/* * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ package javax.vecmath; /** * A 4 element tuple represented by double precision floating point * x,y,z,w coordinates. * */ public abstract class Tuple4d implements java.io.Serializable, Cloneable { static final long serialVersionUID = -4748953690425311052L; /** * The x coordinate. */ public double x; /** * The y coordinate. */ public double y; /** * The z coordinate. */ public double z; /** * The w coordinate. */ public double w; /** * Constructs and initializes a Tuple4d from the specified xyzw coordinates. * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate * @param w the w coordinate */ public Tuple4d(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; } /** * Constructs and initializes a Tuple4d from the coordinates contained * in the array. * @param t the array of length 4 containing xyzw in order */ public Tuple4d(double[] t) { this.x = t[0]; this.y = t[1]; this.z = t[2]; this.w = t[3]; } /** * Constructs and initializes a Tuple4d from the specified Tuple4d. * @param t1 the Tuple4d containing the initialization x y z w data */ public Tuple4d(Tuple4d t1) { this.x = t1.x; this.y = t1.y; this.z = t1.z; this.w = t1.w; } /** * Constructs and initializes a Tuple4d from the specified Tuple4f. * @param t1 the Tuple4f containing the initialization x y z w data */ public Tuple4d(Tuple4f t1) { this.x = t1.x; this.y = t1.y; this.z = t1.z; this.w = t1.w; } /** * Constructs and initializes a Tuple4d to (0,0,0,0). */ public Tuple4d() { this.x = 0.0; this.y = 0.0; this.z = 0.0; this.w = 0.0; } /** * Sets the value of this tuple to the specified xyzw coordinates. * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate * @param w the w coordinate */ public final void set(double x, double y, double z, double w) { this.x = x; this.y = y; this.z = z; this.w = w; } /** * Sets the value of this tuple to the specified xyzw coordinates. * @param t the array of length 4 containing xyzw in order */ public final void set(double[] t) { this.x = t[0]; this.y = t[1]; this.z = t[2]; this.w = t[3]; } /** * Sets the value of this tuple to the value of tuple t1. * @param t1 the tuple to be copied */ public final void set(Tuple4d t1) { this.x = t1.x; this.y = t1.y; this.z = t1.z; this.w = t1.w; } /** * Sets the value of this tuple to the value of tuple t1. * @param t1 the tuple to be copied */ public final void set(Tuple4f t1) { this.x = t1.x; this.y = t1.y; this.z = t1.z; this.w = t1.w; } /** * Gets the value of this tuple and places it into the array t of * length four in x,y,z,w order. * @param t the array of length four */ public final void get(double[] t) { t[0] = this.x; t[1] = this.y; t[2] = this.z; t[3] = this.w; } /** * Gets the value of this tuple and places it into the Tuple4d * argument of * length four in x,y,z,w order. * @param t the Tuple into which the values will be copied */ public final void get(Tuple4d t) { t.x = this.x; t.y = this.y; t.z = this.z; t.w = this.w; } /** * Sets the value of this tuple to the tuple sum of tuples t1 and t2. * @param t1 the first tuple * @param t2 the second tuple */ public final void add(Tuple4d t1, Tuple4d t2) { this.x = t1.x + t2.x; this.y = t1.y + t2.y; this.z = t1.z + t2.z; this.w = t1.w + t2.w; } /** * Sets the value of this tuple to the sum of itself and tuple t1. * @param t1 the other tuple */ public final void add(Tuple4d t1) { this.x += t1.x; this.y += t1.y; this.z += t1.z; this.w += t1.w; } /** * Sets the value of this tuple to the difference * of tuples t1 and t2 (this = t1 - t2). * @param t1 the first tuple * @param t2 the second tuple */ public final void sub(Tuple4d t1, Tuple4d t2) { this.x = t1.x - t2.x; this.y = t1.y - t2.y; this.z = t1.z - t2.z; this.w = t1.w - t2.w; } /** * Sets the value of this tuple to the difference of itself * and tuple t1 (this = this - t1). * @param t1 the other tuple */ public final void sub(Tuple4d t1) { this.x -= t1.x; this.y -= t1.y; this.z -= t1.z; this.w -= t1.w; } /** * Sets the value of this tuple to the negation of tuple t1. * @param t1 the source tuple */ public final void negate(Tuple4d t1) { this.x = -t1.x; this.y = -t1.y; this.z = -t1.z; this.w = -t1.w; } /** * Negates the value of this tuple in place. */ public final void negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; this.w = -this.w; } /** * Sets the value of this tuple to the scalar multiplication * of the scale factor with the tuple t1. * @param s the scalar value * @param t1 the source tuple */ public final void scale(double s, Tuple4d t1) { this.x = s*t1.x; this.y = s*t1.y; this.z = s*t1.z; this.w = s*t1.w; } /** * Sets the value of this tuple to the scalar multiplication * of the scale factor with this. * @param s the scalar value */ public final void scale(double s) { this.x *= s; this.y *= s; this.z *= s; this.w *= s; } /** * Sets the value of this tuple to the scalar multiplication by s * of tuple t1 plus tuple t2 (this = s*t1 + t2). * @param s the scalar value * @param t1 the tuple to be multipled * @param t2 the tuple to be added */ public final void scaleAdd(double s, Tuple4d t1, Tuple4d t2) { this.x = s*t1.x + t2.x; this.y = s*t1.y + t2.y; this.z = s*t1.z + t2.z; this.w = s*t1.w + t2.w; } /** * @deprecated Use scaleAdd(double,Tuple4d) instead */ public final void scaleAdd(float s, Tuple4d t1) { scaleAdd((double)s, t1); } /** * Sets the value of this tuple to the scalar multiplication * of itself and then adds tuple t1 (this = s*this + t1). * @param s the scalar value * @param t1 the tuple to be added */ public final void scaleAdd(double s, Tuple4d t1) { this.x = s*this.x + t1.x; this.y = s*this.y + t1.y; this.z = s*this.z + t1.z; this.w = s*this.w + t1.w; } /** * Returns a string that contains the values of this Tuple4d. * The form is (x,y,z,w). * @return the String representation */ @Override public String toString() { return "(" + this.x + ", " + this.y + ", " + this.z + ", " + this.w + ")"; } /** * Returns true if all of the data members of Tuple4d t1 are * equal to the corresponding data members in this Tuple4d. * @param t1 the tuple with which the comparison is made * @return true or false */ public boolean equals(Tuple4d t1) { try { return(this.x == t1.x && this.y == t1.y && this.z == t1.z && this.w == t1.w); } catch (NullPointerException e2) {return false;} } /** * Returns true if the Object t1 is of type Tuple4d and all of the * data members of t1 are equal to the corresponding data members in * this Tuple4d. * @param t1 the object with which the comparison is made * @return true or false */ @Override public boolean equals(Object t1) { try { Tuple4d t2 = (Tuple4d) t1; return(this.x == t2.x && this.y == t2.y && this.z == t2.z && this.w == t2.w); } catch (NullPointerException e2) {return false;} catch (ClassCastException e1) {return false;} } /** * Returns true if the L-infinite distance between this tuple * and tuple t1 is less than or equal to the epsilon parameter, * otherwise returns false. The L-infinite * distance is equal to * MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2), abs(w1-w2)]. * @param t1 the tuple to be compared to this tuple * @param epsilon the threshold value * @return true or false */ public boolean epsilonEquals(Tuple4d t1, double epsilon) { double diff; diff = x - t1.x; if(Double.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; diff = y - t1.y; if(Double.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; diff = z - t1.z; if(Double.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; diff = w - t1.w; if(Double.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; return true; } /** * Returns a hash code value based on the data values in this * object. Two different Tuple4d objects with identical data values * (i.e., Tuple4d.equals returns true) will return the same hash * code value. Two objects with different data members may return the * same hash value, although this is not likely. * @return the integer hash code value */ @Override public int hashCode() { long bits = 1L; bits = VecMathUtil.hashDoubleBits(bits, x); bits = VecMathUtil.hashDoubleBits(bits, y); bits = VecMathUtil.hashDoubleBits(bits, z); bits = VecMathUtil.hashDoubleBits(bits, w); return VecMathUtil.hashFinish(bits); } /** * @deprecated Use clamp(double,double,Tuple4d) instead */ public final void clamp(float min, float max, Tuple4d t) { clamp((double)min, (double)max, t); } /** * Clamps the tuple parameter to the range [low, high] and * places the values into this tuple. * @param min the lowest value in the tuple after clamping * @param max the highest value in the tuple after clamping * @param t the source tuple, which will not be modified */ public final void clamp(double min, double max, Tuple4d t) { if( t.x > max ) { x = max; } else if( t.x < min ){ x = min; } else { x = t.x; } if( t.y > max ) { y = max; } else if( t.y < min ){ y = min; } else { y = t.y; } if( t.z > max ) { z = max; } else if( t.z < min ){ z = min; } else { z = t.z; } if( t.w > max ) { w = max; } else if( t.w < min ){ w = min; } else { w = t.w; } } /** * @deprecated Use clampMin(double,Tuple4d) instead */ public final void clampMin(float min, Tuple4d t) { clampMin((double)min, t); } /** * Clamps the minimum value of the tuple parameter to the min * parameter and places the values into this tuple. * @param min the lowest value in the tuple after clamping * @param t the source tuple, which will not be modified */ public final void clampMin(double min, Tuple4d t) { if( t.x < min ) { x = min; } else { x = t.x; } if( t.y < min ) { y = min; } else { y = t.y; } if( t.z < min ) { z = min; } else { z = t.z; } if( t.w < min ) { w = min; } else { w = t.w; } } /** * @deprecated Use clampMax(double,Tuple4d) instead */ public final void clampMax(float max, Tuple4d t) { clampMax((double)max, t); } /** * Clamps the maximum value of the tuple parameter to the max * parameter and places the values into this tuple. * @param max the highest value in the tuple after clamping * @param t the source tuple, which will not be modified */ public final void clampMax(double max, Tuple4d t) { if( t.x > max ) { x = max; } else { x = t.x; } if( t.y > max ) { y = max; } else { y = t.y; } if( t.z > max ) { z = max; } else { z = t.z; } if( t.w > max ) { w = max; } else { w = t.z; } } /** * Sets each component of the tuple parameter to its absolute * value and places the modified values into this tuple. * @param t the source tuple, which will not be modified */ public final void absolute(Tuple4d t) { x = Math.abs(t.x); y = Math.abs(t.y); z = Math.abs(t.z); w = Math.abs(t.w); } /** * @deprecated Use clamp(double,double) instead */ public final void clamp(float min, float max) { clamp((double)min, (double)max); } /** * Clamps this tuple to the range [low, high]. * @param min the lowest value in this tuple after clamping * @param max the highest value in this tuple after clamping */ public final void clamp(double min, double max) { if( x > max ) { x = max; } else if( x < min ){ x = min; } if( y > max ) { y = max; } else if( y < min ){ y = min; } if( z > max ) { z = max; } else if( z < min ){ z = min; } if( w > max ) { w = max; } else if( w < min ){ w = min; } } /** * @deprecated Use clampMin(double) instead */ public final void clampMin(float min) { clampMin((double)min); } /** * Clamps the minimum value of this tuple to the min parameter. * @param min the lowest value in this tuple after clamping */ public final void clampMin(double min) { if( x < min ) x=min; if( y < min ) y=min; if( z < min ) z=min; if( w < min ) w=min; } /** * @deprecated Use clampMax(double) instead */ public final void clampMax(float max) { clampMax((double)max); } /** * Clamps the maximum value of this tuple to the max parameter. * @param max the highest value in the tuple after clamping */ public final void clampMax(double max) { if( x > max ) x=max; if( y > max ) y=max; if( z > max ) z=max; if( w > max ) w=max; } /** * Sets each component of this tuple to its absolute value. */ public final void absolute() { x = Math.abs(x); y = Math.abs(y); z = Math.abs(z); w = Math.abs(w); } /** * @deprecated Use interpolate(Tuple4d,Tuple4d,double) instead */ public void interpolate(Tuple4d t1, Tuple4d t2, float alpha) { interpolate(t1, t2, (double)alpha); } /** * Linearly interpolates between tuples t1 and t2 and places the * result into this tuple: this = (1-alpha)*t1 + alpha*t2. * @param t1 the first tuple * @param t2 the second tuple * @param alpha the alpha interpolation parameter */ public void interpolate(Tuple4d t1, Tuple4d t2, double alpha) { this.x = (1-alpha)*t1.x + alpha*t2.x; this.y = (1-alpha)*t1.y + alpha*t2.y; this.z = (1-alpha)*t1.z + alpha*t2.z; this.w = (1-alpha)*t1.w + alpha*t2.w; } /** * @deprecated Use interpolate(Tuple4d,double) instead */ public void interpolate(Tuple4d t1, float alpha) { interpolate(t1, (double)alpha); } /** * Linearly interpolates between this tuple and tuple t1 and * places the result into this tuple: this = (1-alpha)*this + alpha*t1. * @param t1 the first tuple * @param alpha the alpha interpolation parameter */ public void interpolate(Tuple4d t1, double alpha) { this.x = (1-alpha)*this.x + alpha*t1.x; this.y = (1-alpha)*this.y + alpha*t1.y; this.z = (1-alpha)*this.z + alpha*t1.z; this.w = (1-alpha)*this.w + alpha*t1.w; } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since vecmath 1.3 */ @Override public Object clone() { // Since there are no arrays we can just use Object.clone() try { return super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } /** * Get the x coordinate. * * @return the x coordinate. * * @since vecmath 1.5 */ public final double getX() { return x; } /** * Set the x coordinate. * * @param x value to x coordinate. * * @since vecmath 1.5 */ public final void setX(double x) { this.x = x; } /** * Get the y coordinate. * * @return the y coordinate. * * @since vecmath 1.5 */ public final double getY() { return y; } /** * Set the y coordinate. * * @param y value to y coordinate. * * @since vecmath 1.5 */ public final void setY(double y) { this.y = y; } /** * Get the z coordinate. * * @return the z coordinate. * * @since vecmath 1.5 */ public final double getZ() { return z; } /** * Set the z coordinate. * * @param z value to z coordinate. * * @since vecmath 1.5 */ public final void setZ(double z) { this.z = z; } /** * Get the w coordinate. * * @return the w coordinate. * * @since vecmath 1.5 */ public final double getW() { return w; } /** * Set the w coordinate. * * @param w value to w coordinate. * * @since vecmath 1.5 */ public final void setW(double w) { this.w = w; } }