/* Copyright (c) 2009 David Bucciarelli (davibu@interfree.it) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define GPU_KERNEL typedef struct { float x, y, z; // position, also color (r,g,b) } Vec; typedef struct { /* User defined values */ Vec orig, target; /* Calculated values */ Vec dir, x, y; } Camera; typedef struct { unsigned int width, height; int superSamplingSize; int actvateFastRendering; int enableShadow; unsigned int maxIterations; float epsilon; float mu[4]; float light[3]; Camera camera; } RenderingConfig; #define BOUNDING_RADIUS_2 4.f // Scalar derivative approach by Enforcer: // http://www.fractalforums.com/mandelbulb-implementation/realtime-renderingoptimisations/ float IterateIntersect(const float4 z0, const float4 c0, const uint maxIterations) { float4 z = z0; float4 c = c0; float dr = 1.0f; float r2 = dot(z, z); float r = sqrt(r2); for (int n = 0; (n < maxIterations) && (r < 2.f); ++n) { const float zo0 = asin(z.z / r); const float zi0 = atan2(z.y, z.x); float zr = r2 * r2 * r2 * r; const float zo = zo0 * 7.f; const float zi = zi0 * 7.f; const float czo = cos(zo); dr = zr * dr * 7.f + 1.f; zr *= r; z = zr * (float4)(czo * cos(zi), czo * sin(zi), sin(zo), 0.f); z += c; r2 = dot(z, z); r = sqrt(r2); } return 0.5f * log(r) * r / dr; } float IntersectBulb(const float4 eyeRayOrig, const float4 eyeRayDir, const float4 c, const uint maxIterations, const float epsilon, const float maxDist, float4 *hitPoint, uint *steps) { float dist; float4 r0 = eyeRayOrig; float distDone = 0.f; uint s = 0; do { dist = IterateIntersect(r0, c, maxIterations); distDone += dist; // We are inside if (dist <= 0.f) break; r0 += eyeRayDir * dist; s++; } while ((dist > epsilon) && (distDone < maxDist)); *hitPoint = r0; *steps = s; return dist; } #define WORLD_RADIUS 1000.f #define WORLD_CENTER ((float4)(0.f, -WORLD_RADIUS - 2.f, 0.f, 0.f)) float IntersectFloorSphere(const float4 eyeRayOrig, const float4 eyeRayDir) { const float4 op = WORLD_CENTER - eyeRayOrig; const float b = dot(op, eyeRayDir); float det = b * b - dot(op, op) + WORLD_RADIUS * WORLD_RADIUS; if (det < 0.f) return -1.f; else det = sqrt(det); float t = b - det; if (t > 0.f) return t; else { // We are inside, avoid the hit return -1.f; } } int IntersectBoundingSphere(const float4 eyeRayOrig, const float4 eyeRayDir, float *tmin, float*tmax) { const float4 op = -eyeRayOrig; const float b = dot(op, eyeRayDir); float det = b * b - dot(op, op) + BOUNDING_RADIUS_2; if (det < 0.f) return 0; else det = sqrt(det); float t1 = b - det; float t2 = b + det; if (t1 > 0.f) { *tmin = t1; *tmax = t2; return 1; } else { if (t2 > 0.f) { // We are inside, start from the ray origin *tmin = 0.f; *tmax = t2; return 1; } else return 0; } } float4 NormEstimate(const float4 p, const float4 c, const float delta, const uint maxIterations) { const float4 qP = p; const float4 gx1 = qP - (float4)(delta, 0.f, 0.f, 0.f); const float4 gx2 = qP + (float4)(delta, 0.f, 0.f, 0.f); const float4 gy1 = qP - (float4)(0.f, delta, 0.f, 0.f); const float4 gy2 = qP + (float4)(0.f, delta, 0.f, 0.f); const float4 gz1 = qP - (float4)(0.f, 0.f, delta, 0.f); const float4 gz2 = qP + (float4)(0.f, 0.f, delta, 0.f); const float gradX = length(IterateIntersect(gx2, c, maxIterations)) - length(IterateIntersect(gx1, c, maxIterations)); const float gradY = length(IterateIntersect(gy2, c, maxIterations)) - length(IterateIntersect(gy1, c, maxIterations)); const float gradZ = length(IterateIntersect(gz2, c, maxIterations)) - length(IterateIntersect(gz1, c, maxIterations)); const float4 N = normalize((float4)(gradX, gradY, gradZ, 0.f)); return N; } float4 Phong(const float4 light, const float4 eye, const float4 pt, const float4 N, const float4 diffuse) { const float4 ambient = (float4) (0.05f, 0.05f, 0.05f, 0.f); float4 L = normalize(light - pt); float NdotL = dot(N, L); if (NdotL < 0.f) return diffuse * ambient; const float specularExponent = 30.f; const float specularity = 0.65f; float4 E = normalize(eye - pt); float4 H = (L + E) * (float)0.5f; return diffuse * NdotL + specularity * pow(dot(N, H), specularExponent) + diffuse * ambient; } __kernel void MandelbulbGPU( __global float *pixels, const __global RenderingConfig *config, const int enableAccumulation, const float sampleX, const float sampleY) { const int gid = get_global_id(0); const unsigned width = config->width; const unsigned height = config->height; const unsigned int x = gid % width; const int y = gid / width; // Check if we have to do something if (y >= height) return; const float epsilon = config->actvateFastRendering ? (config->epsilon * (1.5f / 0.75f)) : config->epsilon; const uint maxIterations = config->actvateFastRendering ? (max(3u, config->maxIterations) - 2u) : config->maxIterations; const float4 mu = (float4)(config->mu[0], config->mu[1], config->mu[2], config->mu[3]); const float4 light = (float4)(config->light[0], config->light[1], config->light[2], 0.f); const __global Camera *camera = &config->camera; //-------------------------------------------------------------------------- // Calculate eye ray //-------------------------------------------------------------------------- const float invWidth = 1.f / width; const float invHeight = 1.f / height; const float kcx = (x + sampleX) * invWidth - .5f; const float4 kcx4 = (float4)kcx; const float kcy = (y + sampleY) * invHeight - .5f; const float4 kcy4 = (float4)kcy; const float4 cameraX = (float4)(camera->x.x, camera->x.y, camera->x.z, 0.f); const float4 cameraY = (float4)(camera->y.x, camera->y.y, camera->y.z, 0.f); const float4 cameraDir = (float4)(camera->dir.x, camera->dir.y, camera->dir.z, 0.f); const float4 cameraOrig = (float4)(camera->orig.x, camera->orig.y, camera->orig.z, 0.f); const float4 eyeRayDir = normalize(cameraX * kcx4 + cameraY * kcy4 + cameraDir); const float4 eyeRayOrig = eyeRayDir * (float4)0.1f + cameraOrig; //-------------------------------------------------------------------------- // Check if we hit the bounding sphere //-------------------------------------------------------------------------- int useAO = 1; float4 diffuse, n, color; float4 hitPoint; float dist, tmin, tmax; if (IntersectBoundingSphere(eyeRayOrig, eyeRayDir, &tmin, &tmax)) { //-------------------------------------------------------------------------- // Find the intersection with the set //-------------------------------------------------------------------------- uint steps; float4 rayOrig = eyeRayOrig + eyeRayDir * (float4)tmin; dist = IntersectBulb(rayOrig, eyeRayDir, mu, maxIterations, epsilon, tmax - tmin, &hitPoint, &steps); if (dist <= epsilon) { // Set hit diffuse = (float4) (1.f, 0.35f, 0.15f, 0.f); n = NormEstimate(hitPoint, mu, dist, maxIterations); } else dist = -1.f; } else dist = -1.f; //-------------------------------------------------------------------------- // Check if we hit the floor //-------------------------------------------------------------------------- if (dist < 0.f) { dist = IntersectFloorSphere(eyeRayOrig, eyeRayDir); if (dist >= 0.f) { // Floor hit hitPoint = eyeRayOrig + eyeRayDir * (float4)dist; n = hitPoint - WORLD_CENTER; n = normalize(n); // The most important feature in a ray tracer: a checker texture ! const int ix = (hitPoint.x > 0.f) ? hitPoint.x : (1.f - hitPoint.x); const int iz = (hitPoint.z > 0.f) ? hitPoint.z : (1.f - hitPoint.z); if ((ix + iz) % 2) diffuse = (float4) (0.75f, 0.75f, 0.75f, 0.f); else diffuse = (float4) (0.75f, 0.f, 0.f, 0.f); useAO = 0; } else { // Sky hit color = (float4)(0.f, 0.1f, 0.3f, 0.f); } } else { // Sky hit color = (float4)(0.f, 0.1f, 0.3f, 0.f); } //-------------------------------------------------------------------------- // Select the shadow pass //-------------------------------------------------------------------------- if (dist >= 0.f) { float shadowFactor = 1.f; if (config->enableShadow) { float4 L = normalize(light - hitPoint); float4 rO = hitPoint + n * 1e-2f; float4 shadowHitPoint; // Check bounding sphere if (IntersectBoundingSphere(rO, L, &tmin, &tmax)) { float shadowDistSet = tmin; uint steps; rO = rO + L * (float4)shadowDistSet; shadowDistSet = IntersectBulb(rO, L, mu, maxIterations, epsilon, tmax - tmin, &shadowHitPoint, &steps); if (shadowDistSet < epsilon) { if (useAO) { // Use steps count to simulate ambient occlusion shadowFactor = 0.6f - min(steps / 255.f, 0.5f); } else shadowFactor = 0.6f; } } } //-------------------------------------------------------------------------- // Direct lighting of hit point //-------------------------------------------------------------------------- color = Phong(light, eyeRayOrig, hitPoint, n, diffuse) * shadowFactor; } //-------------------------------------------------------------------------- // Write pixel //-------------------------------------------------------------------------- int offset = 3 * (x + y * width); color = clamp(color, (float4)(0.f, 0.f ,0.f, 0.f), (float4)(1.f, 1.f ,1.f, 0.f)); if (enableAccumulation) { pixels[offset++] += color.s0; pixels[offset++] += color.s1; pixels[offset] += color.s2; } else { pixels[offset++] = color.s0; pixels[offset++] = color.s1; pixels[offset] = color.s2; } } kernel void multiply(global float *array, const int numElements, const float s) { const int gid = get_global_id(0); if (gid >= numElements) { return; } array[gid] *= s; }