/* * $RCSfile$ * * Copyright (c) 2007 Sun Microsystems, Inc. All rights reserved. * * Use is subject to license terms. * * $Revision$ * $Date$ * $State$ */ package javax.vecmath; import java.lang.Math; /** * A 3 element point that is represented by single precision floating point * x,y,z coordinates. * */ public class Point3f extends Tuple3f implements java.io.Serializable { // Compatible with 1.1 static final long serialVersionUID = -8689337816398030143L; /** * Constructs and initializes a Point3f from the specified xyz coordinates. * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate */ public Point3f(float x, float y, float z) { super(x,y,z); } /** * Constructs and initializes a Point3f from the array of length 3. * @param p the array of length 3 containing xyz in order */ public Point3f(float[] p) { super(p); } /** * Constructs and initializes a Point3f from the specified Point3f. * @param p1 the Point3f containing the initialization x y z data */ public Point3f(Point3f p1) { super(p1); } /** * Constructs and initializes a Point3f from the specified Point3d. * @param p1 the Point3d containing the initialization x y z data */ public Point3f(Point3d p1) { super(p1); } /** * Constructs and initializes a Point3f from the specified Tuple3f. * @param t1 the Tuple3f containing the initialization x y z data */ public Point3f(Tuple3f t1) { super(t1); } /** * Constructs and initializes a Point3f from the specified Tuple3d. * @param t1 the Tuple3d containing the initialization x y z data */ public Point3f(Tuple3d t1) { super(t1); } /** * Constructs and initializes a Point3f to (0,0,0). */ public Point3f() { super(); } /** * Computes the square of the distance between this point and * point p1. * @param p1 the other point * @return the square of the distance */ public final float distanceSquared(Point3f p1) { float dx, dy, dz; dx = this.x-p1.x; dy = this.y-p1.y; dz = this.z-p1.z; return dx*dx+dy*dy+dz*dz; } /** * Computes the distance between this point and point p1. * @param p1 the other point * @return the distance */ public final float distance(Point3f p1) { float dx, dy, dz; dx = this.x-p1.x; dy = this.y-p1.y; dz = this.z-p1.z; return (float) Math.sqrt(dx*dx+dy*dy+dz*dz); } /** * Computes the L-1 (Manhattan) distance between this point and * point p1. The L-1 distance is equal to: * abs(x1-x2) + abs(y1-y2) + abs(z1-z2). * @param p1 the other point * @return the L-1 distance */ public final float distanceL1(Point3f p1) { return( Math.abs(this.x-p1.x) + Math.abs(this.y-p1.y) + Math.abs(this.z-p1.z)); } /** * Computes the L-infinite distance between this point and * point p1. The L-infinite distance is equal to * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)]. * @param p1 the other point * @return the L-infinite distance */ public final float distanceLinf(Point3f p1) { float tmp; tmp = Math.max( Math.abs(this.x-p1.x), Math.abs(this.y-p1.y)); return(Math.max(tmp,Math.abs(this.z-p1.z))); } /** * Multiplies each of the x,y,z components of the Point4f parameter * by 1/w and places the projected values into this point. * @param p1 the source Point4f, which is not modified */ public final void project(Point4f p1) { float oneOw; oneOw = 1/p1.w; x = p1.x*oneOw; y = p1.y*oneOw; z = p1.z*oneOw; } }