/* * $RCSfile$ * * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * * Use is subject to license terms. * * $Revision$ * $Date$ * $State$ */ package javax.vecmath; import java.lang.Math; /** * A double precision floating point 4 by 4 matrix. * Primarily to support 3D rotations. * */ public class Matrix4d implements java.io.Serializable, Cloneable { // Compatible with 1.1 static final long serialVersionUID = 8223903484171633710L; /** * The first element of the first row. */ public double m00; /** * The second element of the first row. */ public double m01; /** * The third element of the first row. */ public double m02; /** * The fourth element of the first row. */ public double m03; /** * The first element of the second row. */ public double m10; /** * The second element of the second row. */ public double m11; /** * The third element of the second row. */ public double m12; /** * The fourth element of the second row. */ public double m13; /** * The first element of the third row. */ public double m20; /** * The second element of the third row. */ public double m21; /** * The third element of the third row. */ public double m22; /** * The fourth element of the third row. */ public double m23; /** * The first element of the fourth row. */ public double m30; /** * The second element of the fourth row. */ public double m31; /** * The third element of the fourth row. */ public double m32; /** * The fourth element of the fourth row. */ public double m33; /* double[] tmp = new double[16]; double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix */ private static final double EPS = 1.0E-10; /** * Constructs and initializes a Matrix4d from the specified 16 values. * @param m00 the [0][0] element * @param m01 the [0][1] element * @param m02 the [0][2] element * @param m03 the [0][3] element * @param m10 the [1][0] element * @param m11 the [1][1] element * @param m12 the [1][2] element * @param m13 the [1][3] element * @param m20 the [2][0] element * @param m21 the [2][1] element * @param m22 the [2][2] element * @param m23 the [2][3] element * @param m30 the [3][0] element * @param m31 the [3][1] element * @param m32 the [3][2] element * @param m33 the [3][3] element */ public Matrix4d(double m00, double m01, double m02, double m03, double m10, double m11, double m12, double m13, double m20, double m21, double m22, double m23, double m30, double m31, double m32, double m33) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } /** * Constructs and initializes a Matrix4d from the specified 16 * element array. this.m00 =v[0], this.m01=v[1], etc. * @param v the array of length 16 containing in order */ public Matrix4d(double[] v) { this.m00 = v[ 0]; this.m01 = v[ 1]; this.m02 = v[ 2]; this.m03 = v[ 3]; this.m10 = v[ 4]; this.m11 = v[ 5]; this.m12 = v[ 6]; this.m13 = v[ 7]; this.m20 = v[ 8]; this.m21 = v[ 9]; this.m22 = v[10]; this.m23 = v[11]; this.m30 = v[12]; this.m31 = v[13]; this.m32 = v[14]; this.m33 = v[15]; } /** * Constructs and initializes a Matrix4d from the quaternion, * translation, and scale values; the scale is applied only to the * rotational components of the matrix (upper 3x3) and not to the * translational components. * @param q1 the quaternion value representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Matrix4d(Quat4d q1, Vector3d t1, double s) { m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); m03 = t1.x; m13 = t1.y; m23 = t1.z; m30 = 0.0; m31 = 0.0; m32 = 0.0; m33 = 1.0; } /** * Constructs and initializes a Matrix4d from the quaternion, * translation, and scale values; the scale is applied only to the * rotational components of the matrix (upper 3x3) and not to the * translational components. * @param q1 the quaternion value representing the rotational component * @param t1 the translational component of the matrix * @param s the scale value applied to the rotational components */ public Matrix4d(Quat4f q1, Vector3d t1, double s) { m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); m03 = t1.x; m13 = t1.y; m23 = t1.z; m30 = 0.0; m31 = 0.0; m32 = 0.0; m33 = 1.0; } /** * Constructs a new matrix with the same values as the * Matrix4d parameter. * @param m1 the source matrix */ public Matrix4d(Matrix4d m1) { this.m00 = m1.m00; this.m01 = m1.m01; this.m02 = m1.m02; this.m03 = m1.m03; this.m10 = m1.m10; this.m11 = m1.m11; this.m12 = m1.m12; this.m13 = m1.m13; this.m20 = m1.m20; this.m21 = m1.m21; this.m22 = m1.m22; this.m23 = m1.m23; this.m30 = m1.m30; this.m31 = m1.m31; this.m32 = m1.m32; this.m33 = m1.m33; } /** * Constructs a new matrix with the same values as the * Matrix4f parameter. * @param m1 the source matrix */ public Matrix4d(Matrix4f m1) { this.m00 = m1.m00; this.m01 = m1.m01; this.m02 = m1.m02; this.m03 = m1.m03; this.m10 = m1.m10; this.m11 = m1.m11; this.m12 = m1.m12; this.m13 = m1.m13; this.m20 = m1.m20; this.m21 = m1.m21; this.m22 = m1.m22; this.m23 = m1.m23; this.m30 = m1.m30; this.m31 = m1.m31; this.m32 = m1.m32; this.m33 = m1.m33; } /** * Constructs and initializes a Matrix4d from the rotation matrix, * translation, and scale values; the scale is applied only to the * rotational components of the matrix (upper 3x3) and not to the * translational components of the matrix. * @param m1 the rotation matrix representing the rotational components * @param t1 the translational components of the matrix * @param s the scale value applied to the rotational components */ public Matrix4d(Matrix3f m1, Vector3d t1, double s) { this.m00 = m1.m00*s; this.m01 = m1.m01*s; this.m02 = m1.m02*s; this.m03 = t1.x; this.m10 = m1.m10*s; this.m11 = m1.m11*s; this.m12 = m1.m12*s; this.m13 = t1.y; this.m20 = m1.m20*s; this.m21 = m1.m21*s; this.m22 = m1.m22*s; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Constructs and initializes a Matrix4f from the rotation matrix, * translation, and scale values; the scale is applied only to the * rotational components of the matrix (upper 3x3) and not to the * translational components of the matrix. * @param m1 the rotation matrix representing the rotational components * @param t1 the translational components of the matrix * @param s the scale value applied to the rotational components */ public Matrix4d(Matrix3d m1, Vector3d t1, double s) { this.m00 = m1.m00*s; this.m01 = m1.m01*s; this.m02 = m1.m02*s; this.m03 = t1.x; this.m10 = m1.m10*s; this.m11 = m1.m11*s; this.m12 = m1.m12*s; this.m13 = t1.y; this.m20 = m1.m20*s; this.m21 = m1.m21*s; this.m22 = m1.m22*s; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Constructs and initializes a Matrix4d to all zeros. */ public Matrix4d() { this.m00 = 0.0; this.m01 = 0.0; this.m02 = 0.0; this.m03 = 0.0; this.m10 = 0.0; this.m11 = 0.0; this.m12 = 0.0; this.m13 = 0.0; this.m20 = 0.0; this.m21 = 0.0; this.m22 = 0.0; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 0.0; } /** * Returns a string that contains the values of this Matrix4d. * @return the String representation */ public String toString() { return this.m00 + ", " + this.m01 + ", " + this.m02 + ", " + this.m03 + "\n" + this.m10 + ", " + this.m11 + ", " + this.m12 + ", " + this.m13 + "\n" + this.m20 + ", " + this.m21 + ", " + this.m22 + ", " + this.m23 + "\n" + this.m30 + ", " + this.m31 + ", " + this.m32 + ", " + this.m33 + "\n"; } /** * Sets this Matrix4d to identity. */ public final void setIdentity() { this.m00 = 1.0; this.m01 = 0.0; this.m02 = 0.0; this.m03 = 0.0; this.m10 = 0.0; this.m11 = 1.0; this.m12 = 0.0; this.m13 = 0.0; this.m20 = 0.0; this.m21 = 0.0; this.m22 = 1.0; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the specified element of this matrix4f to the value provided. * @param row the row number to be modified (zero indexed) * @param column the column number to be modified (zero indexed) * @param value the new value */ public final void setElement(int row, int column, double value) { switch (row) { case 0: switch(column) { case 0: this.m00 = value; break; case 1: this.m01 = value; break; case 2: this.m02 = value; break; case 3: this.m03 = value; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); } break; case 1: switch(column) { case 0: this.m10 = value; break; case 1: this.m11 = value; break; case 2: this.m12 = value; break; case 3: this.m13 = value; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); } break; case 2: switch(column) { case 0: this.m20 = value; break; case 1: this.m21 = value; break; case 2: this.m22 = value; break; case 3: this.m23 = value; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); } break; case 3: switch(column) { case 0: this.m30 = value; break; case 1: this.m31 = value; break; case 2: this.m32 = value; break; case 3: this.m33 = value; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); } break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d0")); } } /** * Retrieves the value at the specified row and column of this matrix. * @param row the row number to be retrieved (zero indexed) * @param column the column number to be retrieved (zero indexed) * @return the value at the indexed element */ public final double getElement(int row, int column) { switch (row) { case 0: switch(column) { case 0: return(this.m00); case 1: return(this.m01); case 2: return(this.m02); case 3: return(this.m03); default: break; } break; case 1: switch(column) { case 0: return(this.m10); case 1: return(this.m11); case 2: return(this.m12); case 3: return(this.m13); default: break; } break; case 2: switch(column) { case 0: return(this.m20); case 1: return(this.m21); case 2: return(this.m22); case 3: return(this.m23); default: break; } break; case 3: switch(column) { case 0: return(this.m30); case 1: return(this.m31); case 2: return(this.m32); case 3: return(this.m33); default: break; } break; default: break; } throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d1")); } /** * Copies the matrix values in the specified row into the vector parameter. * @param row the matrix row * @param v the vector into which the matrix row values will be copied */ public final void getRow(int row, Vector4d v) { if( row == 0 ) { v.x = m00; v.y = m01; v.z = m02; v.w = m03; } else if(row == 1) { v.x = m10; v.y = m11; v.z = m12; v.w = m13; } else if(row == 2) { v.x = m20; v.y = m21; v.z = m22; v.w = m23; } else if(row == 3) { v.x = m30; v.y = m31; v.z = m32; v.w = m33; } else { throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d2")); } } /** * Copies the matrix values in the specified row into the array parameter. * @param row the matrix row * @param v the array into which the matrix row values will be copied */ public final void getRow(int row, double v[]) { if( row == 0 ) { v[0] = m00; v[1] = m01; v[2] = m02; v[3] = m03; } else if(row == 1) { v[0] = m10; v[1] = m11; v[2] = m12; v[3] = m13; } else if(row == 2) { v[0] = m20; v[1] = m21; v[2] = m22; v[3] = m23; } else if(row == 3) { v[0] = m30; v[1] = m31; v[2] = m32; v[3] = m33; } else { throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d2")); } } /** * Copies the matrix values in the specified column into the vector * parameter. * @param column the matrix column * @param v the vector into which the matrix column values will be copied */ public final void getColumn(int column, Vector4d v) { if( column == 0 ) { v.x = m00; v.y = m10; v.z = m20; v.w = m30; } else if(column == 1) { v.x = m01; v.y = m11; v.z = m21; v.w = m31; } else if(column == 2) { v.x = m02; v.y = m12; v.z = m22; v.w = m32; } else if(column == 3) { v.x = m03; v.y = m13; v.z = m23; v.w = m33; } else { throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d3")); } } /** * Copies the matrix values in the specified column into the array * parameter. * @param column the matrix column * @param v the array into which the matrix column values will be copied */ public final void getColumn(int column, double v[]) { if( column == 0 ) { v[0] = m00; v[1] = m10; v[2] = m20; v[3] = m30; } else if(column == 1) { v[0] = m01; v[1] = m11; v[2] = m21; v[3] = m31; } else if(column == 2) { v[0] = m02; v[1] = m12; v[2] = m22; v[3] = m32; } else if(column == 3) { v[0] = m03; v[1] = m13; v[2] = m23; v[3] = m33; } else { throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d3")); } } /** * Performs an SVD normalization of this matrix in order to acquire * the normalized rotational component; the values are placed into * the Matrix3d parameter. * @param m1 the matrix into which the rotational component is placed */ public final void get(Matrix3d m1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m1.m00 = tmp_rot[0]; m1.m01 = tmp_rot[1]; m1.m02 = tmp_rot[2]; m1.m10 = tmp_rot[3]; m1.m11 = tmp_rot[4]; m1.m12 = tmp_rot[5]; m1.m20 = tmp_rot[6]; m1.m21 = tmp_rot[7]; m1.m22 = tmp_rot[8]; } /** * Performs an SVD normalization of this matrix in order to acquire * the normalized rotational component; the values are placed into * the Matrix3f parameter. * @param m1 the matrix into which the rotational component is placed */ public final void get(Matrix3f m1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m1.m00 = (float)tmp_rot[0]; m1.m01 = (float)tmp_rot[1]; m1.m02 = (float)tmp_rot[2]; m1.m10 = (float)tmp_rot[3]; m1.m11 = (float)tmp_rot[4]; m1.m12 = (float)tmp_rot[5]; m1.m20 = (float)tmp_rot[6]; m1.m21 = (float)tmp_rot[7]; m1.m22 = (float)tmp_rot[8]; } /** * Performs an SVD normalization of this matrix to calculate * the rotation as a 3x3 matrix, the translation, and the scale. * None of the matrix values are modified. * @param m1 the normalized matrix representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final double get(Matrix3d m1, Vector3d t1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m1.m00 = tmp_rot[0]; m1.m01 = tmp_rot[1]; m1.m02 = tmp_rot[2]; m1.m10 = tmp_rot[3]; m1.m11 = tmp_rot[4]; m1.m12 = tmp_rot[5]; m1.m20 = tmp_rot[6]; m1.m21 = tmp_rot[7]; m1.m22 = tmp_rot[8]; t1.x = m03; t1.y = m13; t1.z = m23; return( Matrix3d.max3( tmp_scale )); } /** * Performs an SVD normalization of this matrix to calculate * the rotation as a 3x3 matrix, the translation, and the scale. * None of the matrix values are modified. * @param m1 the normalized matrix representing the rotation * @param t1 the translation component * @return the scale component of this transform */ public final double get(Matrix3f m1, Vector3d t1){ double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m1.m00 = (float)tmp_rot[0]; m1.m01 = (float)tmp_rot[1]; m1.m02 = (float)tmp_rot[2]; m1.m10 = (float)tmp_rot[3]; m1.m11 = (float)tmp_rot[4]; m1.m12 = (float)tmp_rot[5]; m1.m20 = (float)tmp_rot[6]; m1.m21 = (float)tmp_rot[7]; m1.m22 = (float)tmp_rot[8]; t1.x = m03; t1.y = m13; t1.z = m23; return( Matrix3d.max3( tmp_scale )); } /** * Performs an SVD normalization of this matrix in order to acquire * the normalized rotational component; the values are placed into * the Quat4f parameter. * @param q1 quaternion into which the rotation component is placed */ public final void get(Quat4f q1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); double ww; ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]); if(!((ww<0?-ww:ww) < 1.0e-30)) { q1.w = (float)Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (float)((tmp_rot[7] - tmp_rot[5])*ww); q1.y = (float)((tmp_rot[2] - tmp_rot[6])*ww); q1.z = (float)((tmp_rot[3] - tmp_rot[1])*ww); return; } q1.w = 0.0f; ww = -0.5*(tmp_rot[4] + tmp_rot[8]); if(!((ww<0?-ww:ww) < 1.0e-30)) { q1.x = (float)Math.sqrt(ww); ww = 0.5/q1.x; q1.y = (float)(tmp_rot[3]*ww); q1.z = (float)(tmp_rot[6]*ww); return; } q1.x = 0.0f; ww = 0.5*(1.0 - tmp_rot[8]); if(!((ww<0?-ww:ww) < 1.0e-30)) { q1.y = (float)(Math.sqrt(ww)); q1.z = (float)(tmp_rot[7]/(2.0*q1.y)); return; } q1.y = 0.0f; q1.z = 1.0f; } /** * Performs an SVD normalization of q1 matrix in order to acquire * the normalized rotational component; the values are placed into * the Quat4d parameter. * @param q1 the quaternion into which the rotation component is placed */ public final void get(Quat4d q1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); double ww; ww = 0.25*(1.0 + tmp_rot[0] + tmp_rot[4] + tmp_rot[8]); if(!((ww<0?-ww:ww) < 1.0e-30)) { q1.w = Math.sqrt(ww); ww = 0.25/q1.w; q1.x = (tmp_rot[7] - tmp_rot[5])*ww; q1.y = (tmp_rot[2] - tmp_rot[6])*ww; q1.z = (tmp_rot[3] - tmp_rot[1])*ww; return; } q1.w = 0.0f; ww = -0.5*(tmp_rot[4] + tmp_rot[8]); if(!((ww<0?-ww:ww) < 1.0e-30)) { q1.x = Math.sqrt(ww); ww = 0.5/q1.x; q1.y = tmp_rot[3]*ww; q1.z = tmp_rot[6]*ww; return; } q1.x = 0.0; ww = 0.5*(1.0 - tmp_rot[8]); if(!((ww<0?-ww:ww) < 1.0e-30)) { q1.y = Math.sqrt(ww); q1.z = tmp_rot[7]/(2.0*q1.y); return; } q1.y = 0.0; q1.z = 1.0; } /** * Retrieves the translational components of this matrix. * @param trans the vector that will receive the translational component */ public final void get(Vector3d trans) { trans.x = m03; trans.y = m13; trans.z = m23; } /** * Gets the upper 3x3 values of this matrix and places them into * the matrix m1. * @param m1 the matrix that will hold the values */ public final void getRotationScale(Matrix3f m1) { m1.m00 = (float)m00; m1.m01 = (float)m01; m1.m02 = (float)m02; m1.m10 = (float)m10; m1.m11 = (float)m11; m1.m12 = (float)m12; m1.m20 = (float)m20; m1.m21 = (float)m21; m1.m22 = (float)m22; } /** * Gets the upper 3x3 values of this matrix and places them into * the matrix m1. * @param m1 the matrix that will hold the values */ public final void getRotationScale(Matrix3d m1) { m1.m00 = m00; m1.m01 = m01; m1.m02 = m02; m1.m10 = m10; m1.m11 = m11; m1.m12 = m12; m1.m20 = m20; m1.m21 = m21; m1.m22 = m22; } /** * Performs an SVD normalization of this matrix to calculate * and return the uniform scale factor. If the matrix has non-uniform * scale factors, the largest of the x, y, and z scale factors will * be returned. This matrix is not modified. * @return the scale factor of this matrix */ public final double getScale() { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); return( Matrix3d.max3( tmp_scale )); } /** * Replaces the upper 3x3 matrix values of this matrix with the * values in the matrix m1. * @param m1 the matrix that will be the new upper 3x3 */ public final void setRotationScale(Matrix3d m1) { m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; } /** * Replaces the upper 3x3 matrix values of this matrix with the * values in the matrix m1. * @param m1 the matrix that will be the new upper 3x3 */ public final void setRotationScale(Matrix3f m1) { m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; } /** * Sets the scale component of the current matrix by factoring * out the current scale (by doing an SVD) from the rotational * component and multiplying by the new scale. * @param scale the new scale amount */ public final void setScale(double scale) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m00 = tmp_rot[0]*scale; m01 = tmp_rot[1]*scale; m02 = tmp_rot[2]*scale; m10 = tmp_rot[3]*scale; m11 = tmp_rot[4]*scale; m12 = tmp_rot[5]*scale; m20 = tmp_rot[6]*scale; m21 = tmp_rot[7]*scale; m22 = tmp_rot[8]*scale; } /** * Sets the specified row of this matrix4d to the four values provided. * @param row the row number to be modified (zero indexed) * @param x the first column element * @param y the second column element * @param z the third column element * @param w the fourth column element */ public final void setRow(int row, double x, double y, double z, double w) { switch (row) { case 0: this.m00 = x; this.m01 = y; this.m02 = z; this.m03 = w; break; case 1: this.m10 = x; this.m11 = y; this.m12 = z; this.m13 = w; break; case 2: this.m20 = x; this.m21 = y; this.m22 = z; this.m23 = w; break; case 3: this.m30 = x; this.m31 = y; this.m32 = z; this.m33 = w; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4")); } } /** * Sets the specified row of this matrix4d to the Vector provided. * @param row the row number to be modified (zero indexed) * @param v the replacement row */ public final void setRow(int row, Vector4d v) { switch (row) { case 0: this.m00 = v.x; this.m01 = v.y; this.m02 = v.z; this.m03 = v.w; break; case 1: this.m10 = v.x; this.m11 = v.y; this.m12 = v.z; this.m13 = v.w; break; case 2: this.m20 = v.x; this.m21 = v.y; this.m22 = v.z; this.m23 = v.w; break; case 3: this.m30 = v.x; this.m31 = v.y; this.m32 = v.z; this.m33 = v.w; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4")); } } /** * Sets the specified row of this matrix4d to the four values provided. * @param row the row number to be modified (zero indexed) * @param v the replacement row */ public final void setRow(int row, double v[]) { switch (row) { case 0: this.m00 = v[0]; this.m01 = v[1]; this.m02 = v[2]; this.m03 = v[3]; break; case 1: this.m10 = v[0]; this.m11 = v[1]; this.m12 = v[2]; this.m13 = v[3]; break; case 2: this.m20 = v[0]; this.m21 = v[1]; this.m22 = v[2]; this.m23 = v[3]; break; case 3: this.m30 = v[0]; this.m31 = v[1]; this.m32 = v[2]; this.m33 = v[3]; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d4")); } } /** * Sets the specified column of this matrix4d to the four values provided. * @param column the column number to be modified (zero indexed) * @param x the first row element * @param y the second row element * @param z the third row element * @param w the fourth row element */ public final void setColumn(int column, double x, double y, double z, double w) { switch (column) { case 0: this.m00 = x; this.m10 = y; this.m20 = z; this.m30 = w; break; case 1: this.m01 = x; this.m11 = y; this.m21 = z; this.m31 = w; break; case 2: this.m02 = x; this.m12 = y; this.m22 = z; this.m32 = w; break; case 3: this.m03 = x; this.m13 = y; this.m23 = z; this.m33 = w; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7")); } } /** * Sets the specified column of this matrix4d to the vector provided. * @param column the column number to be modified (zero indexed) * @param v the replacement column */ public final void setColumn(int column, Vector4d v) { switch (column) { case 0: this.m00 = v.x; this.m10 = v.y; this.m20 = v.z; this.m30 = v.w; break; case 1: this.m01 = v.x; this.m11 = v.y; this.m21 = v.z; this.m31 = v.w; break; case 2: this.m02 = v.x; this.m12 = v.y; this.m22 = v.z; this.m32 = v.w; break; case 3: this.m03 = v.x; this.m13 = v.y; this.m23 = v.z; this.m33 = v.w; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7")); } } /** * Sets the specified column of this matrix4d to the four values provided. * @param column the column number to be modified (zero indexed) * @param v the replacement column */ public final void setColumn(int column, double v[]) { switch (column) { case 0: this.m00 = v[0]; this.m10 = v[1]; this.m20 = v[2]; this.m30 = v[3]; break; case 1: this.m01 = v[0]; this.m11 = v[1]; this.m21 = v[2]; this.m31 = v[3]; break; case 2: this.m02 = v[0]; this.m12 = v[1]; this.m22 = v[2]; this.m32 = v[3]; break; case 3: this.m03 = v[0]; this.m13 = v[1]; this.m23 = v[2]; this.m33 = v[3]; break; default: throw new ArrayIndexOutOfBoundsException(VecMathI18N.getString("Matrix4d7")); } } /** * Adds a scalar to each component of this matrix. * @param scalar the scalar adder */ public final void add(double scalar) { m00 += scalar; m01 += scalar; m02 += scalar; m03 += scalar; m10 += scalar; m11 += scalar; m12 += scalar; m13 += scalar; m20 += scalar; m21 += scalar; m22 += scalar; m23 += scalar; m30 += scalar; m31 += scalar; m32 += scalar; m33 += scalar; } /** * Adds a scalar to each component of the matrix m1 and places * the result into this. Matrix m1 is not modified. * @param scalar the scalar adder * @param m1 the original matrix values */ public final void add(double scalar, Matrix4d m1) { this.m00 = m1.m00 + scalar; this.m01 = m1.m01 + scalar; this.m02 = m1.m02 + scalar; this.m03 = m1.m03 + scalar; this.m10 = m1.m10 + scalar; this.m11 = m1.m11 + scalar; this.m12 = m1.m12 + scalar; this.m13 = m1.m13 + scalar; this.m20 = m1.m20 + scalar; this.m21 = m1.m21 + scalar; this.m22 = m1.m22 + scalar; this.m23 = m1.m23 + scalar; this.m30 = m1.m30 + scalar; this.m31 = m1.m31 + scalar; this.m32 = m1.m32 + scalar; this.m33 = m1.m33 + scalar; } /** * Sets the value of this matrix to the matrix sum of matrices m1 and m2. * @param m1 the first matrix * @param m2 the second matrix */ public final void add(Matrix4d m1, Matrix4d m2) { this.m00 = m1.m00 + m2.m00; this.m01 = m1.m01 + m2.m01; this.m02 = m1.m02 + m2.m02; this.m03 = m1.m03 + m2.m03; this.m10 = m1.m10 + m2.m10; this.m11 = m1.m11 + m2.m11; this.m12 = m1.m12 + m2.m12; this.m13 = m1.m13 + m2.m13; this.m20 = m1.m20 + m2.m20; this.m21 = m1.m21 + m2.m21; this.m22 = m1.m22 + m2.m22; this.m23 = m1.m23 + m2.m23; this.m30 = m1.m30 + m2.m30; this.m31 = m1.m31 + m2.m31; this.m32 = m1.m32 + m2.m32; this.m33 = m1.m33 + m2.m33; } /** * Sets the value of this matrix to sum of itself and matrix m1. * @param m1 the other matrix */ public final void add(Matrix4d m1) { this.m00 += m1.m00; this.m01 += m1.m01; this.m02 += m1.m02; this.m03 += m1.m03; this.m10 += m1.m10; this.m11 += m1.m11; this.m12 += m1.m12; this.m13 += m1.m13; this.m20 += m1.m20; this.m21 += m1.m21; this.m22 += m1.m22; this.m23 += m1.m23; this.m30 += m1.m30; this.m31 += m1.m31; this.m32 += m1.m32; this.m33 += m1.m33; } /** * Sets the value of this matrix to the matrix difference * of matrices m1 and m2. * @param m1 the first matrix * @param m2 the second matrix */ public final void sub(Matrix4d m1, Matrix4d m2) { this.m00 = m1.m00 - m2.m00; this.m01 = m1.m01 - m2.m01; this.m02 = m1.m02 - m2.m02; this.m03 = m1.m03 - m2.m03; this.m10 = m1.m10 - m2.m10; this.m11 = m1.m11 - m2.m11; this.m12 = m1.m12 - m2.m12; this.m13 = m1.m13 - m2.m13; this.m20 = m1.m20 - m2.m20; this.m21 = m1.m21 - m2.m21; this.m22 = m1.m22 - m2.m22; this.m23 = m1.m23 - m2.m23; this.m30 = m1.m30 - m2.m30; this.m31 = m1.m31 - m2.m31; this.m32 = m1.m32 - m2.m32; this.m33 = m1.m33 - m2.m33; } /** * Sets the value of this matrix to the matrix difference of itself * and matrix m1 (this = this - m1). * @param m1 the other matrix */ public final void sub(Matrix4d m1) { this.m00 -= m1.m00; this.m01 -= m1.m01; this.m02 -= m1.m02; this.m03 -= m1.m03; this.m10 -= m1.m10; this.m11 -= m1.m11; this.m12 -= m1.m12; this.m13 -= m1.m13; this.m20 -= m1.m20; this.m21 -= m1.m21; this.m22 -= m1.m22; this.m23 -= m1.m23; this.m30 -= m1.m30; this.m31 -= m1.m31; this.m32 -= m1.m32; this.m33 -= m1.m33; } /** * Sets the value of this matrix to its transpose. */ public final void transpose() { double temp; temp = this.m10; this.m10 = this.m01; this.m01 = temp; temp = this.m20; this.m20 = this.m02; this.m02 = temp; temp = this.m30; this.m30 = this.m03; this.m03 = temp; temp = this.m21; this.m21 = this.m12; this.m12 = temp; temp = this.m31; this.m31 = this.m13; this.m13 = temp; temp = this.m32; this.m32 = this.m23; this.m23 = temp; } /** * Sets the value of this matrix to the transpose of the argument matrix * @param m1 the matrix to be transposed */ public final void transpose(Matrix4d m1) { if (this != m1) { this.m00 = m1.m00; this.m01 = m1.m10; this.m02 = m1.m20; this.m03 = m1.m30; this.m10 = m1.m01; this.m11 = m1.m11; this.m12 = m1.m21; this.m13 = m1.m31; this.m20 = m1.m02; this.m21 = m1.m12; this.m22 = m1.m22; this.m23 = m1.m32; this.m30 = m1.m03; this.m31 = m1.m13; this.m32 = m1.m23; this.m33 = m1.m33; } else this.transpose(); } /** * Sets the values in this Matrix4d equal to the row-major * array parameter (ie, the first four elements of the * array will be copied into the first row of this matrix, etc.). * @param m the double precision array of length 16 */ public final void set(double[] m) { m00 = m[0]; m01 = m[1]; m02 = m[2]; m03 = m[3]; m10 = m[4]; m11 = m[5]; m12 = m[6]; m13 = m[7]; m20 = m[8]; m21 = m[9]; m22 = m[10]; m23 = m[11]; m30 = m[12]; m31 = m[13]; m32 = m[14]; m33 = m[15]; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix values in the single precision Matrix3f argument; the other * elements of this matrix are initialized as if this were an identity * matrix (i.e., affine matrix with no translational component). * @param m1 the double precision 3x3 matrix */ public final void set(Matrix3f m1) { m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0; m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0; m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0; m30 = 0.0; m31 = 0.0 ; m32 = 0.0 ; m33 = 1.0; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix values in the double precision Matrix3d argument; the other * elements of this matrix are initialized as if this were an identity * matrix (i.e., affine matrix with no translational component). * @param m1 the double precision 3x3 matrix */ public final void set(Matrix3d m1) { m00 = m1.m00; m01 = m1.m01; m02 = m1.m02; m03 = 0.0; m10 = m1.m10; m11 = m1.m11; m12 = m1.m12; m13 = 0.0; m20 = m1.m20; m21 = m1.m21; m22 = m1.m22; m23 = 0.0; m30 = 0.0; m31 = 0.0 ; m32 = 0.0 ; m33 = 1.0; } /** * Sets the value of this matrix to the matrix conversion of the * (double precision) quaternion argument. * @param q1 the quaternion to be converted */ public final void set(Quat4d q1) { this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z)); this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y)); this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z)); this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x)); this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y)); this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x)); this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); this.m03 = 0.0; this.m13 = 0.0; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix to the matrix conversion of the * double precision axis and angle argument. * @param a1 the axis and angle to be converted */ public final void set(AxisAngle4d a1) { double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); if( mag < EPS ) { m00 = 1.0; m01 = 0.0; m02 = 0.0; m10 = 0.0; m11 = 1.0; m12 = 0.0; m20 = 0.0; m21 = 0.0; m22 = 1.0; } else { mag = 1.0/mag; double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin(a1.angle); double cosTheta = Math.cos(a1.angle); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; m00 = t * ax * ax + cosTheta; m01 = t * xy - sinTheta * az; m02 = t * xz + sinTheta * ay; m10 = t * xy + sinTheta * az; m11 = t * ay * ay + cosTheta; m12 = t * yz - sinTheta * ax; m20 = t * xz - sinTheta * ay; m21 = t * yz + sinTheta * ax; m22 = t * az * az + cosTheta; } m03 = 0.0; m13 = 0.0; m23 = 0.0; m30 = 0.0; m31 = 0.0; m32 = 0.0; m33 = 1.0; } /** * Sets the value of this matrix to the matrix conversion of the * single precision quaternion argument. * @param q1 the quaternion to be converted */ public final void set(Quat4f q1) { this.m00 = (1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); this.m10 = (2.0*(q1.x*q1.y + q1.w*q1.z)); this.m20 = (2.0*(q1.x*q1.z - q1.w*q1.y)); this.m01 = (2.0*(q1.x*q1.y - q1.w*q1.z)); this.m11 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); this.m21 = (2.0*(q1.y*q1.z + q1.w*q1.x)); this.m02 = (2.0*(q1.x*q1.z + q1.w*q1.y)); this.m12 = (2.0*(q1.y*q1.z - q1.w*q1.x)); this.m22 = (1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); this.m03 = 0.0; this.m13 = 0.0; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix to the matrix conversion of the * single precision axis and angle argument. * @param a1 the axis and angle to be converted */ public final void set(AxisAngle4f a1) { double mag = Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); if( mag < EPS ) { m00 = 1.0; m01 = 0.0; m02 = 0.0; m10 = 0.0; m11 = 1.0; m12 = 0.0; m20 = 0.0; m21 = 0.0; m22 = 1.0; } else { mag = 1.0/mag; double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin((double)a1.angle); double cosTheta = Math.cos((double)a1.angle); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; m00 = t * ax * ax + cosTheta; m01 = t * xy - sinTheta * az; m02 = t * xz + sinTheta * ay; m10 = t * xy + sinTheta * az; m11 = t * ay * ay + cosTheta; m12 = t * yz - sinTheta * ax; m20 = t * xz - sinTheta * ay; m21 = t * yz + sinTheta * ax; m22 = t * az * az + cosTheta; } m03 = 0.0; m13 = 0.0; m23 = 0.0; m30 = 0.0; m31 = 0.0; m32 = 0.0; m33 = 1.0; } /** * Sets the value of this matrix from the rotation expressed * by the quaternion q1, the translation t1, and the scale s. * @param q1 the rotation expressed as a quaternion * @param t1 the translation * @param s the scale value */ public final void set(Quat4d q1, Vector3d t1, double s) { this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); this.m03 = t1.x; this.m13 = t1.y; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix from the rotation expressed * by the quaternion q1, the translation t1, and the scale s. * @param q1 the rotation expressed as a quaternion * @param t1 the translation * @param s the scale value */ public final void set(Quat4f q1, Vector3d t1, double s) { this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); this.m03 = t1.x; this.m13 = t1.y; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix from the rotation expressed * by the quaternion q1, the translation t1, and the scale s. * @param q1 the rotation expressed as a quaternion * @param t1 the translation * @param s the scale value */ public final void set(Quat4f q1, Vector3f t1, float s) { this.m00 = s*(1.0 - 2.0*q1.y*q1.y - 2.0*q1.z*q1.z); this.m10 = s*(2.0*(q1.x*q1.y + q1.w*q1.z)); this.m20 = s*(2.0*(q1.x*q1.z - q1.w*q1.y)); this.m01 = s*(2.0*(q1.x*q1.y - q1.w*q1.z)); this.m11 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.z*q1.z); this.m21 = s*(2.0*(q1.y*q1.z + q1.w*q1.x)); this.m02 = s*(2.0*(q1.x*q1.z + q1.w*q1.y)); this.m12 = s*(2.0*(q1.y*q1.z - q1.w*q1.x)); this.m22 = s*(1.0 - 2.0*q1.x*q1.x - 2.0*q1.y*q1.y); this.m03 = t1.x; this.m13 = t1.y; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix to a copy of the * passed matrix m1. * @param m1 the matrix4f */ public final void set(Matrix4f m1) { this.m00 = m1.m00; this.m01 = m1.m01; this.m02 = m1.m02; this.m03 = m1.m03; this.m10 = m1.m10; this.m11 = m1.m11; this.m12 = m1.m12; this.m13 = m1.m13; this.m20 = m1.m20; this.m21 = m1.m21; this.m22 = m1.m22; this.m23 = m1.m23; this.m30 = m1.m30; this.m31 = m1.m31; this.m32 = m1.m32; this.m33 = m1.m33; } /** * Sets the value of this matrix to a copy of the * passed matrix m1. * @param m1 the matrix to be copied */ public final void set(Matrix4d m1) { this.m00 = m1.m00; this.m01 = m1.m01; this.m02 = m1.m02; this.m03 = m1.m03; this.m10 = m1.m10; this.m11 = m1.m11; this.m12 = m1.m12; this.m13 = m1.m13; this.m20 = m1.m20; this.m21 = m1.m21; this.m22 = m1.m22; this.m23 = m1.m23; this.m30 = m1.m30; this.m31 = m1.m31; this.m32 = m1.m32; this.m33 = m1.m33; } /** * Sets the value of this matrix to the matrix inverse * of the passed (user declared) matrix m1. * @param m1 the matrix to be inverted */ public final void invert(Matrix4d m1) { invertGeneral( m1); } /** * Inverts this matrix in place. */ public final void invert() { invertGeneral( this ); } /** * General invert routine. Inverts m1 and places the result in "this". * Note that this routine handles both the "this" version and the * non-"this" version. * * Also note that since this routine is slow anyway, we won't worry * about allocating a little bit of garbage. */ final void invertGeneral(Matrix4d m1) { double result[] = new double[16]; int row_perm[] = new int[4]; int i, r, c; // Use LU decomposition and backsubstitution code specifically // for floating-point 4x4 matrices. double[] tmp = new double[16]; // scratch matrix // Copy source matrix to t1tmp tmp[0] = m1.m00; tmp[1] = m1.m01; tmp[2] = m1.m02; tmp[3] = m1.m03; tmp[4] = m1.m10; tmp[5] = m1.m11; tmp[6] = m1.m12; tmp[7] = m1.m13; tmp[8] = m1.m20; tmp[9] = m1.m21; tmp[10] = m1.m22; tmp[11] = m1.m23; tmp[12] = m1.m30; tmp[13] = m1.m31; tmp[14] = m1.m32; tmp[15] = m1.m33; // Calculate LU decomposition: Is the matrix singular? if (!luDecomposition(tmp, row_perm)) { // Matrix has no inverse throw new SingularMatrixException(VecMathI18N.getString("Matrix4d10")); } // Perform back substitution on the identity matrix for(i=0;i<16;i++) result[i] = 0.0; result[0] = 1.0; result[5] = 1.0; result[10] = 1.0; result[15] = 1.0; luBacksubstitution(tmp, row_perm, result); this.m00 = result[0]; this.m01 = result[1]; this.m02 = result[2]; this.m03 = result[3]; this.m10 = result[4]; this.m11 = result[5]; this.m12 = result[6]; this.m13 = result[7]; this.m20 = result[8]; this.m21 = result[9]; this.m22 = result[10]; this.m23 = result[11]; this.m30 = result[12]; this.m31 = result[13]; this.m32 = result[14]; this.m33 = result[15]; } /** * Given a 4x4 array "matrix0", this function replaces it with the * LU decomposition of a row-wise permutation of itself. The input * parameters are "matrix0" and "dimen". The array "matrix0" is also * an output parameter. The vector "row_perm[4]" is an output * parameter that contains the row permutations resulting from partial * pivoting. The output parameter "even_row_xchg" is 1 when the * number of row exchanges is even, or -1 otherwise. Assumes data * type is always double. * * This function is similar to luDecomposition, except that it * is tuned specifically for 4x4 matrices. * * @return true if the matrix is nonsingular, or false otherwise. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 40-45. // static boolean luDecomposition(double[] matrix0, int[] row_perm) { double row_scale[] = new double[4]; // Determine implicit scaling information by looping over rows { int i, j; int ptr, rs; double big, temp; ptr = 0; rs = 0; // For each row ... i = 4; while (i-- != 0) { big = 0.0; // For each column, find the largest element in the row j = 4; while (j-- != 0) { temp = matrix0[ptr++]; temp = Math.abs(temp); if (temp > big) { big = temp; } } // Is the matrix singular? if (big == 0.0) { return false; } row_scale[rs++] = 1.0 / big; } } { int j; int mtx; mtx = 0; // For all columns, execute Crout's method for (j = 0; j < 4; j++) { int i, imax, k; int target, p1, p2; double sum, big, temp; // Determine elements of upper diagonal matrix U for (i = 0; i < j; i++) { target = mtx + (4*i) + j; sum = matrix0[target]; k = i; p1 = mtx + (4*i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += 4; } matrix0[target] = sum; } // Search for largest pivot element and calculate // intermediate elements of lower diagonal matrix L. big = 0.0; imax = -1; for (i = j; i < 4; i++) { target = mtx + (4*i) + j; sum = matrix0[target]; k = j; p1 = mtx + (4*i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += 4; } matrix0[target] = sum; // Is this the best pivot so far? if ((temp = row_scale[i] * Math.abs(sum)) >= big) { big = temp; imax = i; } } if (imax < 0) { throw new RuntimeException(VecMathI18N.getString("Matrix4d11")); } // Is a row exchange necessary? if (j != imax) { // Yes: exchange rows k = 4; p1 = mtx + (4*imax); p2 = mtx + (4*j); while (k-- != 0) { temp = matrix0[p1]; matrix0[p1++] = matrix0[p2]; matrix0[p2++] = temp; } // Record change in scale factor row_scale[imax] = row_scale[j]; } // Record row permutation row_perm[j] = imax; // Is the matrix singular if (matrix0[(mtx + (4*j) + j)] == 0.0) { return false; } // Divide elements of lower diagonal matrix L by pivot if (j != (4-1)) { temp = 1.0 / (matrix0[(mtx + (4*j) + j)]); target = mtx + (4*(j+1)) + j; i = 3 - j; while (i-- != 0) { matrix0[target] *= temp; target += 4; } } } } return true; } /** * Solves a set of linear equations. The input parameters "matrix1", * and "row_perm" come from luDecompostionD4x4 and do not change * here. The parameter "matrix2" is a set of column vectors assembled * into a 4x4 matrix of floating-point values. The procedure takes each * column of "matrix2" in turn and treats it as the right-hand side of the * matrix equation Ax = LUx = b. The solution vector replaces the * original column of the matrix. * * If "matrix2" is the identity matrix, the procedure replaces its contents * with the inverse of the matrix from which "matrix1" was originally * derived. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 44-45. // static void luBacksubstitution(double[] matrix1, int[] row_perm, double[] matrix2) { int i, ii, ip, j, k; int rp; int cv, rv; // rp = row_perm; rp = 0; // For each column vector of matrix2 ... for (k = 0; k < 4; k++) { // cv = &(matrix2[0][k]); cv = k; ii = -1; // Forward substitution for (i = 0; i < 4; i++) { double sum; ip = row_perm[rp+i]; sum = matrix2[cv+4*ip]; matrix2[cv+4*ip] = matrix2[cv+4*i]; if (ii >= 0) { // rv = &(matrix1[i][0]); rv = i*4; for (j = ii; j <= i-1; j++) { sum -= matrix1[rv+j] * matrix2[cv+4*j]; } } else if (sum != 0.0) { ii = i; } matrix2[cv+4*i] = sum; } // Backsubstitution // rv = &(matrix1[3][0]); rv = 3*4; matrix2[cv+4*3] /= matrix1[rv+3]; rv -= 4; matrix2[cv+4*2] = (matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2]; rv -= 4; matrix2[cv+4*1] = (matrix2[cv+4*1] - matrix1[rv+2] * matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1]; rv -= 4; matrix2[cv+4*0] = (matrix2[cv+4*0] - matrix1[rv+1] * matrix2[cv+4*1] - matrix1[rv+2] * matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0]; } } /** * Computes the determinant of this matrix. * @return the determinant of the matrix */ public final double determinant() { double det; // cofactor exapainsion along first row det = m00*(m11*m22*m33+ m12*m23*m31 + m13*m21*m32 - m13*m22*m31 -m11*m23*m32 - m12*m21*m33); det -= m01*(m10*m22*m33+ m12*m23*m30 + m13*m20*m32 - m13*m22*m30 -m10*m23*m32 - m12*m20*m33); det += m02*(m10*m21*m33+ m11*m23*m30 + m13*m20*m31 - m13*m21*m30 -m10*m23*m31 - m11*m20*m33); det -= m03*(m10*m21*m32+ m11*m22*m30 + m12*m20*m31 - m12*m21*m30 -m10*m22*m31 - m11*m20*m32); return( det ); } /** * Sets the value of this matrix to a scale matrix with the * passed scale amount. * @param scale the scale factor for the matrix */ public final void set(double scale) { this.m00 = scale; this.m01 = 0.0; this.m02 = 0.0; this.m03 = 0.0; this.m10 = 0.0; this.m11 = scale; this.m12 = 0.0; this.m13 = 0.0; this.m20 = 0.0; this.m21 = 0.0; this.m22 = scale; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix to a translate matrix by the * passed translation value. * @param v1 the translation amount */ public final void set(Vector3d v1) { this.m00 = 1.0; this.m01 = 0.0; this.m02 = 0.0; this.m03 = v1.x; this.m10 = 0.0; this.m11 = 1.0; this.m12 = 0.0; this.m13 = v1.y; this.m20 = 0.0; this.m21 = 0.0; this.m22 = 1.0; this.m23 = v1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this transform to a scale and translation matrix; * the scale is not applied to the translation and all of the matrix * values are modified. * @param scale the scale factor for the matrix * @param v1 the translation amount */ public final void set(double scale, Vector3d v1) { this.m00 = scale; this.m01 = 0.0; this.m02 = 0.0; this.m03 = v1.x; this.m10 = 0.0; this.m11 = scale; this.m12 = 0.0; this.m13 = v1.y; this.m20 = 0.0; this.m21 = 0.0; this.m22 = scale; this.m23 = v1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this transform to a scale and translation matrix; * the translation is scaled by the scale factor and all of the matrix * values are modified. * @param v1 the translation amount * @param scale the scale factor for the matrix */ public final void set(Vector3d v1, double scale) { this.m00 = scale; this.m01 = 0.0; this.m02 = 0.0; this.m03 = scale*v1.x; this.m10 = 0.0; this.m11 = scale; this.m12 = 0.0; this.m13 = scale*v1.y; this.m20 = 0.0; this.m21 = 0.0; this.m22 = scale; this.m23 = scale*v1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix from the rotation expressed by * the rotation matrix m1, the translation t1, and the scale factor. * The translation is not modified by the scale. * @param m1 the rotation component * @param t1 the translation component * @param scale the scale component */ public final void set(Matrix3f m1, Vector3f t1, float scale) { this.m00 = m1.m00*scale; this.m01 = m1.m01*scale; this.m02 = m1.m02*scale; this.m03 = t1.x; this.m10 = m1.m10*scale; this.m11 = m1.m11*scale; this.m12 = m1.m12*scale; this.m13 = t1.y; this.m20 = m1.m20*scale; this.m21 = m1.m21*scale; this.m22 = m1.m22*scale; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix from the rotation expressed by * the rotation matrix m1, the translation t1, and the scale factor. * The translation is not modified by the scale. * @param m1 the rotation component * @param t1 the translation component * @param scale the scale component */ public final void set(Matrix3d m1, Vector3d t1, double scale) { this.m00 = m1.m00*scale; this.m01 = m1.m01*scale; this.m02 = m1.m02*scale; this.m03 = t1.x; this.m10 = m1.m10*scale; this.m11 = m1.m11*scale; this.m12 = m1.m12*scale; this.m13 = t1.y; this.m20 = m1.m20*scale; this.m21 = m1.m21*scale; this.m22 = m1.m22*scale; this.m23 = t1.z; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Modifies the translational components of this matrix to the values * of the Vector3d argument; the other values of this matrix are not * modified. * @param trans the translational component */ public final void setTranslation(Vector3d trans) { m03 = trans.x; m13 = trans.y; m23 = trans.z; } /** * Sets the value of this matrix to a counter-clockwise rotation * about the x axis. * @param angle the angle to rotate about the X axis in radians */ public final void rotX(double angle) { double sinAngle, cosAngle; sinAngle = Math.sin(angle); cosAngle = Math.cos(angle); this.m00 = 1.0; this.m01 = 0.0; this.m02 = 0.0; this.m03 = 0.0; this.m10 = 0.0; this.m11 = cosAngle; this.m12 = -sinAngle; this.m13 = 0.0; this.m20 = 0.0; this.m21 = sinAngle; this.m22 = cosAngle; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix to a counter-clockwise rotation * about the y axis. * @param angle the angle to rotate about the Y axis in radians */ public final void rotY(double angle) { double sinAngle, cosAngle; sinAngle = Math.sin(angle); cosAngle = Math.cos(angle); this.m00 = cosAngle; this.m01 = 0.0; this.m02 = sinAngle; this.m03 = 0.0; this.m10 = 0.0; this.m11 = 1.0; this.m12 = 0.0; this.m13 = 0.0; this.m20 = -sinAngle; this.m21 = 0.0; this.m22 = cosAngle; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Sets the value of this matrix to a counter-clockwise rotation * about the z axis. * @param angle the angle to rotate about the Z axis in radians */ public final void rotZ(double angle) { double sinAngle, cosAngle; sinAngle = Math.sin(angle); cosAngle = Math.cos(angle); this.m00 = cosAngle; this.m01 = -sinAngle; this.m02 = 0.0; this.m03 = 0.0; this.m10 = sinAngle; this.m11 = cosAngle; this.m12 = 0.0; this.m13 = 0.0; this.m20 = 0.0; this.m21 = 0.0; this.m22 = 1.0; this.m23 = 0.0; this.m30 = 0.0; this.m31 = 0.0; this.m32 = 0.0; this.m33 = 1.0; } /** * Multiplies each element of this matrix by a scalar. * @param scalar the scalar multiplier. */ public final void mul(double scalar) { m00 *= scalar; m01 *= scalar; m02 *= scalar; m03 *= scalar; m10 *= scalar; m11 *= scalar; m12 *= scalar; m13 *= scalar; m20 *= scalar; m21 *= scalar; m22 *= scalar; m23 *= scalar; m30 *= scalar; m31 *= scalar; m32 *= scalar; m33 *= scalar; } /** * Multiplies each element of matrix m1 by a scalar and places * the result into this. Matrix m1 is not modified. * @param scalar the scalar multiplier * @param m1 the original matrix */ public final void mul(double scalar, Matrix4d m1) { this.m00 = m1.m00 * scalar; this.m01 = m1.m01 * scalar; this.m02 = m1.m02 * scalar; this.m03 = m1.m03 * scalar; this.m10 = m1.m10 * scalar; this.m11 = m1.m11 * scalar; this.m12 = m1.m12 * scalar; this.m13 = m1.m13 * scalar; this.m20 = m1.m20 * scalar; this.m21 = m1.m21 * scalar; this.m22 = m1.m22 * scalar; this.m23 = m1.m23 * scalar; this.m30 = m1.m30 * scalar; this.m31 = m1.m31 * scalar; this.m32 = m1.m32 * scalar; this.m33 = m1.m33 * scalar; } /** * Sets the value of this matrix to the result of multiplying itself * with matrix m1. * @param m1 the other matrix */ public final void mul(Matrix4d m1) { double m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33; // vars for temp result matrix m00 = this.m00*m1.m00 + this.m01*m1.m10 + this.m02*m1.m20 + this.m03*m1.m30; m01 = this.m00*m1.m01 + this.m01*m1.m11 + this.m02*m1.m21 + this.m03*m1.m31; m02 = this.m00*m1.m02 + this.m01*m1.m12 + this.m02*m1.m22 + this.m03*m1.m32; m03 = this.m00*m1.m03 + this.m01*m1.m13 + this.m02*m1.m23 + this.m03*m1.m33; m10 = this.m10*m1.m00 + this.m11*m1.m10 + this.m12*m1.m20 + this.m13*m1.m30; m11 = this.m10*m1.m01 + this.m11*m1.m11 + this.m12*m1.m21 + this.m13*m1.m31; m12 = this.m10*m1.m02 + this.m11*m1.m12 + this.m12*m1.m22 + this.m13*m1.m32; m13 = this.m10*m1.m03 + this.m11*m1.m13 + this.m12*m1.m23 + this.m13*m1.m33; m20 = this.m20*m1.m00 + this.m21*m1.m10 + this.m22*m1.m20 + this.m23*m1.m30; m21 = this.m20*m1.m01 + this.m21*m1.m11 + this.m22*m1.m21 + this.m23*m1.m31; m22 = this.m20*m1.m02 + this.m21*m1.m12 + this.m22*m1.m22 + this.m23*m1.m32; m23 = this.m20*m1.m03 + this.m21*m1.m13 + this.m22*m1.m23 + this.m23*m1.m33; m30 = this.m30*m1.m00 + this.m31*m1.m10 + this.m32*m1.m20 + this.m33*m1.m30; m31 = this.m30*m1.m01 + this.m31*m1.m11 + this.m32*m1.m21 + this.m33*m1.m31; m32 = this.m30*m1.m02 + this.m31*m1.m12 + this.m32*m1.m22 + this.m33*m1.m32; m33 = this.m30*m1.m03 + this.m31*m1.m13 + this.m32*m1.m23 + this.m33*m1.m33; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } /** * Sets the value of this matrix to the result of multiplying * the two argument matrices together. * @param m1 the first matrix * @param m2 the second matrix */ public final void mul(Matrix4d m1, Matrix4d m2) { if (this != m1 && this != m2) { // code for mat mul this.m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20 + m1.m03*m2.m30; this.m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21 + m1.m03*m2.m31; this.m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22 + m1.m03*m2.m32; this.m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + m1.m02*m2.m23 + m1.m03*m2.m33; this.m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20 + m1.m13*m2.m30; this.m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21 + m1.m13*m2.m31; this.m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22 + m1.m13*m2.m32; this.m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + m1.m12*m2.m23 + m1.m13*m2.m33; this.m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20 + m1.m23*m2.m30; this.m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21 + m1.m23*m2.m31; this.m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22 + m1.m23*m2.m32; this.m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + m1.m22*m2.m23 + m1.m23*m2.m33; this.m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + m1.m32*m2.m20 + m1.m33*m2.m30; this.m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + m1.m32*m2.m21 + m1.m33*m2.m31; this.m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + m1.m32*m2.m22 + m1.m33*m2.m32; this.m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + m1.m32*m2.m23 + m1.m33*m2.m33; } else { double m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33; // vars for temp result matrix // code for mat mul m00 = m1.m00*m2.m00 + m1.m01*m2.m10 + m1.m02*m2.m20 + m1.m03*m2.m30; m01 = m1.m00*m2.m01 + m1.m01*m2.m11 + m1.m02*m2.m21 + m1.m03*m2.m31; m02 = m1.m00*m2.m02 + m1.m01*m2.m12 + m1.m02*m2.m22 + m1.m03*m2.m32; m03 = m1.m00*m2.m03 + m1.m01*m2.m13 + m1.m02*m2.m23 + m1.m03*m2.m33; m10 = m1.m10*m2.m00 + m1.m11*m2.m10 + m1.m12*m2.m20 + m1.m13*m2.m30; m11 = m1.m10*m2.m01 + m1.m11*m2.m11 + m1.m12*m2.m21 + m1.m13*m2.m31; m12 = m1.m10*m2.m02 + m1.m11*m2.m12 + m1.m12*m2.m22 + m1.m13*m2.m32; m13 = m1.m10*m2.m03 + m1.m11*m2.m13 + m1.m12*m2.m23 + m1.m13*m2.m33; m20 = m1.m20*m2.m00 + m1.m21*m2.m10 + m1.m22*m2.m20 + m1.m23*m2.m30; m21 = m1.m20*m2.m01 + m1.m21*m2.m11 + m1.m22*m2.m21 + m1.m23*m2.m31; m22 = m1.m20*m2.m02 + m1.m21*m2.m12 + m1.m22*m2.m22 + m1.m23*m2.m32; m23 = m1.m20*m2.m03 + m1.m21*m2.m13 + m1.m22*m2.m23 + m1.m23*m2.m33; m30 = m1.m30*m2.m00 + m1.m31*m2.m10 + m1.m32*m2.m20 + m1.m33*m2.m30; m31 = m1.m30*m2.m01 + m1.m31*m2.m11 + m1.m32*m2.m21 + m1.m33*m2.m31; m32 = m1.m30*m2.m02 + m1.m31*m2.m12 + m1.m32*m2.m22 + m1.m33*m2.m32; m33 = m1.m30*m2.m03 + m1.m31*m2.m13 + m1.m32*m2.m23 + m1.m33*m2.m33; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } } /** * Multiplies the transpose of matrix m1 times the transpose of matrix * m2, and places the result into this. * @param m1 the matrix on the left hand side of the multiplication * @param m2 the matrix on the right hand side of the multiplication */ public final void mulTransposeBoth(Matrix4d m1, Matrix4d m2) { if (this != m1 && this != m2) { this.m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03; this.m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13; this.m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23; this.m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33; this.m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03; this.m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13; this.m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23; this.m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33; this.m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03; this.m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13; this.m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23; this.m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33; this.m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03; this.m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13; this.m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23; this.m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33; } else { double m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, // vars for temp result matrix m30, m31, m32, m33; m00 = m1.m00*m2.m00 + m1.m10*m2.m01 + m1.m20*m2.m02 + m1.m30*m2.m03; m01 = m1.m00*m2.m10 + m1.m10*m2.m11 + m1.m20*m2.m12 + m1.m30*m2.m13; m02 = m1.m00*m2.m20 + m1.m10*m2.m21 + m1.m20*m2.m22 + m1.m30*m2.m23; m03 = m1.m00*m2.m30 + m1.m10*m2.m31 + m1.m20*m2.m32 + m1.m30*m2.m33; m10 = m1.m01*m2.m00 + m1.m11*m2.m01 + m1.m21*m2.m02 + m1.m31*m2.m03; m11 = m1.m01*m2.m10 + m1.m11*m2.m11 + m1.m21*m2.m12 + m1.m31*m2.m13; m12 = m1.m01*m2.m20 + m1.m11*m2.m21 + m1.m21*m2.m22 + m1.m31*m2.m23; m13 = m1.m01*m2.m30 + m1.m11*m2.m31 + m1.m21*m2.m32 + m1.m31*m2.m33; m20 = m1.m02*m2.m00 + m1.m12*m2.m01 + m1.m22*m2.m02 + m1.m32*m2.m03; m21 = m1.m02*m2.m10 + m1.m12*m2.m11 + m1.m22*m2.m12 + m1.m32*m2.m13; m22 = m1.m02*m2.m20 + m1.m12*m2.m21 + m1.m22*m2.m22 + m1.m32*m2.m23; m23 = m1.m02*m2.m30 + m1.m12*m2.m31 + m1.m22*m2.m32 + m1.m32*m2.m33; m30 = m1.m03*m2.m00 + m1.m13*m2.m01 + m1.m23*m2.m02 + m1.m33*m2.m03; m31 = m1.m03*m2.m10 + m1.m13*m2.m11 + m1.m23*m2.m12 + m1.m33*m2.m13; m32 = m1.m03*m2.m20 + m1.m13*m2.m21 + m1.m23*m2.m22 + m1.m33*m2.m23; m33 = m1.m03*m2.m30 + m1.m13*m2.m31 + m1.m23*m2.m32 + m1.m33*m2.m33; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } } /** * Multiplies matrix m1 times the transpose of matrix m2, and * places the result into this. * @param m1 the matrix on the left hand side of the multiplication * @param m2 the matrix on the right hand side of the multiplication */ public final void mulTransposeRight(Matrix4d m1, Matrix4d m2) { if (this != m1 && this != m2) { this.m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03; this.m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13; this.m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23; this.m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33; this.m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03; this.m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13; this.m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23; this.m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33; this.m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03; this.m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13; this.m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23; this.m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33; this.m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03; this.m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13; this.m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23; this.m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33; } else { double m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, // vars for temp result matrix m30, m31, m32, m33; m00 = m1.m00*m2.m00 + m1.m01*m2.m01 + m1.m02*m2.m02 + m1.m03*m2.m03; m01 = m1.m00*m2.m10 + m1.m01*m2.m11 + m1.m02*m2.m12 + m1.m03*m2.m13; m02 = m1.m00*m2.m20 + m1.m01*m2.m21 + m1.m02*m2.m22 + m1.m03*m2.m23; m03 = m1.m00*m2.m30 + m1.m01*m2.m31 + m1.m02*m2.m32 + m1.m03*m2.m33; m10 = m1.m10*m2.m00 + m1.m11*m2.m01 + m1.m12*m2.m02 + m1.m13*m2.m03; m11 = m1.m10*m2.m10 + m1.m11*m2.m11 + m1.m12*m2.m12 + m1.m13*m2.m13; m12 = m1.m10*m2.m20 + m1.m11*m2.m21 + m1.m12*m2.m22 + m1.m13*m2.m23; m13 = m1.m10*m2.m30 + m1.m11*m2.m31 + m1.m12*m2.m32 + m1.m13*m2.m33; m20 = m1.m20*m2.m00 + m1.m21*m2.m01 + m1.m22*m2.m02 + m1.m23*m2.m03; m21 = m1.m20*m2.m10 + m1.m21*m2.m11 + m1.m22*m2.m12 + m1.m23*m2.m13; m22 = m1.m20*m2.m20 + m1.m21*m2.m21 + m1.m22*m2.m22 + m1.m23*m2.m23; m23 = m1.m20*m2.m30 + m1.m21*m2.m31 + m1.m22*m2.m32 + m1.m23*m2.m33; m30 = m1.m30*m2.m00 + m1.m31*m2.m01 + m1.m32*m2.m02 + m1.m33*m2.m03; m31 = m1.m30*m2.m10 + m1.m31*m2.m11 + m1.m32*m2.m12 + m1.m33*m2.m13; m32 = m1.m30*m2.m20 + m1.m31*m2.m21 + m1.m32*m2.m22 + m1.m33*m2.m23; m33 = m1.m30*m2.m30 + m1.m31*m2.m31 + m1.m32*m2.m32 + m1.m33*m2.m33; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } } /** * Multiplies the transpose of matrix m1 times matrix m2, and * places the result into this. * @param m1 the matrix on the left hand side of the multiplication * @param m2 the matrix on the right hand side of the multiplication */ public final void mulTransposeLeft(Matrix4d m1, Matrix4d m2) { if (this != m1 && this != m2) { this.m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30; this.m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31; this.m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32; this.m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33; this.m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30; this.m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31; this.m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32; this.m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33; this.m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30; this.m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31; this.m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32; this.m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33; this.m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30; this.m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31; this.m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32; this.m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33; } else { double m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, // vars for temp result matrix m30, m31, m32, m33; m00 = m1.m00*m2.m00 + m1.m10*m2.m10 + m1.m20*m2.m20 + m1.m30*m2.m30; m01 = m1.m00*m2.m01 + m1.m10*m2.m11 + m1.m20*m2.m21 + m1.m30*m2.m31; m02 = m1.m00*m2.m02 + m1.m10*m2.m12 + m1.m20*m2.m22 + m1.m30*m2.m32; m03 = m1.m00*m2.m03 + m1.m10*m2.m13 + m1.m20*m2.m23 + m1.m30*m2.m33; m10 = m1.m01*m2.m00 + m1.m11*m2.m10 + m1.m21*m2.m20 + m1.m31*m2.m30; m11 = m1.m01*m2.m01 + m1.m11*m2.m11 + m1.m21*m2.m21 + m1.m31*m2.m31; m12 = m1.m01*m2.m02 + m1.m11*m2.m12 + m1.m21*m2.m22 + m1.m31*m2.m32; m13 = m1.m01*m2.m03 + m1.m11*m2.m13 + m1.m21*m2.m23 + m1.m31*m2.m33; m20 = m1.m02*m2.m00 + m1.m12*m2.m10 + m1.m22*m2.m20 + m1.m32*m2.m30; m21 = m1.m02*m2.m01 + m1.m12*m2.m11 + m1.m22*m2.m21 + m1.m32*m2.m31; m22 = m1.m02*m2.m02 + m1.m12*m2.m12 + m1.m22*m2.m22 + m1.m32*m2.m32; m23 = m1.m02*m2.m03 + m1.m12*m2.m13 + m1.m22*m2.m23 + m1.m32*m2.m33; m30 = m1.m03*m2.m00 + m1.m13*m2.m10 + m1.m23*m2.m20 + m1.m33*m2.m30; m31 = m1.m03*m2.m01 + m1.m13*m2.m11 + m1.m23*m2.m21 + m1.m33*m2.m31; m32 = m1.m03*m2.m02 + m1.m13*m2.m12 + m1.m23*m2.m22 + m1.m33*m2.m32; m33 = m1.m03*m2.m03 + m1.m13*m2.m13 + m1.m23*m2.m23 + m1.m33*m2.m33; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } } /** * Returns true if all of the data members of Matrix4d m1 are * equal to the corresponding data members in this Matrix4d. * @param m1 the matrix with which the comparison is made * @return true or false */ public boolean equals(Matrix4d m1) { try { return(this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02 && this.m03 == m1.m03 && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12 && this.m13 == m1.m13 && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22 && this.m23 == m1.m23 && this.m30 == m1.m30 && this.m31 == m1.m31 && this.m32 == m1.m32 && this.m33 == m1.m33); } catch (NullPointerException e2) { return false; } } /** * Returns true if the Object t1 is of type Matrix4d and all of the * data members of t1 are equal to the corresponding data members in * this Matrix4d. * @param t1 the matrix with which the comparison is made * @return true or false */ public boolean equals(Object t1) { try { Matrix4d m2 = (Matrix4d) t1; return(this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02 && this.m03 == m2.m03 && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12 && this.m13 == m2.m13 && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22 && this.m23 == m2.m23 && this.m30 == m2.m30 && this.m31 == m2.m31 && this.m32 == m2.m32 && this.m33 == m2.m33); } catch (ClassCastException e1) { return false; } catch (NullPointerException e2) { return false; } } /** * @deprecated Use epsilonEquals(Matrix4d,double) instead */ public boolean epsilonEquals(Matrix4d m1, float epsilon) { return epsilonEquals(m1, (double)epsilon); } /** * Returns true if the L-infinite distance between this matrix * and matrix m1 is less than or equal to the epsilon parameter, * otherwise returns false. The L-infinite * distance is equal to * MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs(this.m(i,j) - m1.m(i,j)] * @param m1 the matrix to be compared to this matrix * @param epsilon the threshold value */ public boolean epsilonEquals(Matrix4d m1, double epsilon) { double diff; diff = m00 - m1.m00; if((diff<0?-diff:diff) > epsilon) return false; diff = m01 - m1.m01; if((diff<0?-diff:diff) > epsilon) return false; diff = m02 - m1.m02; if((diff<0?-diff:diff) > epsilon) return false; diff = m03 - m1.m03; if((diff<0?-diff:diff) > epsilon) return false; diff = m10 - m1.m10; if((diff<0?-diff:diff) > epsilon) return false; diff = m11 - m1.m11; if((diff<0?-diff:diff) > epsilon) return false; diff = m12 - m1.m12; if((diff<0?-diff:diff) > epsilon) return false; diff = m13 - m1.m13; if((diff<0?-diff:diff) > epsilon) return false; diff = m20 - m1.m20; if((diff<0?-diff:diff) > epsilon) return false; diff = m21 - m1.m21; if((diff<0?-diff:diff) > epsilon) return false; diff = m22 - m1.m22; if((diff<0?-diff:diff) > epsilon) return false; diff = m23 - m1.m23; if((diff<0?-diff:diff) > epsilon) return false; diff = m30 - m1.m30; if((diff<0?-diff:diff) > epsilon) return false; diff = m31 - m1.m31; if((diff<0?-diff:diff) > epsilon) return false; diff = m32 - m1.m32; if((diff<0?-diff:diff) > epsilon) return false; diff = m33 - m1.m33; if((diff<0?-diff:diff) > epsilon) return false; return true; } /** * Returns a hash code value based on the data values in this * object. Two different Matrix4d objects with identical data values * (i.e., Matrix4d.equals returns true) will return the same hash * code value. Two objects with different data members may return the * same hash value, although this is not likely. * @return the integer hash code value */ public int hashCode() { long bits = 1L; bits = 31L * bits + VecMathUtil.doubleToLongBits(m00); bits = 31L * bits + VecMathUtil.doubleToLongBits(m01); bits = 31L * bits + VecMathUtil.doubleToLongBits(m02); bits = 31L * bits + VecMathUtil.doubleToLongBits(m03); bits = 31L * bits + VecMathUtil.doubleToLongBits(m10); bits = 31L * bits + VecMathUtil.doubleToLongBits(m11); bits = 31L * bits + VecMathUtil.doubleToLongBits(m12); bits = 31L * bits + VecMathUtil.doubleToLongBits(m13); bits = 31L * bits + VecMathUtil.doubleToLongBits(m20); bits = 31L * bits + VecMathUtil.doubleToLongBits(m21); bits = 31L * bits + VecMathUtil.doubleToLongBits(m22); bits = 31L * bits + VecMathUtil.doubleToLongBits(m23); bits = 31L * bits + VecMathUtil.doubleToLongBits(m30); bits = 31L * bits + VecMathUtil.doubleToLongBits(m31); bits = 31L * bits + VecMathUtil.doubleToLongBits(m32); bits = 31L * bits + VecMathUtil.doubleToLongBits(m33); return (int) (bits ^ (bits >> 32)); } /** * Transform the vector vec using this Matrix4d and place the * result into vecOut. * @param vec the double precision vector to be transformed * @param vecOut the vector into which the transformed values are placed */ public final void transform(Tuple4d vec, Tuple4d vecOut) { double x,y,z,w; x = (m00*vec.x + m01*vec.y + m02*vec.z + m03*vec.w); y = (m10*vec.x + m11*vec.y + m12*vec.z + m13*vec.w); z = (m20*vec.x + m21*vec.y + m22*vec.z + m23*vec.w); vecOut.w = (m30*vec.x + m31*vec.y + m32*vec.z + m33*vec.w); vecOut.x = x; vecOut.y = y; vecOut.z = z; } /** * Transform the vector vec using this Matrix4d and place the * result back into vec. * @param vec the double precision vector to be transformed */ public final void transform(Tuple4d vec) { double x,y,z; x = (m00*vec.x + m01*vec.y + m02*vec.z + m03*vec.w); y = (m10*vec.x + m11*vec.y + m12*vec.z + m13*vec.w); z = (m20*vec.x + m21*vec.y + m22*vec.z + m23*vec.w); vec.w = (m30*vec.x + m31*vec.y + m32*vec.z + m33*vec.w); vec.x = x; vec.y = y; vec.z = z; } /** * Transform the vector vec using this Matrix4d and place the * result into vecOut. * @param vec the single precision vector to be transformed * @param vecOut the vector into which the transformed values are placed */ public final void transform(Tuple4f vec, Tuple4f vecOut) { float x,y,z; x = (float) (m00*vec.x + m01*vec.y + m02*vec.z + m03*vec.w); y = (float) (m10*vec.x + m11*vec.y + m12*vec.z + m13*vec.w); z = (float) (m20*vec.x + m21*vec.y + m22*vec.z + m23*vec.w); vecOut.w = (float) (m30*vec.x + m31*vec.y + m32*vec.z + m33*vec.w); vecOut.x = x; vecOut.y = y; vecOut.z = z; } /** * Transform the vector vec using this Transform and place the * result back into vec. * @param vec the single precision vector to be transformed */ public final void transform(Tuple4f vec) { float x,y,z; x = (float) (m00*vec.x + m01*vec.y + m02*vec.z + m03*vec.w); y = (float) (m10*vec.x + m11*vec.y + m12*vec.z + m13*vec.w); z = (float) (m20*vec.x + m21*vec.y + m22*vec.z + m23*vec.w); vec.w = (float) (m30*vec.x + m31*vec.y + m32*vec.z + m33*vec.w); vec.x = x; vec.y = y; vec.z = z; } /** * Transforms the point parameter with this Matrix4d and * places the result into pointOut. The fourth element of the * point input parameter is assumed to be one. * @param point the input point to be transformed. * @param pointOut the transformed point */ public final void transform(Point3d point, Point3d pointOut) { double x,y; x = m00*point.x + m01*point.y + m02*point.z + m03; y = m10*point.x + m11*point.y + m12*point.z + m13; pointOut.z = m20*point.x + m21*point.y + m22*point.z + m23; pointOut.x = x; pointOut.y = y; } /** * Transforms the point parameter with this Matrix4d and * places the result back into point. The fourth element of the * point input parameter is assumed to be one. * @param point the input point to be transformed. */ public final void transform(Point3d point) { double x, y; x = m00*point.x + m01*point.y + m02*point.z + m03; y = m10*point.x + m11*point.y + m12*point.z + m13; point.z = m20*point.x + m21*point.y + m22*point.z + m23; point.x = x; point.y = y; } /** * Transforms the point parameter with this Matrix4d and * places the result into pointOut. The fourth element of the * point input parameter is assumed to be one. * @param point the input point to be transformed. * @param pointOut the transformed point */ public final void transform(Point3f point, Point3f pointOut) { float x,y; x = (float) (m00*point.x + m01*point.y + m02*point.z + m03); y = (float) (m10*point.x + m11*point.y + m12*point.z + m13); pointOut.z = (float) (m20*point.x + m21*point.y + m22*point.z + m23); pointOut.x = x; pointOut.y = y; } /** * Transforms the point parameter with this Matrix4d and * places the result back into point. The fourth element of the * point input parameter is assumed to be one. * @param point the input point to be transformed. */ public final void transform(Point3f point) { float x, y; x = (float) (m00*point.x + m01*point.y + m02*point.z + m03); y = (float) (m10*point.x + m11*point.y + m12*point.z + m13); point.z = (float) (m20*point.x + m21*point.y + m22*point.z + m23); point.x = x; point.y = y; } /** * Transforms the normal parameter by this Matrix4d and places the value * into normalOut. The fourth element of the normal is assumed to be zero. * @param normal the input normal to be transformed. * @param normalOut the transformed normal */ public final void transform(Vector3d normal, Vector3d normalOut) { double x,y; x = m00*normal.x + m01*normal.y + m02*normal.z; y = m10*normal.x + m11*normal.y + m12*normal.z; normalOut.z = m20*normal.x + m21*normal.y + m22*normal.z; normalOut.x = x; normalOut.y = y; } /** * Transforms the normal parameter by this transform and places the value * back into normal. The fourth element of the normal is assumed to be zero. * @param normal the input normal to be transformed. */ public final void transform(Vector3d normal) { double x, y; x = m00*normal.x + m01*normal.y + m02*normal.z; y = m10*normal.x + m11*normal.y + m12*normal.z; normal.z = m20*normal.x + m21*normal.y + m22*normal.z; normal.x = x; normal.y = y; } /** * Transforms the normal parameter by this Matrix4d and places the value * into normalOut. The fourth element of the normal is assumed to be zero. * @param normal the input normal to be transformed. * @param normalOut the transformed normal */ public final void transform(Vector3f normal, Vector3f normalOut) { float x,y; x = (float) (m00*normal.x + m01*normal.y + m02*normal.z); y = (float) (m10*normal.x + m11*normal.y + m12*normal.z); normalOut.z = (float) (m20*normal.x + m21*normal.y + m22*normal.z); normalOut.x = x; normalOut.y = y; } /** * Transforms the normal parameter by this transform and places the value * back into normal. The fourth element of the normal is assumed to be zero. * @param normal the input normal to be transformed. */ public final void transform(Vector3f normal) { float x, y; x = (float) (m00*normal.x + m01*normal.y + m02*normal.z); y = (float) (m10*normal.x + m11*normal.y + m12*normal.z); normal.z = (float) (m20*normal.x + m21*normal.y + m22*normal.z); normal.x = x; normal.y = y; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix values in the double precision Matrix3d argument; the other * elements of this matrix are unchanged; a singular value * decomposition is performed on this object's upper 3x3 matrix to * factor out the scale, then this object's upper 3x3 matrix components * are replaced by the passed rotation components, * and then the scale is reapplied to the rotational components. * @param m1 double precision 3x3 matrix */ public final void setRotation( Matrix3d m1){ double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m00 = m1.m00*tmp_scale[0]; m01 = m1.m01*tmp_scale[1]; m02 = m1.m02*tmp_scale[2]; m10 = m1.m10*tmp_scale[0]; m11 = m1.m11*tmp_scale[1]; m12 = m1.m12*tmp_scale[2]; m20 = m1.m20*tmp_scale[0]; m21 = m1.m21*tmp_scale[1]; m22 = m1.m22*tmp_scale[2]; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix values in the single precision Matrix3f argument; the other * elements of this matrix are unchanged; a singular value * decomposition is performed on this object's upper 3x3 matrix to * factor out the scale, then this object's upper 3x3 matrix components * are replaced by the passed rotation components, * and then the scale is reapplied to the rotational components. * @param m1 single precision 3x3 matrix */ public final void setRotation( Matrix3f m1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m00 = m1.m00*tmp_scale[0]; m01 = m1.m01*tmp_scale[1]; m02 = m1.m02*tmp_scale[2]; m10 = m1.m10*tmp_scale[0]; m11 = m1.m11*tmp_scale[1]; m12 = m1.m12*tmp_scale[2]; m20 = m1.m20*tmp_scale[0]; m21 = m1.m21*tmp_scale[1]; m22 = m1.m22*tmp_scale[2]; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix equivalent values of the quaternion argument; the other * elements of this matrix are unchanged; a singular value * decomposition is performed on this object's upper 3x3 matrix to * factor out the scale, then this object's upper 3x3 matrix components * are replaced by the matrix equivalent of the quaternion, * and then the scale is reapplied to the rotational components. * @param q1 the quaternion that specifies the rotation */ public final void setRotation(Quat4f q1){ double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m00 = (1.0 - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0]; m10 = (2.0*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0]; m20 = (2.0*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0]; m01 = (2.0*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1]; m11 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1]; m21 = (2.0*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1]; m02 = (2.0*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2]; m12 = (2.0*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2]; m22 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2]; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix equivalent values of the quaternion argument; the other * elements of this matrix are unchanged; a singular value * decomposition is performed on this object's upper 3x3 matrix to * factor out the scale, then this object's upper 3x3 matrix components * are replaced by the matrix equivalent of the quaternion, * and then the scale is reapplied to the rotational components. * @param q1 the quaternion that specifies the rotation */ public final void setRotation(Quat4d q1){ double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); m00 = (1.0 - 2.0f*q1.y*q1.y - 2.0f*q1.z*q1.z)*tmp_scale[0]; m10 = (2.0*(q1.x*q1.y + q1.w*q1.z))*tmp_scale[0]; m20 = (2.0*(q1.x*q1.z - q1.w*q1.y))*tmp_scale[0]; m01 = (2.0*(q1.x*q1.y - q1.w*q1.z))*tmp_scale[1]; m11 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.z*q1.z)*tmp_scale[1]; m21 = (2.0*(q1.y*q1.z + q1.w*q1.x))*tmp_scale[1]; m02 = (2.0*(q1.x*q1.z + q1.w*q1.y))*tmp_scale[2]; m12 = (2.0*(q1.y*q1.z - q1.w*q1.x))*tmp_scale[2]; m22 = (1.0 - 2.0f*q1.x*q1.x - 2.0f*q1.y*q1.y)*tmp_scale[2]; } /** * Sets the rotational component (upper 3x3) of this matrix to the * matrix equivalent values of the axis-angle argument; the other * elements of this matrix are unchanged; a singular value * decomposition is performed on this object's upper 3x3 matrix to * factor out the scale, then this object's upper 3x3 matrix components * are replaced by the matrix equivalent of the axis-angle, * and then the scale is reapplied to the rotational components. * @param a1 the axis-angle to be converted (x, y, z, angle) */ public final void setRotation(AxisAngle4d a1) { double[] tmp_rot = new double[9]; // scratch matrix double[] tmp_scale = new double[3]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); double mag = 1.0/Math.sqrt( a1.x*a1.x + a1.y*a1.y + a1.z*a1.z); double ax = a1.x*mag; double ay = a1.y*mag; double az = a1.z*mag; double sinTheta = Math.sin(a1.angle); double cosTheta = Math.cos(a1.angle); double t = 1.0 - cosTheta; double xz = a1.x * a1.z; double xy = a1.x * a1.y; double yz = a1.y * a1.z; m00 = (t * ax * ax + cosTheta)*tmp_scale[0]; m01 = (t * xy - sinTheta * az)*tmp_scale[1]; m02 = (t * xz + sinTheta * ay)*tmp_scale[2]; m10 = (t * xy + sinTheta * az)*tmp_scale[0]; m11 = (t * ay * ay + cosTheta)*tmp_scale[1]; m12 = (t * yz - sinTheta * ax)*tmp_scale[2]; m20 = (t * xz - sinTheta * ay)*tmp_scale[0]; m21 = (t * yz + sinTheta * ax)*tmp_scale[1]; m22 = (t * az * az + cosTheta)*tmp_scale[2]; } /** * Sets this matrix to all zeros. */ public final void setZero() { m00 = 0.0; m01 = 0.0; m02 = 0.0; m03 = 0.0; m10 = 0.0; m11 = 0.0; m12 = 0.0; m13 = 0.0; m20 = 0.0; m21 = 0.0; m22 = 0.0; m23 = 0.0; m30 = 0.0; m31 = 0.0; m32 = 0.0; m33 = 0.0; } /** * Negates the value of this matrix: this = -this. */ public final void negate() { m00 = -m00; m01 = -m01; m02 = -m02; m03 = -m03; m10 = -m10; m11 = -m11; m12 = -m12; m13 = -m13; m20 = -m20; m21 = -m21; m22 = -m22; m23 = -m23; m30 = -m30; m31 = -m31; m32 = -m32; m33 = -m33; } /** * Sets the value of this matrix equal to the negation of * of the Matrix4d parameter. * @param m1 the source matrix */ public final void negate(Matrix4d m1) { this.m00 = -m1.m00; this.m01 = -m1.m01; this.m02 = -m1.m02; this.m03 = -m1.m03; this.m10 = -m1.m10; this.m11 = -m1.m11; this.m12 = -m1.m12; this.m13 = -m1.m13; this.m20 = -m1.m20; this.m21 = -m1.m21; this.m22 = -m1.m22; this.m23 = -m1.m23; this.m30 = -m1.m30; this.m31 = -m1.m31; this.m32 = -m1.m32; this.m33 = -m1.m33; } private final void getScaleRotate(double scales[], double rots[]) { double[] tmp = new double[9]; // scratch matrix tmp[0] = m00; tmp[1] = m01; tmp[2] = m02; tmp[3] = m10; tmp[4] = m11; tmp[5] = m12; tmp[6] = m20; tmp[7] = m21; tmp[8] = m22; Matrix3d.compute_svd( tmp, scales, rots); return; } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since vecmath 1.3 */ public Object clone() { Matrix4d m1 = null; try { m1 = (Matrix4d)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } return m1; } }