21 - m2.m21; + this.m22 = m1.m22 - m2.m22; + } + + /** + * Sets the value of this matrix to the matrix difference + * of itself and matrix m1 (this = this - m1). + * @param m1 the other matrix + */ + public final void sub(Matrix3f m1) + { + this.m00 -= m1.m00; + this.m01 -= m1.m01; + this.m02 -= m1.m02; + + this.m10 -= m1.m10; + this.m11 -= m1.m11; + this.m12 -= m1.m12; + + this.m20 -= m1.m20; + this.m21 -= m1.m21; + this.m22 -= m1.m22; + } + + /** + * Sets the value of this matrix to its transpose. + */ + public final void transpose() + { + float temp; + + temp = this.m10; + this.m10 = this.m01; + this.m01 = temp; + + temp = this.m20; + this.m20 = this.m02; + this.m02 = temp; + + temp = this.m21; + this.m21 = this.m12; + this.m12 = temp; + } + + /** + * Sets the value of this matrix to the transpose of the argument matrix. + * @param m1 the matrix to be transposed + */ + public final void transpose(Matrix3f m1) + { + if (this != m1) { + this.m00 = m1.m00; + this.m01 = m1.m10; + this.m02 = m1.m20; + + this.m10 = m1.m01; + this.m11 = m1.m11; + this.m12 = m1.m21; + + this.m20 = m1.m02; + this.m21 = m1.m12; + this.m22 = m1.m22; + } else + this.transpose(); + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * (single precision) quaternion argument. + * @param q1 the quaternion to be converted + */ + public final void set(Quat4f q1) + { + this.m00 = 1.0f - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z; + this.m10 = 2.0f*(q1.x*q1.y + q1.w*q1.z); + this.m20 = 2.0f*(q1.x*q1.z - q1.w*q1.y); + + this.m01 = 2.0f*(q1.x*q1.y - q1.w*q1.z); + this.m11 = 1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z; + this.m21 = 2.0f*(q1.y*q1.z + q1.w*q1.x); + + this.m02 = 2.0f*(q1.x*q1.z + q1.w*q1.y); + this.m12 = 2.0f*(q1.y*q1.z - q1.w*q1.x); + this.m22 = 1.0f - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y; + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * (single precision) axis and angle argument. + * @param a1 the axis and angle to be converted + */ + public final void set(AxisAngle4f a1) + { + float mag = (float)Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); + if( mag < EPS ) { + m00 = 1.0f; + m01 = 0.0f; + m02 = 0.0f; + + m10 = 0.0f; + m11 = 1.0f; + m12 = 0.0f; + + m20 = 0.0f; + m21 = 0.0f; + m22 = 1.0f; + } else { + mag = 1.0f/mag; + float ax = a1.x*mag; + float ay = a1.y*mag; + float az = a1.z*mag; + + float sinTheta = (float)Math.sin((float)a1.angle); + float cosTheta = (float)Math.cos((float)a1.angle); + float t = (float)1.0 - cosTheta; + + float xz = ax * az; + float xy = ax * ay; + float yz = ay * az; + + m00 = t * ax * ax + cosTheta; + m01 = t * xy - sinTheta * az; + m02 = t * xz + sinTheta * ay; + + m10 = t * xy + sinTheta * az; + m11 = t * ay * ay + cosTheta; + m12 = t * yz - sinTheta * ax; + + m20 = t * xz - sinTheta * ay; + m21 = t * yz + sinTheta * ax; + m22 = t * az * az + cosTheta; + } + + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * (double precision) axis and angle argument. + * @param a1 the axis and angle to be converted + */ + public final void set(AxisAngle4d a1) + { + double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); + if( mag < EPS ) { + m00 = 1.0f; + m01 = 0.0f; + m02 = 0.0f; + + m10 = 0.0f; + m11 = 1.0f; + m12 = 0.0f; + + m20 = 0.0f; + m21 = 0.0f; + m22 = 1.0f; + } else { + mag = 1.0/mag; + double ax = a1.x*mag; + double ay = a1.y*mag; + double az = a1.z*mag; + + double sinTheta = Math.sin(a1.angle); + double cosTheta = Math.cos(a1.angle); + double t = 1.0 - cosTheta; + + double xz = ax * az; + double xy = ax * ay; + double yz = ay * az; + + m00 = (float)(t * ax * ax + cosTheta); + m01 = (float)(t * xy - sinTheta * az); + m02 = (float)(t * xz + sinTheta * ay); + + m10 = (float)(t * xy + sinTheta * az); + m11 = (float)(t * ay * ay + cosTheta); + m12 = (float)(t * yz - sinTheta * ax); + + m20 = (float)(t * xz - sinTheta * ay); + m21 = (float)(t * yz + sinTheta * ax); + m22 = (float)(t * az * az + cosTheta); + } + + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * (single precision) quaternion argument. + * @param q1 the quaternion to be converted + */ + public final void set(Quat4d q1) + { + this.m00 = (float) (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + this.m10 = (float) (2.0*(q1.x*q1.y + q1.w*q1.z)); + this.m20 = (float) (2.0*(q1.x*q1.z - q1.w*q1.y)); + + this.m01 = (float) (2.0*(q1.x*q1.y - q1.w*q1.z)); + this.m11 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + this.m21 = (float) (2.0*(q1.y*q1.z + q1.w*q1.x)); + + this.m02 = (float) (2.0*(q1.x*q1.z + q1.w*q1.y)); + this.m12 = (float) (2.0*(q1.y*q1.z - q1.w*q1.x)); + this.m22 = (float) (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + } + + /** + * Sets the values in this Matrix3f equal to the row-major + * array parameter (ie, the first three elements of the + * array will be copied into the first row of this matrix, etc.). + * @param m the single precision array of length 9 + */ + public final void set(float[] m) + { + m00 = m[0]; + m01 = m[1]; + m02 = m[2]; + + m10 = m[3]; + m11 = m[4]; + m12 = m[5]; + + m20 = m[6]; + m21 = m[7]; + m22 = m[8]; + + + } + + /** + * Sets the value of this matrix to the value of the Matrix3f + * argument. + * @param m1 the source matrix3f + */ + public final void set(Matrix3f m1) { + + this.m00 = m1.m00; + this.m01 = m1.m01; + this.m02 = m1.m02; + + this.m10 = m1.m10; + this.m11 = m1.m11; + this.m12 = m1.m12; + + this.m20 = m1.m20; + this.m21 = m1.m21; + this.m22 = m1.m22; + + } + + + /** + * Sets the value of this matrix to the float value of the Matrix3d + * argument. + * @param m1 the source matrix3d + */ + public final void set(Matrix3d m1) { + + this.m00 = (float)m1.m00; + this.m01 = (float)m1.m01; + this.m02 = (float)m1.m02; + + this.m10 = (float)m1.m10; + this.m11 = (float)m1.m11; + this.m12 = (float)m1.m12; + + this.m20 = (float)m1.m20; + this.m21 = (float)m1.m21; + this.m22 = (float)m1.m22; + + } + + + /** + * Sets the value of this matrix to the matrix inverse + * of the passed matrix m1. + * @param m1 the matrix to be inverted + */ + public final void invert(Matrix3f m1) + { + invertGeneral( m1); + } + + /** + * Inverts this matrix in place. + */ + public final void invert() + { + invertGeneral( this ); + } + + /** + * General invert routine. Inverts m1 and places the result in "this". + * Note that this routine handles both the "this" version and the + * non-"this" version. + * + * Also note that since this routine is slow anyway, we won't worry + * about allocating a little bit of garbage. + */ + private final void invertGeneral(Matrix3f m1) { + double temp[] = new double[9]; + double result[] = new double[9]; + int row_perm[] = new int[3]; + int i, r, c; + + // Use LU decomposition and backsubstitution code specifically + // for floating-point 3x3 matrices. + + // Copy source matrix to t1tmp + temp[0] = (double)m1.m00; + temp[1] = (double)m1.m01; + temp[2] = (double)m1.m02; + + temp[3] = (double)m1.m10; + temp[4] = (double)m1.m11; + temp[5] = (double)m1.m12; + + temp[6] = (double)m1.m20; + temp[7] = (double)m1.m21; + temp[8] = (double)m1.m22; + + + // Calculate LU decomposition: Is the matrix singular? + if (!luDecomposition(temp, row_perm)) { + // Matrix has no inverse + throw new SingularMatrixException(VecMathI18N.getString("Matrix3f12")); + } + + // Perform back substitution on the identity matrix + for(i=0;i<9;i++) result[i] = 0.0; + result[0] = 1.0; result[4] = 1.0; result[8] = 1.0; + luBacksubstitution(temp, row_perm, result); + + this.m00 = (float)result[0]; + this.m01 = (float)result[1]; + this.m02 = (float)result[2]; + + this.m10 = (float)result[3]; + this.m11 = (float)result[4]; + this.m12 = (float)result[5]; + + this.m20 = (float)result[6]; + this.m21 = (float)result[7]; + this.m22 = (float)result[8]; + + } + + /** + * Given a 3x3 array "matrix0", this function replaces it with the + * LU decomposition of a row-wise permutation of itself. The input + * parameters are "matrix0" and "dimen". The array "matrix0" is also + * an output parameter. The vector "row_perm[3]" is an output + * parameter that contains the row permutations resulting from partial + * pivoting. The output parameter "even_row_xchg" is 1 when the + * number of row exchanges is even, or -1 otherwise. Assumes data + * type is always double. + * + * This function is similar to luDecomposition, except that it + * is tuned specifically for 3x3 matrices. + * + * @return true if the matrix is nonsingular, or false otherwise. + */ + // + // Reference: Press, Flannery, Teukolsky, Vetterling, + // _Numerical_Recipes_in_C_, Cambridge University Press, + // 1988, pp 40-45. + // + static boolean luDecomposition(double[] matrix0, + int[] row_perm) { + + double row_scale[] = new double[3]; + + // Determine implicit scaling information by looping over rows + { + int i, j; + int ptr, rs; + double big, temp; + + ptr = 0; + rs = 0; + + // For each row ... + i = 3; + while (i-- != 0) { + big = 0.0; + + // For each column, find the largest element in the row + j = 3; + while (j-- != 0) { + temp = matrix0[ptr++]; + temp = Math.abs(temp); + if (temp > big) { + big = temp; + } + } + + // Is the matrix singular? + if (big == 0.0) { + return false; + } + row_scale[rs++] = 1.0 / big; + } + } + + { + int j; + int mtx; + + mtx = 0; + + // For all columns, execute Crout's method + for (j = 0; j < 3; j++) { + int i, imax, k; + int target, p1, p2; + double sum, big, temp; + + // Determine elements of upper diagonal matrix U + for (i = 0; i < j; i++) { + target = mtx + (3*i) + j; + sum = matrix0[target]; + k = i; + p1 = mtx + (3*i); + p2 = mtx + j; + while (k-- != 0) { + sum -= matrix0[p1] * matrix0[p2]; + p1++; + p2 += 3; + } + matrix0[target] = sum; + } + + // Search for largest pivot element and calculate + // intermediate elements of lower diagonal matrix L. + big = 0.0; + imax = -1; + for (i = j; i < 3; i++) { + target = mtx + (3*i) + j; + sum = matrix0[target]; + k = j; + p1 = mtx + (3*i); + p2 = mtx + j; + while (k-- != 0) { + sum -= matrix0[p1] * matrix0[p2]; + p1++; + p2 += 3; + } + matrix0[target] = sum; + + // Is this the best pivot so far? + if ((temp = row_scale[i] * Math.abs(sum)) >= big) { + big = temp; + imax = i; + } + } + + if (imax < 0) { + throw new RuntimeException(VecMathI18N.getString("Matrix3f13")); + } + + // Is a row exchange necessary? + if (j != imax) { + // Yes: exchange rows + k = 3; + p1 = mtx + (3*imax); + p2 = mtx + (3*j); + while (k-- != 0) { + temp = matrix0[p1]; + matrix0[p1++] = matrix0[p2]; + matrix0[p2++] = temp; + } + + // Record change in scale factor + row_scale[imax] = row_scale[j]; + } + + // Record row permutation + row_perm[j] = imax; + + // Is the matrix singular + if (matrix0[(mtx + (3*j) + j)] == 0.0) { + return false; + } + + // Divide elements of lower diagonal matrix L by pivot + if (j != (3-1)) { + temp = 1.0 / (matrix0[(mtx + (3*j) + j)]); + target = mtx + (3*(j+1)) + j; + i = 2 - j; + while (i-- != 0) { + matrix0[target] *= temp; + target += 3; + } + } + } + } + + return true; + } + + /** + * Solves a set of linear equations. The input parameters "matrix1", + * and "row_perm" come from luDecompostionD3x3 and do not change + * here. The parameter "matrix2" is a set of column vectors assembled + * into a 3x3 matrix of floating-point values. The procedure takes each + * column of "matrix2" in turn and treats it as the right-hand side of the + * matrix equation Ax = LUx = b. The solution vector replaces the + * original column of the matrix. + * + * If "matrix2" is the identity matrix, the procedure replaces its contents + * with the inverse of the matrix from which "matrix1" was originally + * derived. + */ + // + // Reference: Press, Flannery, Teukolsky, Vetterling, + // _Numerical_Recipes_in_C_, Cambridge University Press, + // 1988, pp 44-45. + // + static void luBacksubstitution(double[] matrix1, + int[] row_perm, + double[] matrix2) { + + int i, ii, ip, j, k; + int rp; + int cv, rv; + + // rp = row_perm; + rp = 0; + + // For each column vector of matrix2 ... + for (k = 0; k < 3; k++) { + // cv = &(matrix2[0][k]); + cv = k; + ii = -1; + + // Forward substitution + for (i = 0; i < 3; i++) { + double sum; + + ip = row_perm[rp+i]; + sum = matrix2[cv+3*ip]; + matrix2[cv+3*ip] = matrix2[cv+3*i]; + if (ii >= 0) { + // rv = &(matrix1[i][0]); + rv = i*3; + for (j = ii; j <= i-1; j++) { + sum -= matrix1[rv+j] * matrix2[cv+3*j]; + } + } + else if (sum != 0.0) { + ii = i; + } + matrix2[cv+3*i] = sum; + } + + // Backsubstitution + // rv = &(matrix1[3][0]); + rv = 2*3; + matrix2[cv+3*2] /= matrix1[rv+2]; + + rv -= 3; + matrix2[cv+3*1] = (matrix2[cv+3*1] - + matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+1]; + + rv -= 3; + matrix2[cv+4*0] = (matrix2[cv+3*0] - + matrix1[rv+1] * matrix2[cv+3*1] - + matrix1[rv+2] * matrix2[cv+3*2]) / matrix1[rv+0]; + + } + } + /** + * Computes the determinant of this matrix. + * @return the determinant of this matrix + */ + public final float determinant() + { + float total; + total = this.m00*(this.m11*this.m22 - this.m12*this.m21) + + this.m01*(this.m12*this.m20 - this.m10*this.m22) + + this.m02*(this.m10*this.m21 - this.m11*this.m20); + return total; + } + + /** + * Sets the value of this matrix to a scale matrix with + * the passed scale amount. + * @param scale the scale factor for the matrix + */ + public final void set(float scale) + { + this.m00 = scale; + this.m01 = (float) 0.0; + this.m02 = (float) 0.0; + + this.m10 = (float) 0.0; + this.m11 = scale; + this.m12 = (float) 0.0; + + this.m20 = (float) 0.0; + this.m21 = (float) 0.0; + this.m22 = scale; + } + + /** + * Sets the value of this matrix to a counter clockwise rotation + * about the x axis. + * @param angle the angle to rotate about the X axis in radians + */ + public final void rotX(float angle) + { + float sinAngle, cosAngle; + + sinAngle = (float) Math.sin((double) angle); + cosAngle = (float) Math.cos((double) angle); + + this.m00 = (float) 1.0; + this.m01 = (float) 0.0; + this.m02 = (float) 0.0; + + this.m10 = (float) 0.0; + this.m11 = cosAngle; + this.m12 = -sinAngle; + + this.m20 = (float) 0.0; + this.m21 = sinAngle; + this.m22 = cosAngle; + } + + /** + * Sets the value of this matrix to a counter clockwise rotation + * about the y axis. + * @param angle the angle to rotate about the Y axis in radians + */ + public final void rotY(float angle) + { + float sinAngle, cosAngle; + + sinAngle = (float) Math.sin((double) angle); + cosAngle = (float) Math.cos((double) angle); + + this.m00 = cosAngle; + this.m01 = (float) 0.0; + this.m02 = sinAngle; + + this.m10 = (float) 0.0; + this.m11 = (float) 1.0; + this.m12 = (float) 0.0; + + this.m20 = -sinAngle; + this.m21 = (float) 0.0; + this.m22 = cosAngle; + } + + /** + * Sets the value of this matrix to a counter clockwise rotation + * about the z axis. + * @param angle the angle to rotate about the Z axis in radians + */ + public final void rotZ(float angle) + { + float sinAngle, cosAngle; + + sinAngle = (float) Math.sin((double) angle); + cosAngle = (float) Math.cos((double) angle); + + this.m00 = cosAngle; + this.m01 = -sinAngle; + this.m02 = (float) 0.0; + + this.m10 = sinAngle; + this.m11 = cosAngle; + this.m12 = (float) 0.0; + + this.m20 = (float) 0.0; + this.m21 = (float) 0.0; + this.m22 = (float) 1.0; + } + + /** + * Multiplies each element of this matrix by a scalar. + * @param scalar the scalar multiplier + */ + public final void mul(float scalar) + { + m00 *= scalar; + m01 *= scalar; + m02 *= scalar; + + m10 *= scalar; + m11 *= scalar; + m12 *= scalar; + + m20 *= scalar; + m21 *= scalar; + m22 *= scalar; + } + + /** + * Multiplies each element of matrix m1 by a scalar and places + * the result into this. Matrix m1 is not modified. + * @param scalar the scalar multiplier + * @param m1 the original matrix + */ + public final void mul(float scalar, Matrix3f m1) + { + this.m00 = scalar * m1.m00; + this.m01 = scalar * m1.m01; + this.m02 = scalar * m1.m02; + + this.m10 = scalar * m1.m10; + this.m11 = scalar * m1.m11; + this.m12 = scalar * m1.m12; + + this.m20 = scalar * m1.m20; + this.m21 = scalar * m1.m21; + this.m22 = scalar * m1.m22; + + } + + /** + * Sets the value of this matrix to the result of multiplying itself + * with matrix m1. + * @param m1 the other matrix + */ + public final void mul(Matrix3f m1) + { + float m00, m01, m02, + m10, m11, m12, + m20, m21, m22; + + m00 = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20; + m01 = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21; + m02 = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22; + + m10 = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20; + m11 = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21; + m12 = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22; + + m20 = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20; + m21 = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21; + m22 = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; + this.m10 = m10; this.m11 = m11; this.m12 = m12; + this.m20 = m20; this.m21 = m21; this.m22 = m22; + } + + /** + * Sets the value of this matrix to the result of multiplying + * the two argument matrices together. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void mul(Matrix3f m1, Matrix3f m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20; + this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21; + this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22; + + this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20; + this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21; + this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22; + + this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20; + this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21; + this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22; + } else { + float m00, m01, m02, + m10, m11, m12, + m20, m21, m22; + + m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20; + m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21; + m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22; + + m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20; + m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21; + m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22; + + m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20; + m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21; + m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; + this.m10 = m10; this.m11 = m11; this.m12 = m12; + this.m20 = m20; this.m21 = m21; this.m22 = m22; + } + } + + /** + * Multiplies this matrix by matrix m1, does an SVD normalization + * of the result, and places the result back into this matrix. + * this = SVDnorm(this*m1). + * @param m1 the matrix on the right hand side of the multiplication + */ + public final void mulNormalize(Matrix3f m1){ + + double[] tmp = new double[9]; // scratch matrix + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + tmp[0] = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20; + tmp[1] = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21; + tmp[2] = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22; + + tmp[3] = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20; + tmp[4] = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21; + tmp[5] = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22; + + tmp[6] = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20; + tmp[7] = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21; + tmp[8] = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22; + + Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot); + + this.m00 = (float)(tmp_rot[0]); + this.m01 = (float)(tmp_rot[1]); + this.m02 = (float)(tmp_rot[2]); + + this.m10 = (float)(tmp_rot[3]); + this.m11 = (float)(tmp_rot[4]); + this.m12 = (float)(tmp_rot[5]); + + this.m20 = (float)(tmp_rot[6]); + this.m21 = (float)(tmp_rot[7]); + this.m22 = (float)(tmp_rot[8]); + + } + + /** + * Multiplies matrix m1 by matrix m2, does an SVD normalization + * of the result, and places the result into this matrix. + * this = SVDnorm(m1*m2). + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulNormalize(Matrix3f m1, Matrix3f m2){ + + double[] tmp = new double[9]; // scratch matrix + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + + tmp[0] = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20; + tmp[1] = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21; + tmp[2] = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22; + + tmp[3] = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20; + tmp[4] = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21; + tmp[5] = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22; + + tmp[6] = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20; + tmp[7] = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21; + tmp[8] = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22; + + Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot); + + this.m00 = (float)(tmp_rot[0]); + this.m01 = (float)(tmp_rot[1]); + this.m02 = (float)(tmp_rot[2]); + + this.m10 = (float)(tmp_rot[3]); + this.m11 = (float)(tmp_rot[4]); + this.m12 = (float)(tmp_rot[5]); + + this.m20 = (float)(tmp_rot[6]); + this.m21 = (float)(tmp_rot[7]); + this.m22 = (float)(tmp_rot[8]); + } + + /** + * Multiplies the transpose of matrix m1 times the transpose of matrix + * m2, and places the result into this. + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulTransposeBoth(Matrix3f m1, Matrix3f m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02; + this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12; + this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22; + + this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02; + this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12; + this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22; + + this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02; + this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12; + this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22; + } else { + float m00, m01, m02, + m10, m11, m12, + m20, m21, m22; // vars for temp result matrix + + m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02; + m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12; + m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22; + + m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02; + m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12; + m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22; + + m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02; + m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12; + m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; + this.m10 = m10; this.m11 = m11; this.m12 = m12; + this.m20 = m20; this.m21 = m21; this.m22 = m22; + } + + } + + + /** + * Multiplies matrix m1 times the transpose of matrix m2, and + * places the result into this. + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulTransposeRight(Matrix3f m1, Matrix3f m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02; + this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12; + this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22; + + this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02; + this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12; + this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22; + + this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02; + this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12; + this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22; + } else { + float m00, m01, m02, + m10, m11, m12, + m20, m21, m22; // vars for temp result matrix + + m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02; + m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12; + m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22; + + m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02; + m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12; + m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22; + + m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02; + m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12; + m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; + this.m10 = m10; this.m11 = m11; this.m12 = m12; + this.m20 = m20; this.m21 = m21; this.m22 = m22; + } + } + + /** + * Multiplies the transpose of matrix m1 times matrix m2, and + * places the result into this. + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulTransposeLeft(Matrix3f m1, Matrix3f m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20; + this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21; + this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22; + + this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20; + this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21; + this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22; + + this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20; + this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21; + this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22; + } else { + float m00, m01, m02, + m10, m11, m12, + m20, m21, m22; // vars for temp result matrix + + m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20; + m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21; + m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22; + + m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20; + m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21; + m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22; + + m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20; + m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21; + m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; + this.m10 = m10; this.m11 = m11; this.m12 = m12; + this.m20 = m20; this.m21 = m21; this.m22 = m22; + } + } + + /** + * Performs singular value decomposition normalization of this matrix. + */ + public final void normalize(){ + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + this.m00 = (float)tmp_rot[0]; + this.m01 = (float)tmp_rot[1]; + this.m02 = (float)tmp_rot[2]; + + this.m10 = (float)tmp_rot[3]; + this.m11 = (float)tmp_rot[4]; + this.m12 = (float)tmp_rot[5]; + + this.m20 = (float)tmp_rot[6]; + this.m21 = (float)tmp_rot[7]; + this.m22 = (float)tmp_rot[8]; + + } + + /** + * Perform singular value decomposition normalization of matrix m1 + * and place the normalized values into this. + * @param m1 the matrix values to be normalized + */ + public final void normalize(Matrix3f m1){ + double[] tmp = new double[9]; // scratch matrix + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + tmp[0] = m1.m00; + tmp[1] = m1.m01; + tmp[2] = m1.m02; + + tmp[3] = m1.m10; + tmp[4] = m1.m11; + tmp[5] = m1.m12; + + tmp[6] = m1.m20; + tmp[7] = m1.m21; + tmp[8] = m1.m22; + + Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot ); + + this.m00 = (float)(tmp_rot[0]); + this.m01 = (float)(tmp_rot[1]); + this.m02 = (float)(tmp_rot[2]); + + this.m10 = (float)(tmp_rot[3]); + this.m11 = (float)(tmp_rot[4]); + this.m12 = (float)(tmp_rot[5]); + + this.m20 = (float)(tmp_rot[6]); + this.m21 = (float)(tmp_rot[7]); + this.m22 = (float)(tmp_rot[8]); + + } + + /** + * Perform cross product normalization of this matrix. + */ + public final void normalizeCP() + { + float mag = 1.0f/(float)Math.sqrt(m00*m00 + m10*m10 + m20*m20); + m00 = m00*mag; + m10 = m10*mag; + m20 = m20*mag; + + mag = 1.0f/(float)Math.sqrt(m01*m01 + m11*m11 + m21*m21); + m01 = m01*mag; + m11 = m11*mag; + m21 = m21*mag; + + m02 = m10*m21 - m11*m20; + m12 = m01*m20 - m00*m21; + m22 = m00*m11 - m01*m10; + + } + + /** + * Perform cross product normalization of matrix m1 and place the + * normalized values into this. + * @param m1 Provides the matrix values to be normalized + */ + public final void normalizeCP(Matrix3f m1) + { + float mag = 1.0f/(float)Math.sqrt(m1.m00*m1.m00 + m1.m10*m1.m10 + m1.m20*m1.m20); + m00 = m1.m00*mag; + m10 = m1.m10*mag; + m20 = m1.m20*mag; + + mag = 1.0f/(float)Math.sqrt(m1.m01*m1.m01 + m1.m11*m1.m11 + m1.m21*m1.m21); + m01 = m1.m01*mag; + m11 = m1.m11*mag; + m21 = m1.m21*mag; + + m02 = m10*m21 - m11*m20; + m12 = m01*m20 - m00*m21; + m22 = m00*m11 - m01*m10; + + } + + /** + * Returns true if all of the data members of Matrix3f m1 are + * equal to the corresponding data members in this Matrix3f. + * @param m1 the matrix with which the comparison is made + * @return true or false + */ + public boolean equals(Matrix3f m1) + { + try { + + return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02 + && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12 + && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22); + } + catch (NullPointerException e2) { return false; } + + } + + /** + * Returns true if the Object o1 is of type Matrix3f and all of the + * data members of o1 are equal to the corresponding data members in + * this Matrix3f. + * @param o1 the object with which the comparison is made + * @return true or false + */ + public boolean equals(Object o1) + { + try { + + Matrix3f m2 = (Matrix3f) o1; + return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02 + && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12 + && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22); + } + catch (ClassCastException e1) { return false; } + catch (NullPointerException e2) { return false; } + } + + /** + * Returns true if the L-infinite distance between this matrix + * and matrix m1 is less than or equal to the epsilon parameter, + * otherwise returns false. The L-infinite + * distance is equal to + * MAX[i=0,1,2 ; j=0,1,2 ; abs(this.m(i,j) - m1.m(i,j)] + * @param m1 the matrix to be compared to this matrix + * @param epsilon the threshold value + */ + public boolean epsilonEquals(Matrix3f m1, float epsilon) + { + boolean status = true; + + if( Math.abs( this.m00 - m1.m00) > epsilon) status = false; + if( Math.abs( this.m01 - m1.m01) > epsilon) status = false; + if( Math.abs( this.m02 - m1.m02) > epsilon) status = false; + + if( Math.abs( this.m10 - m1.m10) > epsilon) status = false; + if( Math.abs( this.m11 - m1.m11) > epsilon) status = false; + if( Math.abs( this.m12 - m1.m12) > epsilon) status = false; + + if( Math.abs( this.m20 - m1.m20) > epsilon) status = false; + if( Math.abs( this.m21 - m1.m21) > epsilon) status = false; + if( Math.abs( this.m22 - m1.m22) > epsilon) status = false; + + return( status ); + + } + + + /** + * Returns a hash code value based on the data values in this + * object. Two different Matrix3f objects with identical data values + * (i.e., Matrix3f.equals returns true) will return the same hash + * code value. Two objects with different data members may return the + * same hash value, although this is not likely. + * @return the integer hash code value + */ + public int hashCode() { + long bits = 1L; + bits = 31L * bits + (long)Float.floatToIntBits(m00); + bits = 31L * bits + (long)Float.floatToIntBits(m01); + bits = 31L * bits + (long)Float.floatToIntBits(m02); + bits = 31L * bits + (long)Float.floatToIntBits(m10); + bits = 31L * bits + (long)Float.floatToIntBits(m11); + bits = 31L * bits + (long)Float.floatToIntBits(m12); + bits = 31L * bits + (long)Float.floatToIntBits(m20); + bits = 31L * bits + (long)Float.floatToIntBits(m21); + bits = 31L * bits + (long)Float.floatToIntBits(m22); + return (int) (bits ^ (bits >> 32)); + } + + + /** + * Sets this matrix to all zeros. + */ + public final void setZero() + { + m00 = 0.0f; + m01 = 0.0f; + m02 = 0.0f; + + m10 = 0.0f; + m11 = 0.0f; + m12 = 0.0f; + + m20 = 0.0f; + m21 = 0.0f; + m22 = 0.0f; + + } + + /** + * Negates the value of this matrix: this = -this. + */ + public final void negate() + { + this.m00 = -this.m00; + this.m01 = -this.m01; + this.m02 = -this.m02; + + this.m10 = -this.m10; + this.m11 = -this.m11; + this.m12 = -this.m12; + + this.m20 = -this.m20; + this.m21 = -this.m21; + this.m22 = -this.m22; + + } + + /** + * Sets the value of this matrix equal to the negation of + * of the Matrix3f parameter. + * @param m1 the source matrix + */ + public final void negate(Matrix3f m1) + { + this.m00 = -m1.m00; + this.m01 = -m1.m01; + this.m02 = -m1.m02; + + this.m10 = -m1.m10; + this.m11 = -m1.m11; + this.m12 = -m1.m12; + + this.m20 = -m1.m20; + this.m21 = -m1.m21; + this.m22 = -m1.m22; + + } + + /** + * Multiply this matrix by the tuple t and place the result + * back into the tuple (t = this*t). + * @param t the tuple to be multiplied by this matrix and then replaced + */ + public final void transform(Tuple3f t) { + float x,y,z; + x = m00* t.x + m01*t.y + m02*t.z; + y = m10* t.x + m11*t.y + m12*t.z; + z = m20* t.x + m21*t.y + m22*t.z; + t.set(x,y,z); + } + + /** + * Multiply this matrix by the tuple t and and place the result + * into the tuple "result" (result = this*t). + * @param t the tuple to be multiplied by this matrix + * @param result the tuple into which the product is placed + */ + public final void transform(Tuple3f t, Tuple3f result) { + float x,y,z; + x = m00* t.x + m01*t.y + m02*t.z; + y = m10* t.x + m11*t.y + m12*t.z; + result.z = m20* t.x + m21*t.y + m22*t.z; + result.x = x; + result.y = y; + } + + /** + * perform SVD (if necessary to get rotational component + */ + void getScaleRotate( double[] scales, double[] rot ) { + + double[] tmp = new double[9]; // scratch matrix + tmp[0] = m00; + tmp[1] = m01; + tmp[2] = m02; + tmp[3] = m10; + tmp[4] = m11; + tmp[5] = m12; + tmp[6] = m20; + tmp[7] = m21; + tmp[8] = m22; + Matrix3d.compute_svd(tmp, scales, rot); + + return; + + } + + /** + * Creates a new object of the same class as this object. + * + * @return a clone of this instance. + * @exception OutOfMemoryError if there is not enough memory. + * @see java.lang.Cloneable + * @since Java 3D 1.3 + */ + public Object clone() { + Matrix3f m1 = null; + try { + m1 = (Matrix3f)super.clone(); + } catch (CloneNotSupportedException e) { + // this shouldn't happen, since we are Cloneable + throw new InternalError(); + } + return m1; + } + +} |