/* * $RCSfile$ * * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * $Revision$ * $Date$ * $State$ */ package javax.vecmath; /** * A 3 element point that is represented by double precision floating point * x,y,z coordinates. * */ public class Point3d extends Tuple3d implements java.io.Serializable { // Compatible with 1.1 static final long serialVersionUID = 5718062286069042927L; /** * Constructs and initializes a Point3d from the specified xyz coordinates. * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate */ public Point3d(double x, double y, double z) { super(x,y,z); } /** * Constructs and initializes a Point3d from the array of length 3. * @param p the array of length 3 containing xyz in order */ public Point3d(double[] p) { super(p); } /** * Constructs and initializes a Point3d from the specified Point3d. * @param p1 the Point3d containing the initialization x y z data */ public Point3d(Point3d p1) { super(p1); } /** * Constructs and initializes a Point3d from the specified Point3f. * @param p1 the Point3f containing the initialization x y z data */ public Point3d(Point3f p1) { super(p1); } /** * Constructs and initializes a Point3d from the specified Tuple3f. * @param t1 the Tuple3f containing the initialization x y z data */ public Point3d(Tuple3f t1) { super(t1); } /** * Constructs and initializes a Point3d from the specified Tuple3d. * @param t1 the Tuple3d containing the initialization x y z data */ public Point3d(Tuple3d t1) { super(t1); } /** * Constructs and initializes a Point3d to (0,0,0). */ public Point3d() { super(); } /** * Returns the square of the distance between this point and point p1. * @param p1 the other point * @return the square of the distance */ public final double distanceSquared(Point3d p1) { double dx, dy, dz; dx = this.x-p1.x; dy = this.y-p1.y; dz = this.z-p1.z; return (dx*dx+dy*dy+dz*dz); } /** * Returns the distance between this point and point p1. * @param p1 the other point * @return the distance */ public final double distance(Point3d p1) { double dx, dy, dz; dx = this.x-p1.x; dy = this.y-p1.y; dz = this.z-p1.z; return Math.sqrt(dx*dx+dy*dy+dz*dz); } /** * Computes the L-1 (Manhattan) distance between this point and * point p1. The L-1 distance is equal to: * abs(x1-x2) + abs(y1-y2) + abs(z1-z2). * @param p1 the other point * @return the L-1 distance */ public final double distanceL1(Point3d p1) { return Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y) + Math.abs(this.z-p1.z); } /** * Computes the L-infinite distance between this point and * point p1. The L-infinite distance is equal to * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)]. * @param p1 the other point * @return the L-infinite distance */ public final double distanceLinf(Point3d p1) { double tmp; tmp = Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y)); return Math.max(tmp,Math.abs(this.z-p1.z)); } /** * Multiplies each of the x,y,z components of the Point4d parameter * by 1/w and places the projected values into this point. * @param p1 the source Point4d, which is not modified */ public final void project(Point4d p1) { double oneOw; oneOw = 1/p1.w; x = p1.x*oneOw; y = p1.y*oneOw; z = p1.z*oneOw; } }