34 redhat

IcedTeaNPPIlugin
[LiveConnect design]

Deepak Bhole

Senior Software Engineer, Red Hat
2009-10-05



Plugin Architecture

Divided into C++ and Java component

C++ side talks to the browser

Java side talks to JVM

Linked via FIFO link

Common string exchange format (UTF-8)
Over 95% of changes in NPPlugin have been on C++
side

Java side has been reused as much as possible to re-
use the proven stable code

N



C++ Architecture

Encompassing classes form the LiveConnect engine
(which previously resided in Mozilla and was exposed
via OJI)

Each JavaScript var corresponding to a Java object
has a corresponding IcedTeaScriptableJavaObject

Engine controls the object life, and services all
requests (get field, set field, invoke method, etc.)




C++ Architecture (Browser Interface)

Browser interface consists primarily of
cedTeaScriptableJavaPackageObject,
cedTeaScriptableJavaObject and
cedTeaPluginRequestProcessor

Above classes are unaware of Java interactions, and
delegate to the Java interfaces for Java interaction

They process all requests coming from the browser
and going to the browser (getMember, call, eval, etc.)




C++ Architecture (Java Interface)

Java interface consists primarily of
lcedTeaJavaRequestProcessor

This class has full knowledge of how the Java side
works, and constructs appropriate requests to get all
Information from Java.

The class process all requests to the JVM




Java Architecture

Java side

PluginA
PluginA

applet)

op

P

nas 2 code classes aside from helpers,
etViewer and PluginAppletSecurityContext

etViewer Is an interface to NetX, and

orocesses JS related requests to and from NetX (the

PluginAppletSecurityContext is a direct reflection
pased interface to the VM. It processes all
_lveConnect requests to and from the JVM

Request processing Is asynchronous, with scalable

generic request processing workers




Java Architecture (PluginAppletViewer)

Control of applet (initialize, resize, destroy, etc.) from
browser

Access to JavaScript from the applet (getMember,
setMember, call, eval, etc.)




Java Architecture (PluginAppletSecurityContext)

Direct access to the JVM from the browser
(LiveConnect) via reflection.

All reflection is built-in, so C++ side never needs to be
aware of the complexities, unlike how OJl was.

All VM calls are inside a sandbox, so JavaScript
cannot do things that the default sandboxed VM can't.




Java Architecture (PluginAppletSecurityContext)

Direct access to the JVM from the browser
(LiveConnect) via reflection.

All reflection is built-in, so C++ side never needs to be
aware of the complexities, unlike how OJl was.

All VM calls are inside a sandbox, so JavaScript
cannot do things that the default sandboxed VM can't.




MessageBus architecture (C++)

10

The link to Java Is exposed to the rest of the code via a
uniform “MessageBus” interface

Since the code is unaware of the link specifics and has
no synchronicity guarantee, the communication
medium can be switched relatively easily.

Whatever class is interested in the messages
Implements a “BusSubscriber” class and subscribes to
the bus of interest.

When messages come in, the bus notifies all
subscribers




Example JS->Java workflow

11

Example shows how NPP_HasProperty() works

Browser has a link to an IcedTeaScriptableJavaObject
representing a Java object instance

t calls IcedTeaScriptableJavaObject::HasProperty()

HasProperty() creates an
cedTeadavaRequestProcessor (“java processor”)

The java processor exposes all necessary APIs to the
VM, including hasProperty (called hasField for Java
naming consistency)




Example JS->Java workflow (contd.)

12

Before making a hasField request, the processor
subscribes itself to the “from Java” bus, so that it can
read the response

hasField request is made by the processor, posted to
the “to java” bus

Processor waits for response, or until timeout

Once response Is received, processor unsubscribes
itself from the “from Java” bus and does
postprocessing, and returns

The IcedTeaScriptableJavaObject object reads the
response, and sends it to the browser




Example Java->JS workflow

13

All access to JS is via “JSObject™s, as defined in the
LiveConnect specification

If applet wants to access a member of JSODbject

“window” for example, it will call getMember on the
windows JSObject

getMember calls a similarly named function in
PluginAppletViewer

PluginAppletViewer constructs a request for the C++
side, and posts it on the FIFO link




Example Java->JS workflow (contd.)

On the C++ side, IcedTeaPluginRequestProcessor
(plugin processor) is always subscribed to the “from
Java” bus

When the getMember request comes through, the
plugin processor gets notified

The embedded request

14




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

