
1

IcedTeaNPPlugin

[LiveConnect design]

Deepak Bhole

Senior Software Engineer, Red Hat
2009-10-05

2

Plugin Architecture

● Divided into C++ and Java component
● C++ side talks to the browser
● Java side talks to JVM
● Linked via FIFO link
● Common string exchange format (UTF-8)

● Over 95% of changes in NPPlugin have been on C++
side

● Java side has been reused as much as possible to re-
use the proven stable code

3

C++ Architecture

● Encompassing classes form the LiveConnect engine
(which previously resided in Mozilla and was exposed
via OJI)

● Each JavaScript var corresponding to a Java object
has a corresponding IcedTeaScriptableJavaObject

● Engine controls the object life, and services all
requests (get field, set field, invoke method, etc.)

4

C++ Architecture (Browser Interface)

● Browser interface consists primarily of
IcedTeaScriptableJavaPackageObject,
IcedTeaScriptableJavaObject and
IcedTeaPluginRequestProcessor

● Above classes are unaware of Java interactions, and
delegate to the Java interfaces for Java interaction

● They process all requests coming from the browser
and going to the browser (getMember, call, eval, etc.)

5

C++ Architecture (Java Interface)

● Java interface consists primarily of
IcedTeaJavaRequestProcessor

● This class has full knowledge of how the Java side
works, and constructs appropriate requests to get all
information from Java.

● The class process all requests to the JVM

6

Java Architecture

● Java side has 2 code classes aside from helpers,
PluginAppletViewer and PluginAppletSecurityContext

● PluginAppletViewer is an interface to NetX, and
processes JS related requests to and from NetX (the
applet)

● PluginAppletSecurityContext is a direct reflection
based interface to the VM. It processes all
LiveConnect requests to and from the JVM

● Request processing is asynchronous, with scalable
generic request processing workers

7

Java Architecture (PluginAppletViewer)

● Control of applet (initialize, resize, destroy, etc.) from
browser

● Access to JavaScript from the applet (getMember,
setMember, call, eval, etc.)

8

Java Architecture (PluginAppletSecurityContext)

● Direct access to the JVM from the browser
(LiveConnect) via reflection.

● All reflection is built-in, so C++ side never needs to be
aware of the complexities, unlike how OJI was.

● All VM calls are inside a sandbox, so JavaScript
cannot do things that the default sandboxed VM can't.

9

Java Architecture (PluginAppletSecurityContext)

● Direct access to the JVM from the browser
(LiveConnect) via reflection.

● All reflection is built-in, so C++ side never needs to be
aware of the complexities, unlike how OJI was.

● All VM calls are inside a sandbox, so JavaScript
cannot do things that the default sandboxed VM can't.

10

MessageBus architecture (C++)

● The link to Java is exposed to the rest of the code via a
uniform “MessageBus” interface

● Since the code is unaware of the link specifics and has
no synchronicity guarantee, the communication
medium can be switched relatively easily.

● Whatever class is interested in the messages
implements a “BusSubscriber” class and subscribes to
the bus of interest.

● When messages come in, the bus notifies all
subscribers

11

Example JS->Java workflow

● Example shows how NPP_HasProperty() works

● Browser has a link to an IcedTeaScriptableJavaObject
representing a Java object instance

● It calls IcedTeaScriptableJavaObject::HasProperty()

● HasProperty() creates an
IcedTeaJavaRequestProcessor (“java processor”)

● The java processor exposes all necessary APIs to the
VM, including hasProperty (called hasField for Java
naming consistency)

12

Example JS->Java workflow (contd.)

● Before making a hasField request, the processor
subscribes itself to the “from Java” bus, so that it can
read the response

● hasField request is made by the processor, posted to
the “to java” bus

● Processor waits for response, or until timeout

● Once response is received, processor unsubscribes
itself from the “from Java” bus and does
postprocessing, and returns

● The IcedTeaScriptableJavaObject object reads the
response, and sends it to the browser

13

Example Java->JS workflow

● All access to JS is via “JSObject”'s, as defined in the
LiveConnect specification

● If applet wants to access a member of JSObject
“window” for example, it will call getMember on the
windows JSObject

● getMember calls a similarly named function in
PluginAppletViewer

● PluginAppletViewer constructs a request for the C++
side, and posts it on the FIFO link

14

Example Java->JS workflow (contd.)

● On the C++ side, IcedTeaPluginRequestProcessor
(plugin processor) is always subscribed to the “from
Java” bus

● When the getMember request comes through, the
plugin processor gets notified

● The embedded request

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

