diff options
Diffstat (limited to 'src/javax/vecmath/Matrix4d.java')
-rw-r--r-- | src/javax/vecmath/Matrix4d.java | 3585 |
1 files changed, 3585 insertions, 0 deletions
diff --git a/src/javax/vecmath/Matrix4d.java b/src/javax/vecmath/Matrix4d.java new file mode 100644 index 0000000..0aa353b --- /dev/null +++ b/src/javax/vecmath/Matrix4d.java @@ -0,0 +1,3585 @@ +/* + * $RCSfile$ + * + * Copyright (c) 2004 Sun Microsystems, Inc. All rights reserved. + * + * Use is subject to license terms. + * + * $Revision$ + * $Date$ + * $State$ + */ + +package javax.vecmath; + +import java.lang.Math; + +/** + * A double precision floating point 4 by 4 matrix. + * Primarily to support 3D rotations. + * + */ +public class Matrix4d implements java.io.Serializable, Cloneable { + + // Compatible with 1.1 + static final long serialVersionUID = 8223903484171633710L; + + /** + * The first element of the first row. + */ + public double m00; + + /** + * The second element of the first row. + */ + public double m01; + + /** + * The third element of the first row. + */ + public double m02; + + /** + * The fourth element of the first row. + */ + public double m03; + + /** + * The first element of the second row. + */ + public double m10; + + /** + * The second element of the second row. + */ + public double m11; + + /** + * The third element of the second row. + */ + public double m12; + + /** + * The fourth element of the second row. + */ + public double m13; + + /** + * The first element of the third row. + */ + public double m20; + + /** + * The second element of the third row. + */ + public double m21; + + /** + * The third element of the third row. + */ + public double m22; + + /** + * The fourth element of the third row. + */ + public double m23; + + /** + * The first element of the fourth row. + */ + public double m30; + + /** + * The second element of the fourth row. + */ + public double m31; + + /** + * The third element of the fourth row. + */ + public double m32; + + /** + * The fourth element of the fourth row. + */ + public double m33; + /* + double[] tmp = new double[16]; + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + */ + private static final double EPS = 1.0E-10; + + + /** + * Constructs and initializes a Matrix4d from the specified 16 values. + * @param m00 the [0][0] element + * @param m01 the [0][1] element + * @param m02 the [0][2] element + * @param m03 the [0][3] element + * @param m10 the [1][0] element + * @param m11 the [1][1] element + * @param m12 the [1][2] element + * @param m13 the [1][3] element + * @param m20 the [2][0] element + * @param m21 the [2][1] element + * @param m22 the [2][2] element + * @param m23 the [2][3] element + * @param m30 the [3][0] element + * @param m31 the [3][1] element + * @param m32 the [3][2] element + * @param m33 the [3][3] element + */ + public Matrix4d(double m00, double m01, double m02, double m03, + double m10, double m11, double m12, double m13, + double m20, double m21, double m22, double m23, + double m30, double m31, double m32, double m33) + { + this.m00 = m00; + this.m01 = m01; + this.m02 = m02; + this.m03 = m03; + + this.m10 = m10; + this.m11 = m11; + this.m12 = m12; + this.m13 = m13; + + this.m20 = m20; + this.m21 = m21; + this.m22 = m22; + this.m23 = m23; + + this.m30 = m30; + this.m31 = m31; + this.m32 = m32; + this.m33 = m33; + + } + + /** + * Constructs and initializes a Matrix4d from the specified 16 + * element array. this.m00 =v[0], this.m01=v[1], etc. + * @param v the array of length 16 containing in order + */ + public Matrix4d(double[] v) + { + this.m00 = v[ 0]; + this.m01 = v[ 1]; + this.m02 = v[ 2]; + this.m03 = v[ 3]; + + this.m10 = v[ 4]; + this.m11 = v[ 5]; + this.m12 = v[ 6]; + this.m13 = v[ 7]; + + this.m20 = v[ 8]; + this.m21 = v[ 9]; + this.m22 = v[10]; + this.m23 = v[11]; + + this.m30 = v[12]; + this.m31 = v[13]; + this.m32 = v[14]; + this.m33 = v[15]; + + } + + /** + * Constructs and initializes a Matrix4d from the quaternion, + * translation, and scale values; the scale is applied only to the + * rotational components of the matrix (upper 3x3) and not to the + * translational components. + * @param q1 the quaternion value representing the rotational component + * @param t1 the translational component of the matrix + * @param s the scale value applied to the rotational components + */ + public Matrix4d(Quat4d q1, Vector3d t1, double s) + { + m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); + m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); + + m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); + m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); + + m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); + m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); + m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + m03 = t1.x; + m13 = t1.y; + m23 = t1.z; + + m30 = 0.0; + m31 = 0.0; + m32 = 0.0; + m33 = 1.0; + + } + + /** + * Constructs and initializes a Matrix4d from the quaternion, + * translation, and scale values; the scale is applied only to the + * rotational components of the matrix (upper 3x3) and not to the + * translational components. + * @param q1 the quaternion value representing the rotational component + * @param t1 the translational component of the matrix + * @param s the scale value applied to the rotational components + */ + public Matrix4d(Quat4f q1, Vector3d t1, double s) + { + m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); + m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); + + m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); + m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); + + m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); + m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); + m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + m03 = t1.x; + m13 = t1.y; + m23 = t1.z; + + m30 = 0.0; + m31 = 0.0; + m32 = 0.0; + m33 = 1.0; + + } + + /** + * Constructs a new matrix with the same values as the + * Matrix4d parameter. + * @param m1 the source matrix + */ + public Matrix4d(Matrix4d m1) + { + this.m00 = m1.m00; + this.m01 = m1.m01; + this.m02 = m1.m02; + this.m03 = m1.m03; + + this.m10 = m1.m10; + this.m11 = m1.m11; + this.m12 = m1.m12; + this.m13 = m1.m13; + + this.m20 = m1.m20; + this.m21 = m1.m21; + this.m22 = m1.m22; + this.m23 = m1.m23; + + this.m30 = m1.m30; + this.m31 = m1.m31; + this.m32 = m1.m32; + this.m33 = m1.m33; + + } + + /** + * Constructs a new matrix with the same values as the + * Matrix4f parameter. + * @param m1 the source matrix + */ + public Matrix4d(Matrix4f m1) + { + this.m00 = m1.m00; + this.m01 = m1.m01; + this.m02 = m1.m02; + this.m03 = m1.m03; + + this.m10 = m1.m10; + this.m11 = m1.m11; + this.m12 = m1.m12; + this.m13 = m1.m13; + + this.m20 = m1.m20; + this.m21 = m1.m21; + this.m22 = m1.m22; + this.m23 = m1.m23; + + this.m30 = m1.m30; + this.m31 = m1.m31; + this.m32 = m1.m32; + this.m33 = m1.m33; + + } + + /** + * Constructs and initializes a Matrix4d from the rotation matrix, + * translation, and scale values; the scale is applied only to the + * rotational components of the matrix (upper 3x3) and not to the + * translational components of the matrix. + * @param m1 the rotation matrix representing the rotational components + * @param t1 the translational components of the matrix + * @param s the scale value applied to the rotational components + */ + public Matrix4d(Matrix3f m1, Vector3d t1, double s) + { + this.m00 = m1.m00*s; + this.m01 = m1.m01*s; + this.m02 = m1.m02*s; + this.m03 = t1.x; + + this.m10 = m1.m10*s; + this.m11 = m1.m11*s; + this.m12 = m1.m12*s; + this.m13 = t1.y; + + this.m20 = m1.m20*s; + this.m21 = m1.m21*s; + this.m22 = m1.m22*s; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + + } + + /** + * Constructs and initializes a Matrix4f from the rotation matrix, + * translation, and scale values; the scale is applied only to the + * rotational components of the matrix (upper 3x3) and not to the + * translational components of the matrix. + * @param m1 the rotation matrix representing the rotational components + * @param t1 the translational components of the matrix + * @param s the scale value applied to the rotational components + */ + public Matrix4d(Matrix3d m1, Vector3d t1, double s) + { + this.m00 = m1.m00*s; + this.m01 = m1.m01*s; + this.m02 = m1.m02*s; + this.m03 = t1.x; + + this.m10 = m1.m10*s; + this.m11 = m1.m11*s; + this.m12 = m1.m12*s; + this.m13 = t1.y; + + this.m20 = m1.m20*s; + this.m21 = m1.m21*s; + this.m22 = m1.m22*s; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + + } + + /** + * Constructs and initializes a Matrix4d to all zeros. + */ + public Matrix4d() + { + this.m00 = 0.0; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = 0.0; + + this.m10 = 0.0; + this.m11 = 0.0; + this.m12 = 0.0; + this.m13 = 0.0; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = 0.0; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 0.0; + + } + + /** + * Returns a string that contains the values of this Matrix4d. + * @return the String representation + */ + public String toString() { + return + this.m00 + ", " + this.m01 + ", " + this.m02 + ", " + this.m03 + "\n" + + this.m10 + ", " + this.m11 + ", " + this.m12 + ", " + this.m13 + "\n" + + this.m20 + ", " + this.m21 + ", " + this.m22 + ", " + this.m23 + "\n" + + this.m30 + ", " + this.m31 + ", " + this.m32 + ", " + this.m33 + "\n"; + } + + /** + * Sets this Matrix4d to identity. + */ + public final void setIdentity() + { + this.m00 = 1.0; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = 0.0; + + this.m10 = 0.0; + this.m11 = 1.0; + this.m12 = 0.0; + this.m13 = 0.0; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = 1.0; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the specified element of this matrix4f to the value provided. + * @param row the row number to be modified (zero indexed) + * @param column the column number to be modified (zero indexed) + * @param value the new value + */ + public final void setElement(int row, int column, double value) + { + switch (row) + { + case 0: + switch(column) + { + case 0: + this.m00 = value; + break; + case 1: + this.m01 = value; + break; + case 2: + this.m02 = value; + break; + case 3: + this.m03 = value; + break; + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); + } + break; + + case 1: + switch(column) + { + case 0: + this.m10 = value; + break; + case 1: + this.m11 = value; + break; + case 2: + this.m12 = value; + break; + case 3: + this.m13 = value; + break; + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); + } + break; + + case 2: + switch(column) + { + case 0: + this.m20 = value; + break; + case 1: + this.m21 = value; + break; + case 2: + this.m22 = value; + break; + case 3: + this.m23 = value; + break; + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); + } + break; + + case 3: + switch(column) + { + case 0: + this.m30 = value; + break; + case 1: + this.m31 = value; + break; + case 2: + this.m32 = value; + break; + case 3: + this.m33 = value; + break; + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); + } + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); + } + } + + /** + * Retrieves the value at the specified row and column of this matrix. + * @param row the row number to be retrieved (zero indexed) + * @param column the column number to be retrieved (zero indexed) + * @return the value at the indexed element + */ + public final double getElement(int row, int column) + { + switch (row) + { + case 0: + switch(column) + { + case 0: + return(this.m00); + case 1: + return(this.m01); + case 2: + return(this.m02); + case 3: + return(this.m03); + default: + break; + } + break; + case 1: + switch(column) + { + case 0: + return(this.m10); + case 1: + return(this.m11); + case 2: + return(this.m12); + case 3: + return(this.m13); + default: + break; + } + break; + + case 2: + switch(column) + { + case 0: + return(this.m20); + case 1: + return(this.m21); + case 2: + return(this.m22); + case 3: + return(this.m23); + default: + break; + } + break; + + case 3: + switch(column) + { + case 0: + return(this.m30); + case 1: + return(this.m31); + case 2: + return(this.m32); + case 3: + return(this.m33); + default: + break; + } + break; + + default: + break; + } + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d1")); + } + + /** + * Copies the matrix values in the specified row into the vector parameter. + * @param row the matrix row + * @param v the vector into which the matrix row values will be copied + */ + public final void getRow(int row, Vector4d v) { + if( row == 0 ) { + v.x = m00; + v.y = m01; + v.z = m02; + v.w = m03; + } else if(row == 1) { + v.x = m10; + v.y = m11; + v.z = m12; + v.w = m13; + } else if(row == 2) { + v.x = m20; + v.y = m21; + v.z = m22; + v.w = m23; + } else if(row == 3) { + v.x = m30; + v.y = m31; + v.z = m32; + v.w = m33; + } else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d2")); + } + } + + + /** + * Copies the matrix values in the specified row into the array parameter. + * @param row the matrix row + * @param v the array into which the matrix row values will be copied + */ + public final void getRow(int row, double v[]) { + if( row == 0 ) { + v[0] = m00; + v[1] = m01; + v[2] = m02; + v[3] = m03; + } else if(row == 1) { + v[0] = m10; + v[1] = m11; + v[2] = m12; + v[3] = m13; + } else if(row == 2) { + v[0] = m20; + v[1] = m21; + v[2] = m22; + v[3] = m23; + } else if(row == 3) { + v[0] = m30; + v[1] = m31; + v[2] = m32; + v[3] = m33; + } else { + + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d2")); + } + } + + + + /** + * Copies the matrix values in the specified column into the vector + * parameter. + * @param column the matrix column + * @param v the vector into which the matrix column values will be copied + */ + public final void getColumn(int column, Vector4d v) { + if( column == 0 ) { + v.x = m00; + v.y = m10; + v.z = m20; + v.w = m30; + } else if(column == 1) { + v.x = m01; + v.y = m11; + v.z = m21; + v.w = m31; + } else if(column == 2) { + v.x = m02; + v.y = m12; + v.z = m22; + v.w = m32; + } else if(column == 3) { + v.x = m03; + v.y = m13; + v.z = m23; + v.w = m33; + } else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d3")); + + } + + } + + + + /** + * Copies the matrix values in the specified column into the array + * parameter. + * @param column the matrix column + * @param v the array into which the matrix column values will be copied + */ + public final void getColumn(int column, double v[]) { + if( column == 0 ) { + v[0] = m00; + v[1] = m10; + v[2] = m20; + v[3] = m30; + } else if(column == 1) { + v[0] = m01; + v[1] = m11; + v[2] = m21; + v[3] = m31; + } else if(column == 2) { + v[0] = m02; + v[1] = m12; + v[2] = m22; + v[3] = m32; + } else if(column == 3) { + v[0] = m03; + v[1] = m13; + v[2] = m23; + v[3] = m33; + } else { + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d3")); + + } + + } + + + /** + * Performs an SVD normalization of this matrix in order to acquire + * the normalized rotational component; the values are placed into + * the Matrix3d parameter. + * @param m1 the matrix into which the rotational component is placed + */ + public final void get(Matrix3d m1) + { + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + m1.m00 = tmp_rot[0]; + m1.m01 = tmp_rot[1]; + m1.m02 = tmp_rot[2]; + + m1.m10 = tmp_rot[3]; + m1.m11 = tmp_rot[4]; + m1.m12 = tmp_rot[5]; + + m1.m20 = tmp_rot[6]; + m1.m21 = tmp_rot[7]; + m1.m22 = tmp_rot[8]; + + } + + + /** + * Performs an SVD normalization of this matrix in order to acquire + * the normalized rotational component; the values are placed into + * the Matrix3f parameter. + * @param m1 the matrix into which the rotational component is placed + */ + public final void get(Matrix3f m1) + { + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + getScaleRotate( tmp_scale, tmp_rot ); + + m1.m00 = (float)tmp_rot[0]; + m1.m01 = (float)tmp_rot[1]; + m1.m02 = (float)tmp_rot[2]; + + m1.m10 = (float)tmp_rot[3]; + m1.m11 = (float)tmp_rot[4]; + m1.m12 = (float)tmp_rot[5]; + + m1.m20 = (float)tmp_rot[6]; + m1.m21 = (float)tmp_rot[7]; + m1.m22 = (float)tmp_rot[8]; + } + + /** + * Performs an SVD normalization of this matrix to calculate + * the rotation as a 3x3 matrix, the translation, and the scale. + * None of the matrix values are modified. + * @param m1 the normalized matrix representing the rotation + * @param t1 the translation component + * @return the scale component of this transform + */ + public final double get(Matrix3d m1, Vector3d t1) + { + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + m1.m00 = tmp_rot[0]; + m1.m01 = tmp_rot[1]; + m1.m02 = tmp_rot[2]; + + m1.m10 = tmp_rot[3]; + m1.m11 = tmp_rot[4]; + m1.m12 = tmp_rot[5]; + + m1.m20 = tmp_rot[6]; + m1.m21 = tmp_rot[7]; + m1.m22 = tmp_rot[8]; + + t1.x = m03; + t1.y = m13; + t1.z = m23; + + return( Matrix3d.max3( tmp_scale )); + + } + + /** + * Performs an SVD normalization of this matrix to calculate + * the rotation as a 3x3 matrix, the translation, and the scale. + * None of the matrix values are modified. + * @param m1 the normalized matrix representing the rotation + * @param t1 the translation component + * @return the scale component of this transform + */ + public final double get(Matrix3f m1, Vector3d t1){ + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + m1.m00 = (float)tmp_rot[0]; + m1.m01 = (float)tmp_rot[1]; + m1.m02 = (float)tmp_rot[2]; + + m1.m10 = (float)tmp_rot[3]; + m1.m11 = (float)tmp_rot[4]; + m1.m12 = (float)tmp_rot[5]; + + m1.m20 = (float)tmp_rot[6]; + m1.m21 = (float)tmp_rot[7]; + m1.m22 = (float)tmp_rot[8]; + + t1.x = m03; + t1.y = m13; + t1.z = m23; + + return( Matrix3d.max3( tmp_scale )); + + } + + /** + * Performs an SVD normalization of this matrix in order to acquire + * the normalized rotational component; the values are placed into + * the Quat4f parameter. + * @param q1 quaternion into which the rotation component is placed + */ + public final void get(Quat4f q1) + { + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + double ww; + + ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]); + if(!((ww<0?-ww:ww) < 1.0e-30)) { + q1.w = (float)Math.sqrt(ww); + ww = 0.25/q1.w; + q1.x = (float)((tmp_rot[7] - tmp_rot[5])*ww); + q1.y = (float)((tmp_rot[2] - tmp_rot[6])*ww); + q1.z = (float)((tmp_rot[3] - tmp_rot[1])*ww); + return; + } + + q1.w = 0.0f; + ww = -0.5*(tmp_rot[4] + tmp_rot[8]); + if(!((ww<0?-ww:ww) < 1.0e-30)) { + q1.x = (float)Math.sqrt(ww); + ww = 0.5/q1.x; + q1.y = (float)(tmp_rot[3]*ww); + q1.z = (float)(tmp_rot[6]*ww); + return; + } + + q1.x = 0.0f; + ww = 0.5*(1.0 - tmp_rot[8]); + if(!((ww<0?-ww:ww) < 1.0e-30)) { + q1.y = (float)(Math.sqrt(ww)); + q1.z = (float)(tmp_rot[7]/(2.0*q1.y)); + return; + } + + q1.y = 0.0f; + q1.z = 1.0f; + + } + + /** + * Performs an SVD normalization of q1 matrix in order to acquire + * the normalized rotational component; the values are placed into + * the Quat4d parameter. + * @param q1 the quaternion into which the rotation component is placed + */ + public final void get(Quat4d q1) + { + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + getScaleRotate( tmp_scale, tmp_rot ); + + double ww; + + ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]); + if(!((ww<0?-ww:ww) < 1.0e-30)) { + q1.w = Math.sqrt(ww); + ww = 0.25/q1.w; + q1.x = (tmp_rot[7] - tmp_rot[5])*ww; + q1.y = (tmp_rot[2] - tmp_rot[6])*ww; + q1.z = (tmp_rot[3] - tmp_rot[1])*ww; + return; + } + + q1.w = 0.0f; + ww = -0.5*(tmp_rot[4] + tmp_rot[8]); + if(!((ww<0?-ww:ww) < 1.0e-30)) { + q1.x = Math.sqrt(ww); + ww = 0.5/q1.x; + q1.y = tmp_rot[3]*ww; + q1.z = tmp_rot[6]*ww; + return; + } + + q1.x = 0.0; + ww = 0.5*(1.0 - tmp_rot[8]); + if(!((ww<0?-ww:ww) < 1.0e-30)) { + q1.y = Math.sqrt(ww); + q1.z = tmp_rot[7]/(2.0*q1.y); + return; + } + + q1.y = 0.0; + q1.z = 1.0; + } + + /** + * Retrieves the translational components of this matrix. + * @param trans the vector that will receive the translational component + */ + public final void get(Vector3d trans) + { + trans.x = m03; + trans.y = m13; + trans.z = m23; + } + + /** + * Gets the upper 3x3 values of this matrix and places them into + * the matrix m1. + * @param m1 the matrix that will hold the values + */ + public final void getRotationScale(Matrix3f m1) + { + m1.m00 = (float)m00; m1.m01 = (float)m01; m1.m02 = (float)m02; + m1.m10 = (float)m10; m1.m11 = (float)m11; m1.m12 = (float)m12; + m1.m20 = (float)m20; m1.m21 = (float)m21; m1.m22 = (float)m22; + } + + /** + * Gets the upper 3x3 values of this matrix and places them into + * the matrix m1. + * @param m1 the matrix that will hold the values + */ + public final void getRotationScale(Matrix3d m1) + { + m1.m00 = m00; m1.m01 = m01; m1.m02 = m02; + m1.m10 = m10; m1.m11 = m11; m1.m12 = m12; + m1.m20 = m20; m1.m21 = m21; m1.m22 = m22; + } + + /** + * Performs an SVD normalization of this matrix to calculate + * and return the uniform scale factor. If the matrix has non-uniform + * scale factors, the largest of the x, y, and z scale factors will + * be returned. This matrix is not modified. + * @return the scale factor of this matrix + */ + public final double getScale() + { + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + return( Matrix3d.max3( tmp_scale )); + + } + + /** + * Replaces the upper 3x3 matrix values of this matrix with the + * values in the matrix m1. + * @param m1 the matrix that will be the new upper 3x3 + */ + public final void setRotationScale(Matrix3d m1) + { + m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; + m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; + m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; + } + + /** + * Replaces the upper 3x3 matrix values of this matrix with the + * values in the matrix m1. + * @param m1 the matrix that will be the new upper 3x3 + */ + public final void setRotationScale(Matrix3f m1) + { + m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; + m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; + m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; + } + + /** + * Sets the scale component of the current matrix by factoring + * out the current scale (by doing an SVD) from the rotational + * component and multiplying by the new scale. + * @param scale the new scale amount + */ + public final void setScale(double scale) + { + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + getScaleRotate( tmp_scale, tmp_rot ); + + m00 = tmp_rot[0]*scale; + m01 = tmp_rot[1]*scale; + m02 = tmp_rot[2]*scale; + + m10 = tmp_rot[3]*scale; + m11 = tmp_rot[4]*scale; + m12 = tmp_rot[5]*scale; + + m20 = tmp_rot[6]*scale; + m21 = tmp_rot[7]*scale; + m22 = tmp_rot[8]*scale; + + } + + /** + * Sets the specified row of this matrix4d to the four values provided. + * @param row the row number to be modified (zero indexed) + * @param x the first column element + * @param y the second column element + * @param z the third column element + * @param w the fourth column element + */ + public final void setRow(int row, double x, double y, double z, double w) + { + switch (row) { + case 0: + this.m00 = x; + this.m01 = y; + this.m02 = z; + this.m03 = w; + break; + + case 1: + this.m10 = x; + this.m11 = y; + this.m12 = z; + this.m13 = w; + break; + + case 2: + this.m20 = x; + this.m21 = y; + this.m22 = z; + this.m23 = w; + break; + + case 3: + this.m30 = x; + this.m31 = y; + this.m32 = z; + this.m33 = w; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4")); + + } + } + + /** + * Sets the specified row of this matrix4d to the Vector provided. + * @param row the row number to be modified (zero indexed) + * @param v the replacement row + */ + public final void setRow(int row, Vector4d v) + { + switch (row) { + case 0: + this.m00 = v.x; + this.m01 = v.y; + this.m02 = v.z; + this.m03 = v.w; + break; + + case 1: + this.m10 = v.x; + this.m11 = v.y; + this.m12 = v.z; + this.m13 = v.w; + break; + + case 2: + this.m20 = v.x; + this.m21 = v.y; + this.m22 = v.z; + this.m23 = v.w; + break; + + case 3: + this.m30 = v.x; + this.m31 = v.y; + this.m32 = v.z; + this.m33 = v.w; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4")); + } + } + + /** + * Sets the specified row of this matrix4d to the four values provided. + * @param row the row number to be modified (zero indexed) + * @param v the replacement row + */ + public final void setRow(int row, double v[]) + { + switch (row) { + case 0: + this.m00 = v[0]; + this.m01 = v[1]; + this.m02 = v[2]; + this.m03 = v[3]; + break; + + case 1: + this.m10 = v[0]; + this.m11 = v[1]; + this.m12 = v[2]; + this.m13 = v[3]; + break; + + case 2: + this.m20 = v[0]; + this.m21 = v[1]; + this.m22 = v[2]; + this.m23 = v[3]; + break; + + case 3: + this.m30 = v[0]; + this.m31 = v[1]; + this.m32 = v[2]; + this.m33 = v[3]; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4")); + } + } + + /** + * Sets the specified column of this matrix4d to the four values provided. + * @param column the column number to be modified (zero indexed) + * @param x the first row element + * @param y the second row element + * @param z the third row element + * @param w the fourth row element + */ + public final void setColumn(int column, double x, double y, double z, double w) + { + switch (column) { + case 0: + this.m00 = x; + this.m10 = y; + this.m20 = z; + this.m30 = w; + break; + + case 1: + this.m01 = x; + this.m11 = y; + this.m21 = z; + this.m31 = w; + break; + + case 2: + this.m02 = x; + this.m12 = y; + this.m22 = z; + this.m32 = w; + break; + + case 3: + this.m03 = x; + this.m13 = y; + this.m23 = z; + this.m33 = w; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7")); + } + } + + /** + * Sets the specified column of this matrix4d to the vector provided. + * @param column the column number to be modified (zero indexed) + * @param v the replacement column + */ + public final void setColumn(int column, Vector4d v) + { + switch (column) { + case 0: + this.m00 = v.x; + this.m10 = v.y; + this.m20 = v.z; + this.m30 = v.w; + break; + + case 1: + this.m01 = v.x; + this.m11 = v.y; + this.m21 = v.z; + this.m31 = v.w; + break; + + case 2: + this.m02 = v.x; + this.m12 = v.y; + this.m22 = v.z; + this.m32 = v.w; + break; + + case 3: + this.m03 = v.x; + this.m13 = v.y; + this.m23 = v.z; + this.m33 = v.w; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7")); + } + } + + /** + * Sets the specified column of this matrix4d to the four values provided. + * @param column the column number to be modified (zero indexed) + * @param v the replacement column + */ + public final void setColumn(int column, double v[]) + { + switch (column) { + case 0: + this.m00 = v[0]; + this.m10 = v[1]; + this.m20 = v[2]; + this.m30 = v[3]; + break; + + case 1: + this.m01 = v[0]; + this.m11 = v[1]; + this.m21 = v[2]; + this.m31 = v[3]; + break; + + case 2: + this.m02 = v[0]; + this.m12 = v[1]; + this.m22 = v[2]; + this.m32 = v[3]; + break; + + case 3: + this.m03 = v[0]; + this.m13 = v[1]; + this.m23 = v[2]; + this.m33 = v[3]; + break; + + default: + throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7")); + } + } + + /** + * Adds a scalar to each component of this matrix. + * @param scalar the scalar adder + */ + public final void add(double scalar) + { + m00 += scalar; + m01 += scalar; + m02 += scalar; + m03 += scalar; + m10 += scalar; + m11 += scalar; + m12 += scalar; + m13 += scalar; + m20 += scalar; + m21 += scalar; + m22 += scalar; + m23 += scalar; + m30 += scalar; + m31 += scalar; + m32 += scalar; + m33 += scalar; + } + + /** + * Adds a scalar to each component of the matrix m1 and places + * the result into this. Matrix m1 is not modified. + * @param scalar the scalar adder + * @param m1 the original matrix values + */ + public final void add(double scalar, Matrix4d m1) + { + this.m00 = m1.m00 + scalar; + this.m01 = m1.m01 + scalar; + this.m02 = m1.m02 + scalar; + this.m03 = m1.m03 + scalar; + this.m10 = m1.m10 + scalar; + this.m11 = m1.m11 + scalar; + this.m12 = m1.m12 + scalar; + this.m13 = m1.m13 + scalar; + this.m20 = m1.m20 + scalar; + this.m21 = m1.m21 + scalar; + this.m22 = m1.m22 + scalar; + this.m23 = m1.m23 + scalar; + this.m30 = m1.m30 + scalar; + this.m31 = m1.m31 + scalar; + this.m32 = m1.m32 + scalar; + this.m33 = m1.m33 + scalar; + } + + /** + * Sets the value of this matrix to the matrix sum of matrices m1 and m2. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void add(Matrix4d m1, Matrix4d m2) + { + this.m00 = m1.m00 + m2.m00; + this.m01 = m1.m01 + m2.m01; + this.m02 = m1.m02 + m2.m02; + this.m03 = m1.m03 + m2.m03; + + this.m10 = m1.m10 + m2.m10; + this.m11 = m1.m11 + m2.m11; + this.m12 = m1.m12 + m2.m12; + this.m13 = m1.m13 + m2.m13; + + this.m20 = m1.m20 + m2.m20; + this.m21 = m1.m21 + m2.m21; + this.m22 = m1.m22 + m2.m22; + this.m23 = m1.m23 + m2.m23; + + this.m30 = m1.m30 + m2.m30; + this.m31 = m1.m31 + m2.m31; + this.m32 = m1.m32 + m2.m32; + this.m33 = m1.m33 + m2.m33; + } + + /** + * Sets the value of this matrix to sum of itself and matrix m1. + * @param m1 the other matrix + */ + public final void add(Matrix4d m1) + { + this.m00 += m1.m00; + this.m01 += m1.m01; + this.m02 += m1.m02; + this.m03 += m1.m03; + + this.m10 += m1.m10; + this.m11 += m1.m11; + this.m12 += m1.m12; + this.m13 += m1.m13; + + this.m20 += m1.m20; + this.m21 += m1.m21; + this.m22 += m1.m22; + this.m23 += m1.m23; + + this.m30 += m1.m30; + this.m31 += m1.m31; + this.m32 += m1.m32; + this.m33 += m1.m33; + } + + /** + * Sets the value of this matrix to the matrix difference + * of matrices m1 and m2. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void sub(Matrix4d m1, Matrix4d m2) + { + this.m00 = m1.m00 - m2.m00; + this.m01 = m1.m01 - m2.m01; + this.m02 = m1.m02 - m2.m02; + this.m03 = m1.m03 - m2.m03; + + this.m10 = m1.m10 - m2.m10; + this.m11 = m1.m11 - m2.m11; + this.m12 = m1.m12 - m2.m12; + this.m13 = m1.m13 - m2.m13; + + this.m20 = m1.m20 - m2.m20; + this.m21 = m1.m21 - m2.m21; + this.m22 = m1.m22 - m2.m22; + this.m23 = m1.m23 - m2.m23; + + this.m30 = m1.m30 - m2.m30; + this.m31 = m1.m31 - m2.m31; + this.m32 = m1.m32 - m2.m32; + this.m33 = m1.m33 - m2.m33; + } + + + /** + * Sets the value of this matrix to the matrix difference of itself + * and matrix m1 (this = this - m1). + * @param m1 the other matrix + */ + public final void sub(Matrix4d m1) + { + this.m00 -= m1.m00; + this.m01 -= m1.m01; + this.m02 -= m1.m02; + this.m03 -= m1.m03; + + this.m10 -= m1.m10; + this.m11 -= m1.m11; + this.m12 -= m1.m12; + this.m13 -= m1.m13; + + this.m20 -= m1.m20; + this.m21 -= m1.m21; + this.m22 -= m1.m22; + this.m23 -= m1.m23; + + this.m30 -= m1.m30; + this.m31 -= m1.m31; + this.m32 -= m1.m32; + this.m33 -= m1.m33; + } + + /** + * Sets the value of this matrix to its transpose. + */ + public final void transpose() + { + double temp; + + temp = this.m10; + this.m10 = this.m01; + this.m01 = temp; + + temp = this.m20; + this.m20 = this.m02; + this.m02 = temp; + + temp = this.m30; + this.m30 = this.m03; + this.m03 = temp; + + temp = this.m21; + this.m21 = this.m12; + this.m12 = temp; + + temp = this.m31; + this.m31 = this.m13; + this.m13 = temp; + + temp = this.m32; + this.m32 = this.m23; + this.m23 = temp; + } + + /** + * Sets the value of this matrix to the transpose of the argument matrix + * @param m1 the matrix to be transposed + */ + public final void transpose(Matrix4d m1) + { + if (this != m1) { + this.m00 = m1.m00; + this.m01 = m1.m10; + this.m02 = m1.m20; + this.m03 = m1.m30; + + this.m10 = m1.m01; + this.m11 = m1.m11; + this.m12 = m1.m21; + this.m13 = m1.m31; + + this.m20 = m1.m02; + this.m21 = m1.m12; + this.m22 = m1.m22; + this.m23 = m1.m32; + + this.m30 = m1.m03; + this.m31 = m1.m13; + this.m32 = m1.m23; + this.m33 = m1.m33; + } else + this.transpose(); + } + + /** + * Sets the values in this Matrix4d equal to the row-major + * array parameter (ie, the first four elements of the + * array will be copied into the first row of this matrix, etc.). + * @param m the double precision array of length 16 + */ + public final void set(double[] m) + { + m00 = m[0]; + m01 = m[1]; + m02 = m[2]; + m03 = m[3]; + m10 = m[4]; + m11 = m[5]; + m12 = m[6]; + m13 = m[7]; + m20 = m[8]; + m21 = m[9]; + m22 = m[10]; + m23 = m[11]; + m30 = m[12]; + m31 = m[13]; + m32 = m[14]; + m33 = m[15]; + } + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix values in the single precision Matrix3f argument; the other + * elements of this matrix are initialized as if this were an identity + * matrix (i.e., affine matrix with no translational component). + * @param m1 the double precision 3x3 matrix + */ + public final void set(Matrix3f m1) + { + m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0; + m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0; + m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0; + m30 = 0.0; m31 = 0.0 ; m32 = 0.0 ; m33 = 1.0; + } + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix values in the double precision Matrix3d argument; the other + * elements of this matrix are initialized as if this were an identity + * matrix (i.e., affine matrix with no translational component). + * @param m1 the double precision 3x3 matrix + */ + public final void set(Matrix3d m1) + { + m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0; + m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0; + m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0; + m30 = 0.0; m31 = 0.0 ; m32 = 0.0 ; m33 = 1.0; + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * (double precision) quaternion argument. + * @param q1 the quaternion to be converted + */ + public final void set(Quat4d q1) + { + this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z)); + this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y)); + + this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z)); + this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x)); + + this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y)); + this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x)); + this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + this.m03 = 0.0; + this.m13 = 0.0; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * double precision axis and angle argument. + * @param a1 the axis and angle to be converted + */ + public final void set(AxisAngle4d a1) + { + double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); + + if( mag < EPS ) { + m00 = 1.0; + m01 = 0.0; + m02 = 0.0; + + m10 = 0.0; + m11 = 1.0; + m12 = 0.0; + + m20 = 0.0; + m21 = 0.0; + m22 = 1.0; + } else { + mag = 1.0/mag; + double ax = a1.x*mag; + double ay = a1.y*mag; + double az = a1.z*mag; + + double sinTheta = Math.sin(a1.angle); + double cosTheta = Math.cos(a1.angle); + double t = 1.0 - cosTheta; + + double xz = ax * az; + double xy = ax * ay; + double yz = ay * az; + + m00 = t * ax * ax + cosTheta; + m01 = t * xy - sinTheta * az; + m02 = t * xz + sinTheta * ay; + + m10 = t * xy + sinTheta * az; + m11 = t * ay * ay + cosTheta; + m12 = t * yz - sinTheta * ax; + + m20 = t * xz - sinTheta * ay; + m21 = t * yz + sinTheta * ax; + m22 = t * az * az + cosTheta; + } + + m03 = 0.0; + m13 = 0.0; + m23 = 0.0; + + m30 = 0.0; + m31 = 0.0; + m32 = 0.0; + m33 = 1.0; + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * single precision quaternion argument. + * @param q1 the quaternion to be converted + */ + public final void set(Quat4f q1) + { + this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z)); + this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y)); + + this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z)); + this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x)); + + this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y)); + this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x)); + this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + this.m03 = 0.0; + this.m13 = 0.0; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix to the matrix conversion of the + * single precision axis and angle argument. + * @param a1 the axis and angle to be converted + */ + public final void set(AxisAngle4f a1) + { + double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); + + if( mag < EPS ) { + m00 = 1.0; + m01 = 0.0; + m02 = 0.0; + + m10 = 0.0; + m11 = 1.0; + m12 = 0.0; + + m20 = 0.0; + m21 = 0.0; + m22 = 1.0; + } else { + mag = 1.0/mag; + double ax = a1.x*mag; + double ay = a1.y*mag; + double az = a1.z*mag; + + double sinTheta = Math.sin((double)a1.angle); + double cosTheta = Math.cos((double)a1.angle); + double t = 1.0 - cosTheta; + + double xz = ax * az; + double xy = ax * ay; + double yz = ay * az; + + m00 = t * ax * ax + cosTheta; + m01 = t * xy - sinTheta * az; + m02 = t * xz + sinTheta * ay; + + m10 = t * xy + sinTheta * az; + m11 = t * ay * ay + cosTheta; + m12 = t * yz - sinTheta * ax; + + m20 = t * xz - sinTheta * ay; + m21 = t * yz + sinTheta * ax; + m22 = t * az * az + cosTheta; + } + m03 = 0.0; + m13 = 0.0; + m23 = 0.0; + + m30 = 0.0; + m31 = 0.0; + m32 = 0.0; + m33 = 1.0; + } + + /** + * Sets the value of this matrix from the rotation expressed + * by the quaternion q1, the translation t1, and the scale s. + * @param q1 the rotation expressed as a quaternion + * @param t1 the translation + * @param s the scale value + */ + public final void set(Quat4d q1, Vector3d t1, double s) + { + this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); + this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); + + this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); + this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); + + this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); + this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); + this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + this.m03 = t1.x; + this.m13 = t1.y; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix from the rotation expressed + * by the quaternion q1, the translation t1, and the scale s. + * @param q1 the rotation expressed as a quaternion + * @param t1 the translation + * @param s the scale value + */ + public final void set(Quat4f q1, Vector3d t1, double s) + { + this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); + this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); + + this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); + this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); + + this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); + this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); + this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + this.m03 = t1.x; + this.m13 = t1.y; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix from the rotation expressed + * by the quaternion q1, the translation t1, and the scale s. + * @param q1 the rotation expressed as a quaternion + * @param t1 the translation + * @param s the scale value + */ + public final void set(Quat4f q1, Vector3f t1, float s) + { + this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); + this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); + this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); + + this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); + this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); + this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); + + this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); + this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); + this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); + + this.m03 = t1.x; + this.m13 = t1.y; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix to a copy of the + * passed matrix m1. + * @param m1 the matrix4f + */ + public final void set(Matrix4f m1) + { + this.m00 = m1.m00; + this.m01 = m1.m01; + this.m02 = m1.m02; + this.m03 = m1.m03; + + this.m10 = m1.m10; + this.m11 = m1.m11; + this.m12 = m1.m12; + this.m13 = m1.m13; + + this.m20 = m1.m20; + this.m21 = m1.m21; + this.m22 = m1.m22; + this.m23 = m1.m23; + + this.m30 = m1.m30; + this.m31 = m1.m31; + this.m32 = m1.m32; + this.m33 = m1.m33; + } + + /** + * Sets the value of this matrix to a copy of the + * passed matrix m1. + * @param m1 the matrix to be copied + */ + public final void set(Matrix4d m1) + { + this.m00 = m1.m00; + this.m01 = m1.m01; + this.m02 = m1.m02; + this.m03 = m1.m03; + + this.m10 = m1.m10; + this.m11 = m1.m11; + this.m12 = m1.m12; + this.m13 = m1.m13; + + this.m20 = m1.m20; + this.m21 = m1.m21; + this.m22 = m1.m22; + this.m23 = m1.m23; + + this.m30 = m1.m30; + this.m31 = m1.m31; + this.m32 = m1.m32; + this.m33 = m1.m33; + } + + /** + * Sets the value of this matrix to the matrix inverse + * of the passed (user declared) matrix m1. + * @param m1 the matrix to be inverted + */ + public final void invert(Matrix4d m1) + { + + invertGeneral( m1); + } + + /** + * Inverts this matrix in place. + */ + public final void invert() + { + invertGeneral( this ); + } + + /** + * General invert routine. Inverts m1 and places the result in "this". + * Note that this routine handles both the "this" version and the + * non-"this" version. + * + * Also note that since this routine is slow anyway, we won't worry + * about allocating a little bit of garbage. + */ + final void invertGeneral(Matrix4d m1) { + double result[] = new double[16]; + int row_perm[] = new int[4]; + int i, r, c; + + // Use LU decomposition and backsubstitution code specifically + // for floating-point 4x4 matrices. + double[] tmp = new double[16]; // scratch matrix + // Copy source matrix to t1tmp + tmp[0] = m1.m00; + tmp[1] = m1.m01; + tmp[2] = m1.m02; + tmp[3] = m1.m03; + + tmp[4] = m1.m10; + tmp[5] = m1.m11; + tmp[6] = m1.m12; + tmp[7] = m1.m13; + + tmp[8] = m1.m20; + tmp[9] = m1.m21; + tmp[10] = m1.m22; + tmp[11] = m1.m23; + + tmp[12] = m1.m30; + tmp[13] = m1.m31; + tmp[14] = m1.m32; + tmp[15] = m1.m33; + + // Calculate LU decomposition: Is the matrix singular? + if (!luDecomposition(tmp, row_perm)) { + // Matrix has no inverse + throw new SingularMatrixException(VecMathI18N.getString("Matrix4d10")); + } + + // Perform back substitution on the identity matrix + for(i=0;i<16;i++) result[i] = 0.0; + result[0] = 1.0; result[5] = 1.0; result[10] = 1.0; result[15] = 1.0; + luBacksubstitution(tmp, row_perm, result); + + this.m00 = result[0]; + this.m01 = result[1]; + this.m02 = result[2]; + this.m03 = result[3]; + + this.m10 = result[4]; + this.m11 = result[5]; + this.m12 = result[6]; + this.m13 = result[7]; + + this.m20 = result[8]; + this.m21 = result[9]; + this.m22 = result[10]; + this.m23 = result[11]; + + this.m30 = result[12]; + this.m31 = result[13]; + this.m32 = result[14]; + this.m33 = result[15]; + + } + + /** + * Given a 4x4 array "matrix0", this function replaces it with the + * LU decomposition of a row-wise permutation of itself. The input + * parameters are "matrix0" and "dimen". The array "matrix0" is also + * an output parameter. The vector "row_perm[4]" is an output + * parameter that contains the row permutations resulting from partial + * pivoting. The output parameter "even_row_xchg" is 1 when the + * number of row exchanges is even, or -1 otherwise. Assumes data + * type is always double. + * + * This function is similar to luDecomposition, except that it + * is tuned specifically for 4x4 matrices. + * + * @return true if the matrix is nonsingular, or false otherwise. + */ + // + // Reference: Press, Flannery, Teukolsky, Vetterling, + // _Numerical_Recipes_in_C_, Cambridge University Press, + // 1988, pp 40-45. + // + static boolean luDecomposition(double[] matrix0, + int[] row_perm) { + + double row_scale[] = new double[4]; + + // Determine implicit scaling information by looping over rows + { + int i, j; + int ptr, rs; + double big, temp; + + ptr = 0; + rs = 0; + + // For each row ... + i = 4; + while (i-- != 0) { + big = 0.0; + + // For each column, find the largest element in the row + j = 4; + while (j-- != 0) { + temp = matrix0[ptr++]; + temp = Math.abs(temp); + if (temp > big) { + big = temp; + } + } + + // Is the matrix singular? + if (big == 0.0) { + return false; + } + row_scale[rs++] = 1.0 / big; + } + } + + { + int j; + int mtx; + + mtx = 0; + + // For all columns, execute Crout's method + for (j = 0; j < 4; j++) { + int i, imax, k; + int target, p1, p2; + double sum, big, temp; + + // Determine elements of upper diagonal matrix U + for (i = 0; i < j; i++) { + target = mtx + (4*i) + j; + sum = matrix0[target]; + k = i; + p1 = mtx + (4*i); + p2 = mtx + j; + while (k-- != 0) { + sum -= matrix0[p1] * matrix0[p2]; + p1++; + p2 += 4; + } + matrix0[target] = sum; + } + + // Search for largest pivot element and calculate + // intermediate elements of lower diagonal matrix L. + big = 0.0; + imax = -1; + for (i = j; i < 4; i++) { + target = mtx + (4*i) + j; + sum = matrix0[target]; + k = j; + p1 = mtx + (4*i); + p2 = mtx + j; + while (k-- != 0) { + sum -= matrix0[p1] * matrix0[p2]; + p1++; + p2 += 4; + } + matrix0[target] = sum; + + // Is this the best pivot so far? + if ((temp = row_scale[i] * Math.abs(sum)) >= big) { + big = temp; + imax = i; + } + } + + if (imax < 0) { + throw new RuntimeException(VecMathI18N.getString("Matrix4d11")); + } + + // Is a row exchange necessary? + if (j != imax) { + // Yes: exchange rows + k = 4; + p1 = mtx + (4*imax); + p2 = mtx + (4*j); + while (k-- != 0) { + temp = matrix0[p1]; + matrix0[p1++] = matrix0[p2]; + matrix0[p2++] = temp; + } + + // Record change in scale factor + row_scale[imax] = row_scale[j]; + } + + // Record row permutation + row_perm[j] = imax; + + // Is the matrix singular + if (matrix0[(mtx + (4*j) + j)] == 0.0) { + return false; + } + + // Divide elements of lower diagonal matrix L by pivot + if (j != (4-1)) { + temp = 1.0 / (matrix0[(mtx + (4*j) + j)]); + target = mtx + (4*(j+1)) + j; + i = 3 - j; + while (i-- != 0) { + matrix0[target] *= temp; + target += 4; + } + } + } + } + + return true; + } + + /** + * Solves a set of linear equations. The input parameters "matrix1", + * and "row_perm" come from luDecompostionD4x4 and do not change + * here. The parameter "matrix2" is a set of column vectors assembled + * into a 4x4 matrix of floating-point values. The procedure takes each + * column of "matrix2" in turn and treats it as the right-hand side of the + * matrix equation Ax = LUx = b. The solution vector replaces the + * original column of the matrix. + * + * If "matrix2" is the identity matrix, the procedure replaces its contents + * with the inverse of the matrix from which "matrix1" was originally + * derived. + */ + // + // Reference: Press, Flannery, Teukolsky, Vetterling, + // _Numerical_Recipes_in_C_, Cambridge University Press, + // 1988, pp 44-45. + // + static void luBacksubstitution(double[] matrix1, + int[] row_perm, + double[] matrix2) { + + int i, ii, ip, j, k; + int rp; + int cv, rv; + + // rp = row_perm; + rp = 0; + + // For each column vector of matrix2 ... + for (k = 0; k < 4; k++) { + // cv = &(matrix2[0][k]); + cv = k; + ii = -1; + + // Forward substitution + for (i = 0; i < 4; i++) { + double sum; + + ip = row_perm[rp+i]; + sum = matrix2[cv+4*ip]; + matrix2[cv+4*ip] = matrix2[cv+4*i]; + if (ii >= 0) { + // rv = &(matrix1[i][0]); + rv = i*4; + for (j = ii; j <= i-1; j++) { + sum -= matrix1[rv+j] * matrix2[cv+4*j]; + } + } + else if (sum != 0.0) { + ii = i; + } + matrix2[cv+4*i] = sum; + } + + // Backsubstitution + // rv = &(matrix1[3][0]); + rv = 3*4; + matrix2[cv+4*3] /= matrix1[rv+3]; + + rv -= 4; + matrix2[cv+4*2] = (matrix2[cv+4*2] - + matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2]; + + rv -= 4; + matrix2[cv+4*1] = (matrix2[cv+4*1] - + matrix1[rv+2] * matrix2[cv+4*2] - + matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1]; + + rv -= 4; + matrix2[cv+4*0] = (matrix2[cv+4*0] - + matrix1[rv+1] * matrix2[cv+4*1] - + matrix1[rv+2] * matrix2[cv+4*2] - + matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0]; + } + } + + /** + * Computes the determinant of this matrix. + * @return the determinant of the matrix + */ + public final double determinant() + { + double det; + + // cofactor exapainsion along first row + + det = m00*(m11*m22*m33+ m12*m23*m31 + m13*m21*m32 + - m13*m22*m31 -m11*m23*m32 - m12*m21*m33); + det -= m01*(m10*m22*m33+ m12*m23*m30 + m13*m20*m32 + - m13*m22*m30 -m10*m23*m32 - m12*m20*m33); + det += m02*(m10*m21*m33+ m11*m23*m30 + m13*m20*m31 + - m13*m21*m30 -m10*m23*m31 - m11*m20*m33); + det -= m03*(m10*m21*m32+ m11*m22*m30 + m12*m20*m31 + - m12*m21*m30 -m10*m22*m31 - m11*m20*m32); + + return( det ); + } + + /** + * Sets the value of this matrix to a scale matrix with the + * passed scale amount. + * @param scale the scale factor for the matrix + */ + public final void set(double scale) + { + this.m00 = scale; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = 0.0; + + this.m10 = 0.0; + this.m11 = scale; + this.m12 = 0.0; + this.m13 = 0.0; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = scale; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix to a translate matrix by the + * passed translation value. + * @param v1 the translation amount + */ + public final void set(Vector3d v1) + { + this.m00 = 1.0; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = v1.x; + + this.m10 = 0.0; + this.m11 = 1.0; + this.m12 = 0.0; + this.m13 = v1.y; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = 1.0; + this.m23 = v1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this transform to a scale and translation matrix; + * the scale is not applied to the translation and all of the matrix + * values are modified. + * @param scale the scale factor for the matrix + * @param v1 the translation amount + */ + public final void set(double scale, Vector3d v1) + { + this.m00 = scale; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = v1.x; + + this.m10 = 0.0; + this.m11 = scale; + this.m12 = 0.0; + this.m13 = v1.y; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = scale; + this.m23 = v1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this transform to a scale and translation matrix; + * the translation is scaled by the scale factor and all of the matrix + * values are modified. + * @param v1 the translation amount + * @param scale the scale factor for the matrix + */ + public final void set(Vector3d v1, double scale) + { + this.m00 = scale; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = scale*v1.x; + + this.m10 = 0.0; + this.m11 = scale; + this.m12 = 0.0; + this.m13 = scale*v1.y; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = scale; + this.m23 = scale*v1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix from the rotation expressed by + * the rotation matrix m1, the translation t1, and the scale factor. + * The translation is not modified by the scale. + * @param m1 the rotation component + * @param t1 the translation component + * @param scale the scale component + */ + public final void set(Matrix3f m1, Vector3f t1, float scale) + { + this.m00 = m1.m00*scale; + this.m01 = m1.m01*scale; + this.m02 = m1.m02*scale; + this.m03 = t1.x; + + this.m10 = m1.m10*scale; + this.m11 = m1.m11*scale; + this.m12 = m1.m12*scale; + this.m13 = t1.y; + + this.m20 = m1.m20*scale; + this.m21 = m1.m21*scale; + this.m22 = m1.m22*scale; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + + /** + * Sets the value of this matrix from the rotation expressed by + * the rotation matrix m1, the translation t1, and the scale factor. + * The translation is not modified by the scale. + * @param m1 the rotation component + * @param t1 the translation component + * @param scale the scale component + */ + public final void set(Matrix3d m1, Vector3d t1, double scale) + { + this.m00 = m1.m00*scale; + this.m01 = m1.m01*scale; + this.m02 = m1.m02*scale; + this.m03 = t1.x; + + this.m10 = m1.m10*scale; + this.m11 = m1.m11*scale; + this.m12 = m1.m12*scale; + this.m13 = t1.y; + + this.m20 = m1.m20*scale; + this.m21 = m1.m21*scale; + this.m22 = m1.m22*scale; + this.m23 = t1.z; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Modifies the translational components of this matrix to the values + * of the Vector3d argument; the other values of this matrix are not + * modified. + * @param trans the translational component + */ + public final void setTranslation(Vector3d trans) + { + m03 = trans.x; + m13 = trans.y; + m23 = trans.z; + } + + /** + * Sets the value of this matrix to a counter-clockwise rotation + * about the x axis. + * @param angle the angle to rotate about the X axis in radians + */ + public final void rotX(double angle) + { + double sinAngle, cosAngle; + + sinAngle = Math.sin(angle); + cosAngle = Math.cos(angle); + + this.m00 = 1.0; + this.m01 = 0.0; + this.m02 = 0.0; + this.m03 = 0.0; + + this.m10 = 0.0; + this.m11 = cosAngle; + this.m12 = -sinAngle; + this.m13 = 0.0; + + this.m20 = 0.0; + this.m21 = sinAngle; + this.m22 = cosAngle; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix to a counter-clockwise rotation + * about the y axis. + * @param angle the angle to rotate about the Y axis in radians + */ + public final void rotY(double angle) + { + double sinAngle, cosAngle; + + sinAngle = Math.sin(angle); + cosAngle = Math.cos(angle); + + this.m00 = cosAngle; + this.m01 = 0.0; + this.m02 = sinAngle; + this.m03 = 0.0; + + this.m10 = 0.0; + this.m11 = 1.0; + this.m12 = 0.0; + this.m13 = 0.0; + + this.m20 = -sinAngle; + this.m21 = 0.0; + this.m22 = cosAngle; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Sets the value of this matrix to a counter-clockwise rotation + * about the z axis. + * @param angle the angle to rotate about the Z axis in radians + */ + public final void rotZ(double angle) + { + double sinAngle, cosAngle; + + sinAngle = Math.sin(angle); + cosAngle = Math.cos(angle); + + this.m00 = cosAngle; + this.m01 = -sinAngle; + this.m02 = 0.0; + this.m03 = 0.0; + + this.m10 = sinAngle; + this.m11 = cosAngle; + this.m12 = 0.0; + this.m13 = 0.0; + + this.m20 = 0.0; + this.m21 = 0.0; + this.m22 = 1.0; + this.m23 = 0.0; + + this.m30 = 0.0; + this.m31 = 0.0; + this.m32 = 0.0; + this.m33 = 1.0; + } + + /** + * Multiplies each element of this matrix by a scalar. + * @param scalar the scalar multiplier. + */ + public final void mul(double scalar) + { + m00 *= scalar; + m01 *= scalar; + m02 *= scalar; + m03 *= scalar; + m10 *= scalar; + m11 *= scalar; + m12 *= scalar; + m13 *= scalar; + m20 *= scalar; + m21 *= scalar; + m22 *= scalar; + m23 *= scalar; + m30 *= scalar; + m31 *= scalar; + m32 *= scalar; + m33 *= scalar; + } + + /** + * Multiplies each element of matrix m1 by a scalar and places + * the result into this. Matrix m1 is not modified. + * @param scalar the scalar multiplier + * @param m1 the original matrix + */ + public final void mul(double scalar, Matrix4d m1) + { + this.m00 = m1.m00 * scalar; + this.m01 = m1.m01 * scalar; + this.m02 = m1.m02 * scalar; + this.m03 = m1.m03 * scalar; + this.m10 = m1.m10 * scalar; + this.m11 = m1.m11 * scalar; + this.m12 = m1.m12 * scalar; + this.m13 = m1.m13 * scalar; + this.m20 = m1.m20 * scalar; + this.m21 = m1.m21 * scalar; + this.m22 = m1.m22 * scalar; + this.m23 = m1.m23 * scalar; + this.m30 = m1.m30 * scalar; + this.m31 = m1.m31 * scalar; + this.m32 = m1.m32 * scalar; + this.m33 = m1.m33 * scalar; + } + + /** + * Sets the value of this matrix to the result of multiplying itself + * with matrix m1. + * @param m1 the other matrix + */ + public final void mul(Matrix4d m1) + { + double m00, m01, m02, m03, + m10, m11, m12, m13, + m20, m21, m22, m23, + m30, m31, m32, m33; // vars for temp result matrix + + m00 = this.m00*m1.m00 + this.m01*m1.m10 + + this.m02*m1.m20 + this.m03*m1.m30; + m01 = this.m00*m1.m01 + this.m01*m1.m11 + + this.m02*m1.m21 + this.m03*m1.m31; + m02 = this.m00*m1.m02 + this.m01*m1.m12 + + this.m02*m1.m22 + this.m03*m1.m32; + m03 = this.m00*m1.m03 + this.m01*m1.m13 + + this.m02*m1.m23 + this.m03*m1.m33; + + m10 = this.m10*m1.m00 + this.m11*m1.m10 + + this.m12*m1.m20 + this.m13*m1.m30; + m11 = this.m10*m1.m01 + this.m11*m1.m11 + + this.m12*m1.m21 + this.m13*m1.m31; + m12 = this.m10*m1.m02 + this.m11*m1.m12 + + this.m12*m1.m22 + this.m13*m1.m32; + m13 = this.m10*m1.m03 + this.m11*m1.m13 + + this.m12*m1.m23 + this.m13*m1.m33; + + m20 = this.m20*m1.m00 + this.m21*m1.m10 + + this.m22*m1.m20 + this.m23*m1.m30; + m21 = this.m20*m1.m01 + this.m21*m1.m11 + + this.m22*m1.m21 + this.m23*m1.m31; + m22 = this.m20*m1.m02 + this.m21*m1.m12 + + this.m22*m1.m22 + this.m23*m1.m32; + m23 = this.m20*m1.m03 + this.m21*m1.m13 + + this.m22*m1.m23 + this.m23*m1.m33; + + m30 = this.m30*m1.m00 + this.m31*m1.m10 + + this.m32*m1.m20 + this.m33*m1.m30; + m31 = this.m30*m1.m01 + this.m31*m1.m11 + + this.m32*m1.m21 + this.m33*m1.m31; + m32 = this.m30*m1.m02 + this.m31*m1.m12 + + this.m32*m1.m22 + this.m33*m1.m32; + m33 = this.m30*m1.m03 + this.m31*m1.m13 + + this.m32*m1.m23 + this.m33*m1.m33; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; + this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; + this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; + this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; + } + + /** + * Sets the value of this matrix to the result of multiplying + * the two argument matrices together. + * @param m1 the first matrix + * @param m2 the second matrix + */ + public final void mul(Matrix4d m1, Matrix4d m2) + { + if (this != m1 && this != m2) { + // code for mat mul + this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + + m1.m02*m2.m20 + m1.m03*m2.m30; + this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + + m1.m02*m2.m21 + m1.m03*m2.m31; + this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + + m1.m02*m2.m22 + m1.m03*m2.m32; + this.m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + + m1.m02*m2.m23 + m1.m03*m2.m33; + + this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + + m1.m12*m2.m20 + m1.m13*m2.m30; + this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + + m1.m12*m2.m21 + m1.m13*m2.m31; + this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + + m1.m12*m2.m22 + m1.m13*m2.m32; + this.m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + + m1.m12*m2.m23 + m1.m13*m2.m33; + + this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + + m1.m22*m2.m20 + m1.m23*m2.m30; + this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + + m1.m22*m2.m21 + m1.m23*m2.m31; + this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + + m1.m22*m2.m22 + m1.m23*m2.m32; + this.m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + + m1.m22*m2.m23 + m1.m23*m2.m33; + + this.m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + + m1.m32*m2.m20 + m1.m33*m2.m30; + this.m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + + m1.m32*m2.m21 + m1.m33*m2.m31; + this.m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + + m1.m32*m2.m22 + m1.m33*m2.m32; + this.m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + + m1.m32*m2.m23 + m1.m33*m2.m33; + } else { + double m00, m01, m02, m03, + m10, m11, m12, m13, + m20, m21, m22, m23, + m30, m31, m32, m33; // vars for temp result matrix + + // code for mat mul + m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20 + m1.m03*m2.m30; + m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21 + m1.m03*m2.m31; + m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22 + m1.m03*m2.m32; + m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + m1.m02*m2.m23 + m1.m03*m2.m33; + + m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20 + m1.m13*m2.m30; + m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21 + m1.m13*m2.m31; + m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22 + m1.m13*m2.m32; + m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + m1.m12*m2.m23 + m1.m13*m2.m33; + + m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20 + m1.m23*m2.m30; + m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21 + m1.m23*m2.m31; + m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22 + m1.m23*m2.m32; + m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + m1.m22*m2.m23 + m1.m23*m2.m33; + + m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + m1.m32*m2.m20 + m1.m33*m2.m30; + m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + m1.m32*m2.m21 + m1.m33*m2.m31; + m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + m1.m32*m2.m22 + m1.m33*m2.m32; + m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + m1.m32*m2.m23 + m1.m33*m2.m33; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; + this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; + this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; + this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; + + } + } + + /** + * Multiplies the transpose of matrix m1 times the transpose of matrix + * m2, and places the result into this. + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulTransposeBoth(Matrix4d m1, Matrix4d m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03; + this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13; + this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23; + this.m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33; + + this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03; + this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13; + this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23; + this.m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33; + + this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03; + this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13; + this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23; + this.m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33; + + this.m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03; + this.m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13; + this.m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23; + this.m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33; + } else { + double m00, m01, m02, m03, + m10, m11, m12, m13, + m20, m21, m22, m23, // vars for temp result matrix + m30, m31, m32, m33; + + m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03; + m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13; + m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23; + m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33; + + m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03; + m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13; + m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23; + m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33; + + m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03; + m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13; + m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23; + m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33; + + m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03; + m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13; + m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23; + m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; + this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; + this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; + this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; + } + + } + + + + /** + * Multiplies matrix m1 times the transpose of matrix m2, and + * places the result into this. + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulTransposeRight(Matrix4d m1, Matrix4d m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03; + this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13; + this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23; + this.m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33; + + this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03; + this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13; + this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23; + this.m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33; + + this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03; + this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13; + this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23; + this.m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33; + + this.m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03; + this.m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13; + this.m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23; + this.m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33; + } else { + double m00, m01, m02, m03, + m10, m11, m12, m13, + m20, m21, m22, m23, // vars for temp result matrix + m30, m31, m32, m33; + + m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03; + m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13; + m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23; + m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33; + + m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03; + m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13; + m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23; + m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33; + + m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03; + m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13; + m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23; + m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33; + + m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03; + m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13; + m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23; + m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; + this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; + this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; + this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; + } +} + + + /** + * Multiplies the transpose of matrix m1 times matrix m2, and + * places the result into this. + * @param m1 the matrix on the left hand side of the multiplication + * @param m2 the matrix on the right hand side of the multiplication + */ + public final void mulTransposeLeft(Matrix4d m1, Matrix4d m2) + { + if (this != m1 && this != m2) { + this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30; + this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31; + this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32; + this.m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33; + + this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30; + this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31; + this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32; + this.m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33; + + this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30; + this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31; + this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32; + this.m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33; + + this.m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30; + this.m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31; + this.m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32; + this.m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33; + } else { + double m00, m01, m02, m03, + m10, m11, m12, m13, + m20, m21, m22, m23, // vars for temp result matrix + m30, m31, m32, m33; + + + + m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30; + m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31; + m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32; + m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33; + + m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30; + m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31; + m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32; + m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33; + + m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30; + m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31; + m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32; + m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33; + + m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30; + m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31; + m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32; + m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33; + + this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; + this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; + this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; + this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; + } + + } + + + /** + * Returns true if all of the data members of Matrix4d m1 are + * equal to the corresponding data members in this Matrix4d. + * @param m1 the matrix with which the comparison is made + * @return true or false + */ + public boolean equals(Matrix4d m1) + { + try { + return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02 + && this.m03 == m1.m03 && this.m10 == m1.m10 && this.m11 == m1.m11 + && this.m12 == m1.m12 && this.m13 == m1.m13 && this.m20 == m1.m20 + && this.m21 == m1.m21 && this.m22 == m1.m22 && this.m23 == m1.m23 + && this.m30 == m1.m30 && this.m31 == m1.m31 && this.m32 == m1.m32 + && this.m33 == m1.m33); + } + catch (NullPointerException e2) { return false; } + + } + + /** + * Returns true if the Object t1 is of type Matrix4d and all of the + * data members of t1 are equal to the corresponding data members in + * this Matrix4d. + * @param t1 the matrix with which the comparison is made + * @return true or false + */ + public boolean equals(Object t1) + { + try { + Matrix4d m2 = (Matrix4d) t1; + return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02 + && this.m03 == m2.m03 && this.m10 == m2.m10 && this.m11 == m2.m11 + && this.m12 == m2.m12 && this.m13 == m2.m13 && this.m20 == m2.m20 + && this.m21 == m2.m21 && this.m22 == m2.m22 && this.m23 == m2.m23 + && this.m30 == m2.m30 && this.m31 == m2.m31 && this.m32 == m2.m32 + && this.m33 == m2.m33); + } + catch (ClassCastException e1) { return false; } + catch (NullPointerException e2) { return false; } + } + + /** + * @deprecated Use epsilonEquals(Matrix4d,double) instead + */ + public boolean epsilonEquals(Matrix4d m1, float epsilon) { + return epsilonEquals(m1, (double)epsilon); + } + + /** + * Returns true if the L-infinite distance between this matrix + * and matrix m1 is less than or equal to the epsilon parameter, + * otherwise returns false. The L-infinite + * distance is equal to + * MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs(this.m(i,j) - m1.m(i,j)] + * @param m1 the matrix to be compared to this matrix + * @param epsilon the threshold value + */ + public boolean epsilonEquals(Matrix4d m1, double epsilon) { + double diff; + + diff = m00 - m1.m00; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m01 - m1.m01; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m02 - m1.m02; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m03 - m1.m03; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m10 - m1.m10; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m11 - m1.m11; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m12 - m1.m12; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m13 - m1.m13; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m20 - m1.m20; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m21 - m1.m21; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m22 - m1.m22; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m23 - m1.m23; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m30 - m1.m30; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m31 - m1.m31; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m32 - m1.m32; + if((diff<0?-diff:diff) > epsilon) return false; + + diff = m33 - m1.m33; + if((diff<0?-diff:diff) > epsilon) return false; + + return true; + } + + /** + * Returns a hash code value based on the data values in this + * object. Two different Matrix4d objects with identical data values + * (i.e., Matrix4d.equals returns true) will return the same hash + * code value. Two objects with different data members may return the + * same hash value, although this is not likely. + * @return the integer hash code value + */ + public int hashCode() { + long bits = 1L; + bits = 31L * bits + Double.doubleToLongBits(m00); + bits = 31L * bits + Double.doubleToLongBits(m01); + bits = 31L * bits + Double.doubleToLongBits(m02); + bits = 31L * bits + Double.doubleToLongBits(m03); + bits = 31L * bits + Double.doubleToLongBits(m10); + bits = 31L * bits + Double.doubleToLongBits(m11); + bits = 31L * bits + Double.doubleToLongBits(m12); + bits = 31L * bits + Double.doubleToLongBits(m13); + bits = 31L * bits + Double.doubleToLongBits(m20); + bits = 31L * bits + Double.doubleToLongBits(m21); + bits = 31L * bits + Double.doubleToLongBits(m22); + bits = 31L * bits + Double.doubleToLongBits(m23); + bits = 31L * bits + Double.doubleToLongBits(m30); + bits = 31L * bits + Double.doubleToLongBits(m31); + bits = 31L * bits + Double.doubleToLongBits(m32); + bits = 31L * bits + Double.doubleToLongBits(m33); + return (int) (bits ^ (bits >> 32)); + } + + + /** + * Transform the vector vec using this Matrix4d and place the + * result into vecOut. + * @param vec the double precision vector to be transformed + * @param vecOut the vector into which the transformed values are placed + */ + public final void transform(Tuple4d vec, Tuple4d vecOut) + { + double x,y,z,w; + x = (m00*vec.x + m01*vec.y + + m02*vec.z + m03*vec.w); + y = (m10*vec.x + m11*vec.y + + m12*vec.z + m13*vec.w); + z = (m20*vec.x + m21*vec.y + + m22*vec.z + m23*vec.w); + vecOut.w = (m30*vec.x + m31*vec.y + + m32*vec.z + m33*vec.w); + vecOut.x = x; + vecOut.y = y; + vecOut.z = z; + } + + /** + * Transform the vector vec using this Matrix4d and place the + * result back into vec. + * @param vec the double precision vector to be transformed + */ + public final void transform(Tuple4d vec) + { + double x,y,z; + + x = (m00*vec.x + m01*vec.y + + m02*vec.z + m03*vec.w); + y = (m10*vec.x + m11*vec.y + + m12*vec.z + m13*vec.w); + z = (m20*vec.x + m21*vec.y + + m22*vec.z + m23*vec.w); + vec.w = (m30*vec.x + m31*vec.y + + m32*vec.z + m33*vec.w); + vec.x = x; + vec.y = y; + vec.z = z; + } + + /** + * Transform the vector vec using this Matrix4d and place the + * result into vecOut. + * @param vec the single precision vector to be transformed + * @param vecOut the vector into which the transformed values are placed + */ + public final void transform(Tuple4f vec, Tuple4f vecOut) + { + float x,y,z; + x = (float) (m00*vec.x + m01*vec.y + + m02*vec.z + m03*vec.w); + y = (float) (m10*vec.x + m11*vec.y + + m12*vec.z + m13*vec.w); + z = (float) (m20*vec.x + m21*vec.y + + m22*vec.z + m23*vec.w); + vecOut.w = (float) (m30*vec.x + m31*vec.y + + m32*vec.z + m33*vec.w); + vecOut.x = x; + vecOut.y = y; + vecOut.z = z; + } + + /** + * Transform the vector vec using this Transform and place the + * result back into vec. + * @param vec the single precision vector to be transformed + */ + public final void transform(Tuple4f vec) + { + float x,y,z; + + x = (float) (m00*vec.x + m01*vec.y + + m02*vec.z + m03*vec.w); + y = (float) (m10*vec.x + m11*vec.y + + m12*vec.z + m13*vec.w); + z = (float) (m20*vec.x + m21*vec.y + + m22*vec.z + m23*vec.w); + vec.w = (float) (m30*vec.x + m31*vec.y + + m32*vec.z + m33*vec.w); + vec.x = x; + vec.y = y; + vec.z = z; + } + + + /** + * Transforms the point parameter with this Matrix4d and + * places the result into pointOut. The fourth element of the + * point input parameter is assumed to be one. + * @param point the input point to be transformed. + * @param pointOut the transformed point + */ + public final void transform(Point3d point, Point3d pointOut) + { + double x,y; + x = m00*point.x + m01*point.y + m02*point.z + m03; + y = m10*point.x + m11*point.y + m12*point.z + m13; + pointOut.z = m20*point.x + m21*point.y + m22*point.z + m23; + pointOut.x = x; + pointOut.y = y; + + } + + + /** + * Transforms the point parameter with this Matrix4d and + * places the result back into point. The fourth element of the + * point input parameter is assumed to be one. + * @param point the input point to be transformed. + */ + public final void transform(Point3d point) + { + double x, y; + x = m00*point.x + m01*point.y + m02*point.z + m03; + y = m10*point.x + m11*point.y + m12*point.z + m13; + point.z = m20*point.x + m21*point.y + m22*point.z + m23; + point.x = x; + point.y = y; + } + + + /** + * Transforms the point parameter with this Matrix4d and + * places the result into pointOut. The fourth element of the + * point input parameter is assumed to be one. + * @param point the input point to be transformed. + * @param pointOut the transformed point + */ + public final void transform(Point3f point, Point3f pointOut) + { + float x,y; + + x = (float) (m00*point.x + m01*point.y + m02*point.z + m03); + y = (float) (m10*point.x + m11*point.y + m12*point.z + m13); + pointOut.z = (float) (m20*point.x + m21*point.y + m22*point.z + m23); + pointOut.x = x; + pointOut.y = y; + } + + + /** + * Transforms the point parameter with this Matrix4d and + * places the result back into point. The fourth element of the + * point input parameter is assumed to be one. + * @param point the input point to be transformed. + */ + public final void transform(Point3f point) + { + float x, y; + x = (float) (m00*point.x + m01*point.y + m02*point.z + m03); + y = (float) (m10*point.x + m11*point.y + m12*point.z + m13); + point.z = (float) (m20*point.x + m21*point.y + m22*point.z + m23); + point.x = x; + point.y = y; + } + + + /** + * Transforms the normal parameter by this Matrix4d and places the value + * into normalOut. The fourth element of the normal is assumed to be zero. + * @param normal the input normal to be transformed. + * @param normalOut the transformed normal + */ + public final void transform(Vector3d normal, Vector3d normalOut) + { + double x,y; + x = m00*normal.x + m01*normal.y + m02*normal.z; + y = m10*normal.x + m11*normal.y + m12*normal.z; + normalOut.z = m20*normal.x + m21*normal.y + m22*normal.z; + normalOut.x = x; + normalOut.y = y; + } + + + /** + * Transforms the normal parameter by this transform and places the value + * back into normal. The fourth element of the normal is assumed to be zero. + * @param normal the input normal to be transformed. + */ + public final void transform(Vector3d normal) + { + double x, y; + + x = m00*normal.x + m01*normal.y + m02*normal.z; + y = m10*normal.x + m11*normal.y + m12*normal.z; + normal.z = m20*normal.x + m21*normal.y + m22*normal.z; + normal.x = x; + normal.y = y; + } + + + /** + * Transforms the normal parameter by this Matrix4d and places the value + * into normalOut. The fourth element of the normal is assumed to be zero. + * @param normal the input normal to be transformed. + * @param normalOut the transformed normal + */ + public final void transform(Vector3f normal, Vector3f normalOut) + { + float x,y; + x = (float) (m00*normal.x + m01*normal.y + m02*normal.z); + y = (float) (m10*normal.x + m11*normal.y + m12*normal.z); + normalOut.z = (float) (m20*normal.x + m21*normal.y + m22*normal.z); + normalOut.x = x; + normalOut.y = y; + } + + + /** + * Transforms the normal parameter by this transform and places the value + * back into normal. The fourth element of the normal is assumed to be zero. + * @param normal the input normal to be transformed. + */ + public final void transform(Vector3f normal) + { + float x, y; + + x = (float) (m00*normal.x + m01*normal.y + m02*normal.z); + y = (float) (m10*normal.x + m11*normal.y + m12*normal.z); + normal.z = (float) (m20*normal.x + m21*normal.y + m22*normal.z); + normal.x = x; + normal.y = y; + } + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix values in the double precision Matrix3d argument; the other + * elements of this matrix are unchanged; a singular value + * decomposition is performed on this object's upper 3x3 matrix to + * factor out the scale, then this object's upper 3x3 matrix components + * are replaced by the passed rotation components, + * and then the scale is reapplied to the rotational components. + * @param m1 double precision 3x3 matrix + */ + public final void setRotation( Matrix3d m1){ + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + getScaleRotate( tmp_scale, tmp_rot ); + + m00 = m1.m00*tmp_scale[0]; + m01 = m1.m01*tmp_scale[1]; + m02 = m1.m02*tmp_scale[2]; + + m10 = m1.m10*tmp_scale[0]; + m11 = m1.m11*tmp_scale[1]; + m12 = m1.m12*tmp_scale[2]; + + m20 = m1.m20*tmp_scale[0]; + m21 = m1.m21*tmp_scale[1]; + m22 = m1.m22*tmp_scale[2]; + + } + + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix values in the single precision Matrix3f argument; the other + * elements of this matrix are unchanged; a singular value + * decomposition is performed on this object's upper 3x3 matrix to + * factor out the scale, then this object's upper 3x3 matrix components + * are replaced by the passed rotation components, + * and then the scale is reapplied to the rotational components. + * @param m1 single precision 3x3 matrix + */ + public final void setRotation( Matrix3f m1) + { + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + m00 = m1.m00*tmp_scale[0]; + m01 = m1.m01*tmp_scale[1]; + m02 = m1.m02*tmp_scale[2]; + + m10 = m1.m10*tmp_scale[0]; + m11 = m1.m11*tmp_scale[1]; + m12 = m1.m12*tmp_scale[2]; + + m20 = m1.m20*tmp_scale[0]; + m21 = m1.m21*tmp_scale[1]; + m22 = m1.m22*tmp_scale[2]; + } + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix equivalent values of the quaternion argument; the other + * elements of this matrix are unchanged; a singular value + * decomposition is performed on this object's upper 3x3 matrix to + * factor out the scale, then this object's upper 3x3 matrix components + * are replaced by the matrix equivalent of the quaternion, + * and then the scale is reapplied to the rotational components. + * @param q1 the quaternion that specifies the rotation + */ + public final void setRotation(Quat4f q1){ + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + m00 = (1.0 - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0]; + m10 = (2.0*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0]; + m20 = (2.0*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0]; + + m01 = (2.0*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1]; + m11 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1]; + m21 = (2.0*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1]; + + m02 = (2.0*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2]; + m12 = (2.0*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2]; + m22 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2]; + + } + + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix equivalent values of the quaternion argument; the other + * elements of this matrix are unchanged; a singular value + * decomposition is performed on this object's upper 3x3 matrix to + * factor out the scale, then this object's upper 3x3 matrix components + * are replaced by the matrix equivalent of the quaternion, + * and then the scale is reapplied to the rotational components. + * @param q1 the quaternion that specifies the rotation + */ + public final void setRotation(Quat4d q1){ + + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + getScaleRotate( tmp_scale, tmp_rot ); + + m00 = (1.0 - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0]; + m10 = (2.0*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0]; + m20 = (2.0*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0]; + + m01 = (2.0*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1]; + m11 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1]; + m21 = (2.0*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1]; + + m02 = (2.0*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2]; + m12 = (2.0*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2]; + m22 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2]; + + } + + /** + * Sets the rotational component (upper 3x3) of this matrix to the + * matrix equivalent values of the axis-angle argument; the other + * elements of this matrix are unchanged; a singular value + * decomposition is performed on this object's upper 3x3 matrix to + * factor out the scale, then this object's upper 3x3 matrix components + * are replaced by the matrix equivalent of the axis-angle, + * and then the scale is reapplied to the rotational components. + * @param a1 the axis-angle to be converted (x, y, z, angle) + */ + public final void setRotation(AxisAngle4d a1) + { + double[] tmp_rot = new double[9]; // scratch matrix + double[] tmp_scale = new double[3]; // scratch matrix + + getScaleRotate( tmp_scale, tmp_rot ); + + double mag = 1.0/Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); + double ax = a1.x*mag; + double ay = a1.y*mag; + double az = a1.z*mag; + + double sinTheta = Math.sin(a1.angle); + double cosTheta = Math.cos(a1.angle); + double t = 1.0 - cosTheta; + + double xz = a1.x * a1.z; + double xy = a1.x * a1.y; + double yz = a1.y * a1.z; + + m00 = (t * ax * ax + cosTheta)*tmp_scale[0]; + m01 = (t * xy - sinTheta * az)*tmp_scale[1]; + m02 = (t * xz + sinTheta * ay)*tmp_scale[2]; + + m10 = (t * xy + sinTheta * az)*tmp_scale[0]; + m11 = (t * ay * ay + cosTheta)*tmp_scale[1]; + m12 = (t * yz - sinTheta * ax)*tmp_scale[2]; + + m20 = (t * xz - sinTheta * ay)*tmp_scale[0]; + m21 = (t * yz + sinTheta * ax)*tmp_scale[1]; + m22 = (t * az * az + cosTheta)*tmp_scale[2]; + + } + + /** + * Sets this matrix to all zeros. + */ + public final void setZero() + { + m00 = 0.0; + m01 = 0.0; + m02 = 0.0; + m03 = 0.0; + m10 = 0.0; + m11 = 0.0; + m12 = 0.0; + m13 = 0.0; + m20 = 0.0; + m21 = 0.0; + m22 = 0.0; + m23 = 0.0; + m30 = 0.0; + m31 = 0.0; + m32 = 0.0; + m33 = 0.0; + } + + /** + * Negates the value of this matrix: this = -this. + */ + public final void negate() + { + m00 = -m00; + m01 = -m01; + m02 = -m02; + m03 = -m03; + m10 = -m10; + m11 = -m11; + m12 = -m12; + m13 = -m13; + m20 = -m20; + m21 = -m21; + m22 = -m22; + m23 = -m23; + m30 = -m30; + m31 = -m31; + m32 = -m32; + m33 = -m33; + } + + /** + * Sets the value of this matrix equal to the negation of + * of the Matrix4d parameter. + * @param m1 the source matrix + */ + public final void negate(Matrix4d m1) + { + this.m00 = -m1.m00; + this.m01 = -m1.m01; + this.m02 = -m1.m02; + this.m03 = -m1.m03; + this.m10 = -m1.m10; + this.m11 = -m1.m11; + this.m12 = -m1.m12; + this.m13 = -m1.m13; + this.m20 = -m1.m20; + this.m21 = -m1.m21; + this.m22 = -m1.m22; + this.m23 = -m1.m23; + this.m30 = -m1.m30; + this.m31 = -m1.m31; + this.m32 = -m1.m32; + this.m33 = -m1.m33; + } + private final void getScaleRotate(double scales[], double rots[]) { + double[] tmp = new double[9]; // scratch matrix + tmp[0] = m00; + tmp[1] = m01; + tmp[2] = m02; + + tmp[3] = m10; + tmp[4] = m11; + tmp[5] = m12; + + tmp[6] = m20; + tmp[7] = m21; + tmp[8] = m22; + + Matrix3d.compute_svd( tmp, scales, rots); + + return; + } + + /** + * Creates a new object of the same class as this object. + * + * @return a clone of this instance. + * @exception OutOfMemoryError if there is not enough memory. + * @see java.lang.Cloneable + * @since Java 3D 1.3 + */ + public Object clone() { + Matrix4d m1 = null; + try { + m1 = (Matrix4d)super.clone(); + } catch (CloneNotSupportedException e) { + // this shouldn't happen, since we are Cloneable + throw new InternalError(); + } + + return m1; + } + +} |