summaryrefslogtreecommitdiffstats
path: root/src/demos/nurbs/surfaceapp/PrintfFormat.java
diff options
context:
space:
mode:
authorKenneth Russel <[email protected]>2009-06-15 23:12:27 +0000
committerKenneth Russel <[email protected]>2009-06-15 23:12:27 +0000
commit41cd6c47b23975098cd155517790e018670785e7 (patch)
tree247333528ad674d427ba96b1e05810f7961d609e /src/demos/nurbs/surfaceapp/PrintfFormat.java
parent935d2596c13371bb745d921dbcb9f05b0c11a010 (diff)
Copied JOGL_2_SANDBOX r350 on to trunk; JOGL_2_SANDBOX branch is now closed
git-svn-id: file:///usr/local/projects/SUN/JOGL/git-svn/../svn-server-sync/jogl-demos/trunk@352 3298f667-5e0e-4b4a-8ed4-a3559d26a5f4
Diffstat (limited to 'src/demos/nurbs/surfaceapp/PrintfFormat.java')
-rwxr-xr-xsrc/demos/nurbs/surfaceapp/PrintfFormat.java3090
1 files changed, 3090 insertions, 0 deletions
diff --git a/src/demos/nurbs/surfaceapp/PrintfFormat.java b/src/demos/nurbs/surfaceapp/PrintfFormat.java
new file mode 100755
index 0000000..153460a
--- /dev/null
+++ b/src/demos/nurbs/surfaceapp/PrintfFormat.java
@@ -0,0 +1,3090 @@
+package demos.nurbs.surfaceapp;
+//
+// (c) 2000 Sun Microsystems, Inc.
+// ALL RIGHTS RESERVED
+//
+// License Grant-
+//
+//
+// Permission to use, copy, modify, and distribute this Software and its
+// documentation for NON-COMMERCIAL or COMMERCIAL purposes and without fee is
+// hereby granted.
+//
+// This Software is provided "AS IS". All express warranties, including any
+// implied warranty of merchantability, satisfactory quality, fitness for a
+// particular purpose, or non-infringement, are disclaimed, except to the extent
+// that such disclaimers are held to be legally invalid.
+//
+// You acknowledge that Software is not designed, licensed or intended for use in
+// the design, construction, operation or maintenance of any nuclear facility
+// ("High Risk Activities"). Sun disclaims any express or implied warranty of
+// fitness for such uses.
+//
+// Please refer to the file http://www.sun.com/policies/trademarks/ for further
+// important trademark information and to
+// http://java.sun.com/nav/business/index.html for further important licensing
+// information for the Java Technology.
+//
+
+
+import java.util.Enumeration;
+import java.util.Vector;
+import java.util.Locale;
+import java.text.DecimalFormatSymbols;
+
+/**
+ * PrintfFormat allows the formatting of an array of
+ * objects embedded within a string. Primitive types
+ * must be passed using wrapper types. The formatting
+ * is controlled by a control string.
+ *<p>
+ * A control string is a Java string that contains a
+ * control specification. The control specification
+ * starts at the first percent sign (%) in the string,
+ * provided that this percent sign
+ *<ol>
+ *<li>is not escaped protected by a matching % or is
+ * not an escape % character,
+ *<li>is not at the end of the format string, and
+ *<li>precedes a sequence of characters that parses as
+ * a valid control specification.
+ *</ol>
+ *</p><p>
+ * A control specification usually takes the form:
+ *<pre> % ['-+ #0]* [0..9]* { . [0..9]* }+
+ * { [hlL] }+ [idfgGoxXeEcs]
+ *</pre>
+ * There are variants of this basic form that are
+ * discussed below.</p>
+ *<p>
+ * The format is composed of zero or more directives
+ * defined as follows:
+ *<ul>
+ *<li>ordinary characters, which are simply copied to
+ * the output stream;
+ *<li>escape sequences, which represent non-graphic
+ * characters; and
+ *<li>conversion specifications, each of which
+ * results in the fetching of zero or more arguments.
+ *</ul></p>
+ *<p>
+ * The results are undefined if there are insufficient
+ * arguments for the format. Usually an unchecked
+ * exception will be thrown. If the format is
+ * exhausted while arguments remain, the excess
+ * arguments are evaluated but are otherwise ignored.
+ * In format strings containing the % form of
+ * conversion specifications, each argument in the
+ * argument list is used exactly once.</p>
+ * <p>
+ * Conversions can be applied to the <code>n</code>th
+ * argument after the format in the argument list,
+ * rather than to the next unused argument. In this
+ * case, the conversion characer % is replaced by the
+ * sequence %<code>n</code>$, where <code>n</code> is
+ * a decimal integer giving the position of the
+ * argument in the argument list.</p>
+ * <p>
+ * In format strings containing the %<code>n</code>$
+ * form of conversion specifications, each argument
+ * in the argument list is used exactly once.</p>
+ *
+ *<h4>Escape Sequences</h4>
+ *<p>
+ * The following table lists escape sequences and
+ * associated actions on display devices capable of
+ * the action.
+ *<table>
+ *<tr><th align=left>Sequence</th>
+ * <th align=left>Name</th>
+ * <th align=left>Description</th></tr>
+ *<tr><td>\\</td><td>backlash</td><td>None.
+ *</td></tr>
+ *<tr><td>\a</td><td>alert</td><td>Attempts to alert
+ * the user through audible or visible
+ * notification.
+ *</td></tr>
+ *<tr><td>\b</td><td>backspace</td><td>Moves the
+ * printing position to one column before
+ * the current position, unless the
+ * current position is the start of a line.
+ *</td></tr>
+ *<tr><td>\f</td><td>form-feed</td><td>Moves the
+ * printing position to the initial
+ * printing position of the next logical
+ * page.
+ *</td></tr>
+ *<tr><td>\n</td><td>newline</td><td>Moves the
+ * printing position to the start of the
+ * next line.
+ *</td></tr>
+ *<tr><td>\r</td><td>carriage-return</td><td>Moves
+ * the printing position to the start of
+ * the current line.
+ *</td></tr>
+ *<tr><td>\t</td><td>tab</td><td>Moves the printing
+ * position to the next implementation-
+ * defined horizontal tab position.
+ *</td></tr>
+ *<tr><td>\v</td><td>vertical-tab</td><td>Moves the
+ * printing position to the start of the
+ * next implementation-defined vertical
+ * tab position.
+ *</td></tr>
+ *</table></p>
+ *<h4>Conversion Specifications</h4>
+ *<p>
+ * Each conversion specification is introduced by
+ * the percent sign character (%). After the character
+ * %, the following appear in sequence:</p>
+ *<p>
+ * Zero or more flags (in any order), which modify the
+ * meaning of the conversion specification.</p>
+ *<p>
+ * An optional minimum field width. If the converted
+ * value has fewer characters than the field width, it
+ * will be padded with spaces by default on the left;
+ * t will be padded on the right, if the left-
+ * adjustment flag (-), described below, is given to
+ * the field width. The field width takes the form
+ * of a decimal integer. If the conversion character
+ * is s, the field width is the the minimum number of
+ * characters to be printed.</p>
+ *<p>
+ * An optional precision that gives the minumum number
+ * of digits to appear for the d, i, o, x or X
+ * conversions (the field is padded with leading
+ * zeros); the number of digits to appear after the
+ * radix character for the e, E, and f conversions,
+ * the maximum number of significant digits for the g
+ * and G conversions; or the maximum number of
+ * characters to be written from a string is s and S
+ * conversions. The precision takes the form of an
+ * optional decimal digit string, where a null digit
+ * string is treated as 0. If a precision appears
+ * with a c conversion character the precision is
+ * ignored.
+ * </p>
+ *<p>
+ * An optional h specifies that a following d, i, o,
+ * x, or X conversion character applies to a type
+ * short argument (the argument will be promoted
+ * according to the integral promotions and its value
+ * converted to type short before printing).</p>
+ *<p>
+ * An optional l (ell) specifies that a following
+ * d, i, o, x, or X conversion character applies to a
+ * type long argument.</p>
+ *<p>
+ * A field width or precision may be indicated by an
+ * asterisk (*) instead of a digit string. In this
+ * case, an integer argument supplised the field width
+ * precision. The argument that is actually converted
+ * is not fetched until the conversion letter is seen,
+ * so the the arguments specifying field width or
+ * precision must appear before the argument (if any)
+ * to be converted. If the precision argument is
+ * negative, it will be changed to zero. A negative
+ * field width argument is taken as a - flag, followed
+ * by a positive field width.</p>
+ * <p>
+ * In format strings containing the %<code>n</code>$
+ * form of a conversion specification, a field width
+ * or precision may be indicated by the sequence
+ * *<code>m</code>$, where m is a decimal integer
+ * giving the position in the argument list (after the
+ * format argument) of an integer argument containing
+ * the field width or precision.</p>
+ * <p>
+ * The format can contain either numbered argument
+ * specifications (that is, %<code>n</code>$ and
+ * *<code>m</code>$), or unnumbered argument
+ * specifications (that is % and *), but normally not
+ * both. The only exception to this is that %% can
+ * be mixed with the %<code>n</code>$ form. The
+ * results of mixing numbered and unnumbered argument
+ * specifications in a format string are undefined.</p>
+ *
+ *<h4>Flag Characters</h4>
+ *<p>
+ * The flags and their meanings are:</p>
+ *<dl>
+ * <dt>'<dd> integer portion of the result of a
+ * decimal conversion (%i, %d, %f, %g, or %G) will
+ * be formatted with thousands' grouping
+ * characters. For other conversions the flag
+ * is ignored. The non-monetary grouping
+ * character is used.
+ * <dt>-<dd> result of the conversion is left-justified
+ * within the field. (It will be right-justified
+ * if this flag is not specified).</td></tr>
+ * <dt>+<dd> result of a signed conversion always
+ * begins with a sign (+ or -). (It will begin
+ * with a sign only when a negative value is
+ * converted if this flag is not specified.)
+ * <dt>&lt;space&gt;<dd> If the first character of a
+ * signed conversion is not a sign, a space
+ * character will be placed before the result.
+ * This means that if the space character and +
+ * flags both appear, the space flag will be
+ * ignored.
+ * <dt>#<dd> value is to be converted to an alternative
+ * form. For c, d, i, and s conversions, the flag
+ * has no effect. For o conversion, it increases
+ * the precision to force the first digit of the
+ * result to be a zero. For x or X conversion, a
+ * non-zero result has 0x or 0X prefixed to it,
+ * respectively. For e, E, f, g, and G
+ * conversions, the result always contains a radix
+ * character, even if no digits follow the radix
+ * character (normally, a decimal point appears in
+ * the result of these conversions only if a digit
+ * follows it). For g and G conversions, trailing
+ * zeros will not be removed from the result as
+ * they normally are.
+ * <dt>0<dd> d, i, o, x, X, e, E, f, g, and G
+ * conversions, leading zeros (following any
+ * indication of sign or base) are used to pad to
+ * the field width; no space padding is
+ * performed. If the 0 and - flags both appear,
+ * the 0 flag is ignored. For d, i, o, x, and X
+ * conversions, if a precision is specified, the
+ * 0 flag will be ignored. For c conversions,
+ * the flag is ignored.
+ *</dl>
+ *
+ *<h4>Conversion Characters</h4>
+ *<p>
+ * Each conversion character results in fetching zero
+ * or more arguments. The results are undefined if
+ * there are insufficient arguments for the format.
+ * Usually, an unchecked exception will be thrown.
+ * If the format is exhausted while arguments remain,
+ * the excess arguments are ignored.</p>
+ *
+ *<p>
+ * The conversion characters and their meanings are:
+ *</p>
+ *<dl>
+ * <dt>d,i<dd>The int argument is converted to a
+ * signed decimal in the style [-]dddd. The
+ * precision specifies the minimum number of
+ * digits to appear; if the value being
+ * converted can be represented in fewer
+ * digits, it will be expanded with leading
+ * zeros. The default precision is 1. The
+ * result of converting 0 with an explicit
+ * precision of 0 is no characters.
+ * <dt>o<dd> The int argument is converted to unsigned
+ * octal format in the style ddddd. The
+ * precision specifies the minimum number of
+ * digits to appear; if the value being
+ * converted can be represented in fewer
+ * digits, it will be expanded with leading
+ * zeros. The default precision is 1. The
+ * result of converting 0 with an explicit
+ * precision of 0 is no characters.
+ * <dt>x<dd> The int argument is converted to unsigned
+ * hexadecimal format in the style dddd; the
+ * letters abcdef are used. The precision
+ * specifies the minimum numberof digits to
+ * appear; if the value being converted can be
+ * represented in fewer digits, it will be
+ * expanded with leading zeros. The default
+ * precision is 1. The result of converting 0
+ * with an explicit precision of 0 is no
+ * characters.
+ * <dt>X<dd> Behaves the same as the x conversion
+ * character except that letters ABCDEF are
+ * used instead of abcdef.
+ * <dt>f<dd> The floating point number argument is
+ * written in decimal notation in the style
+ * [-]ddd.ddd, where the number of digits after
+ * the radix character (shown here as a decimal
+ * point) is equal to the precision
+ * specification. A Locale is used to determine
+ * the radix character to use in this format.
+ * If the precision is omitted from the
+ * argument, six digits are written after the
+ * radix character; if the precision is
+ * explicitly 0 and the # flag is not specified,
+ * no radix character appears. If a radix
+ * character appears, at least 1 digit appears
+ * before it. The value is rounded to the
+ * appropriate number of digits.
+ * <dt>e,E<dd>The floating point number argument is
+ * written in the style [-]d.ddde{+-}dd
+ * (the symbols {+-} indicate either a plus or
+ * minus sign), where there is one digit before
+ * the radix character (shown here as a decimal
+ * point) and the number of digits after it is
+ * equal to the precision. A Locale is used to
+ * determine the radix character to use in this
+ * format. When the precision is missing, six
+ * digits are written after the radix character;
+ * if the precision is 0 and the # flag is not
+ * specified, no radix character appears. The
+ * E conversion will produce a number with E
+ * instead of e introducing the exponent. The
+ * exponent always contains at least two digits.
+ * However, if the value to be written requires
+ * an exponent greater than two digits,
+ * additional exponent digits are written as
+ * necessary. The value is rounded to the
+ * appropriate number of digits.
+ * <dt>g,G<dd>The floating point number argument is
+ * written in style f or e (or in sytle E in the
+ * case of a G conversion character), with the
+ * precision specifying the number of
+ * significant digits. If the precision is
+ * zero, it is taken as one. The style used
+ * depends on the value converted: style e
+ * (or E) will be used only if the exponent
+ * resulting from the conversion is less than
+ * -4 or greater than or equal to the precision.
+ * Trailing zeros are removed from the result.
+ * A radix character appears only if it is
+ * followed by a digit.
+ * <dt>c,C<dd>The integer argument is converted to a
+ * char and the result is written.
+ *
+ * <dt>s,S<dd>The argument is taken to be a string and
+ * bytes from the string are written until the
+ * end of the string or the number of bytes
+ * indicated by the precision specification of
+ * the argument is reached. If the precision
+ * is omitted from the argument, it is taken to
+ * be infinite, so all characters up to the end
+ * of the string are written.
+ * <dt>%<dd>Write a % character; no argument is
+ * converted.
+ *</dl>
+ *<p>
+ * If a conversion specification does not match one of
+ * the above forms, an IllegalArgumentException is
+ * thrown and the instance of PrintfFormat is not
+ * created.</p>
+ *<p>
+ * If a floating point value is the internal
+ * representation for infinity, the output is
+ * [+]Infinity, where Infinity is either Infinity or
+ * Inf, depending on the desired output string length.
+ * Printing of the sign follows the rules described
+ * above.</p>
+ *<p>
+ * If a floating point value is the internal
+ * representation for "not-a-number," the output is
+ * [+]NaN. Printing of the sign follows the rules
+ * described above.</p>
+ *<p>
+ * In no case does a non-existent or small field width
+ * cause truncation of a field; if the result of a
+ * conversion is wider than the field width, the field
+ * is simply expanded to contain the conversion result.
+ *</p>
+ *<p>
+ * The behavior is like printf. One exception is that
+ * the minimum number of exponent digits is 3 instead
+ * of 2 for e and E formats when the optional L is used
+ * before the e, E, g, or G conversion character. The
+ * optional L does not imply conversion to a long long
+ * double. </p>
+ * <p>
+ * The biggest divergence from the C printf
+ * specification is in the use of 16 bit characters.
+ * This allows the handling of characters beyond the
+ * small ASCII character set and allows the utility to
+ * interoperate correctly with the rest of the Java
+ * runtime environment.</p>
+ *<p>
+ * Omissions from the C printf specification are
+ * numerous. All the known omissions are present
+ * because Java never uses bytes to represent
+ * characters and does not have pointers:</p>
+ *<ul>
+ * <li>%c is the same as %C.
+ * <li>%s is the same as %S.
+ * <li>u, p, and n conversion characters.
+ * <li>%ws format.
+ * <li>h modifier applied to an n conversion character.
+ * <li>l (ell) modifier applied to the c, n, or s
+ * conversion characters.
+ * <li>ll (ell ell) modifier to d, i, o, u, x, or X
+ * conversion characters.
+ * <li>ll (ell ell) modifier to an n conversion
+ * character.
+ * <li>c, C, d,i,o,u,x, and X conversion characters
+ * apply to Byte, Character, Short, Integer, Long
+ * types.
+ * <li>f, e, E, g, and G conversion characters apply
+ * to Float and Double types.
+ * <li>s and S conversion characters apply to String
+ * types.
+ * <li>All other reference types can be formatted
+ * using the s or S conversion characters only.
+ *</ul>
+ * <p>
+ * Most of this specification is quoted from the Unix
+ * man page for the sprintf utility.</p>
+ *
+ * @author Allan Jacobs
+ * @version 1
+ * Release 1: Initial release.
+ * Release 2: Asterisk field widths and precisions
+ * %n$ and *m$
+ * Bug fixes
+ * g format fix (2 digits in e form corrupt)
+ * rounding in f format implemented
+ * round up when digit not printed is 5
+ * formatting of -0.0f
+ * round up/down when last digits are 50000...
+ */
+public class PrintfFormat {
+ /**
+ * Constructs an array of control specifications
+ * possibly preceded, separated, or followed by
+ * ordinary strings. Control strings begin with
+ * unpaired percent signs. A pair of successive
+ * percent signs designates a single percent sign in
+ * the format.
+ * @param fmtArg Control string.
+ * @exception IllegalArgumentException if the control
+ * string is null, zero length, or otherwise
+ * malformed.
+ */
+ public PrintfFormat(String fmtArg)
+ throws IllegalArgumentException {
+ this(Locale.getDefault(),fmtArg);
+ }
+ /**
+ * Constructs an array of control specifications
+ * possibly preceded, separated, or followed by
+ * ordinary strings. Control strings begin with
+ * unpaired percent signs. A pair of successive
+ * percent signs designates a single percent sign in
+ * the format.
+ * @param fmtArg Control string.
+ * @exception IllegalArgumentException if the control
+ * string is null, zero length, or otherwise
+ * malformed.
+ */
+ public PrintfFormat(Locale locale,String fmtArg)
+ throws IllegalArgumentException {
+ dfs = new DecimalFormatSymbols(locale);
+ int ePos=0;
+ ConversionSpecification sFmt=null;
+ String unCS = this.nonControl(fmtArg,0);
+ if (unCS!=null) {
+ sFmt = new ConversionSpecification();
+ sFmt.setLiteral(unCS);
+ vFmt.addElement(sFmt);
+ }
+ while(cPos!=-1 && cPos<fmtArg.length()) {
+ for (ePos=cPos+1; ePos<fmtArg.length();
+ ePos++) {
+ char c=0;
+ c = fmtArg.charAt(ePos);
+ if (c == 'i') break;
+ if (c == 'd') break;
+ if (c == 'f') break;
+ if (c == 'g') break;
+ if (c == 'G') break;
+ if (c == 'o') break;
+ if (c == 'x') break;
+ if (c == 'X') break;
+ if (c == 'e') break;
+ if (c == 'E') break;
+ if (c == 'c') break;
+ if (c == 's') break;
+ if (c == '%') break;
+ }
+ ePos=Math.min(ePos+1,fmtArg.length());
+ sFmt = new ConversionSpecification(
+ fmtArg.substring(cPos,ePos));
+ vFmt.addElement(sFmt);
+ unCS = this.nonControl(fmtArg,ePos);
+ if (unCS!=null) {
+ sFmt = new ConversionSpecification();
+ sFmt.setLiteral(unCS);
+ vFmt.addElement(sFmt);
+ }
+ }
+ }
+ /**
+ * Return a substring starting at
+ * <code>start</code> and ending at either the end
+ * of the String <code>s</code>, the next unpaired
+ * percent sign, or at the end of the String if the
+ * last character is a percent sign.
+ * @param s Control string.
+ * @param start Position in the string
+ * <code>s</code> to begin looking for the start
+ * of a control string.
+ * @return the substring from the start position
+ * to the beginning of the control string.
+ */
+ private String nonControl(String s,int start) {
+ String ret="";
+ cPos=s.indexOf("%",start);
+ if (cPos==-1) cPos=s.length();
+ return s.substring(start,cPos);
+ }
+ /**
+ * Format an array of objects. Byte, Short,
+ * Integer, Long, Float, Double, and Character
+ * arguments are treated as wrappers for primitive
+ * types.
+ * @param o The array of objects to format.
+ * @return The formatted String.
+ */
+ public String sprintf(Object[] o) {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ int i=0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ else {
+ if (cs.isPositionalSpecification()) {
+ i=cs.getArgumentPosition()-1;
+ if (cs.isPositionalFieldWidth()) {
+ int ifw=cs.getArgumentPositionForFieldWidth()-1;
+ cs.setFieldWidthWithArg(((Integer)o[ifw]).intValue());
+ }
+ if (cs.isPositionalPrecision()) {
+ int ipr=cs.getArgumentPositionForPrecision()-1;
+ cs.setPrecisionWithArg(((Integer)o[ipr]).intValue());
+ }
+ }
+ else {
+ if (cs.isVariableFieldWidth()) {
+ cs.setFieldWidthWithArg(((Integer)o[i]).intValue());
+ i++;
+ }
+ if (cs.isVariablePrecision()) {
+ cs.setPrecisionWithArg(((Integer)o[i]).intValue());
+ i++;
+ }
+ }
+ if (o[i] instanceof Byte)
+ sb.append(cs.internalsprintf(
+ ((Byte)o[i]).byteValue()));
+ else if (o[i] instanceof Short)
+ sb.append(cs.internalsprintf(
+ ((Short)o[i]).shortValue()));
+ else if (o[i] instanceof Integer)
+ sb.append(cs.internalsprintf(
+ ((Integer)o[i]).intValue()));
+ else if (o[i] instanceof Long)
+ sb.append(cs.internalsprintf(
+ ((Long)o[i]).longValue()));
+ else if (o[i] instanceof Float)
+ sb.append(cs.internalsprintf(
+ ((Float)o[i]).floatValue()));
+ else if (o[i] instanceof Double)
+ sb.append(cs.internalsprintf(
+ ((Double)o[i]).doubleValue()));
+ else if (o[i] instanceof Character)
+ sb.append(cs.internalsprintf(
+ ((Character)o[i]).charValue()));
+ else if (o[i] instanceof String)
+ sb.append(cs.internalsprintf(
+ (String)o[i]));
+ else
+ sb.append(cs.internalsprintf(
+ o[i]));
+ if (!cs.isPositionalSpecification())
+ i++;
+ }
+ }
+ return sb.toString();
+ }
+ /**
+ * Format nothing. Just use the control string.
+ * @return the formatted String.
+ */
+ public String sprintf() {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ }
+ return sb.toString();
+ }
+ /**
+ * Format an int.
+ * @param x The int to format.
+ * @return The formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is f, e, E, g, G, s,
+ * or S.
+ */
+ public String sprintf(int x)
+ throws IllegalArgumentException {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ else sb.append(cs.internalsprintf(x));
+ }
+ return sb.toString();
+ }
+ /**
+ * Format an long.
+ * @param x The long to format.
+ * @return The formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is f, e, E, g, G, s,
+ * or S.
+ */
+ public String sprintf(long x)
+ throws IllegalArgumentException {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ else sb.append(cs.internalsprintf(x));
+ }
+ return sb.toString();
+ }
+ /**
+ * Format a double.
+ * @param x The double to format.
+ * @return The formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is c, C, s, S,
+ * d, d, x, X, or o.
+ */
+ public String sprintf(double x)
+ throws IllegalArgumentException {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ else sb.append(cs.internalsprintf(x));
+ }
+ return sb.toString();
+ }
+ /**
+ * Format a String.
+ * @param x The String to format.
+ * @return The formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is neither s nor S.
+ */
+ public String sprintf(String x)
+ throws IllegalArgumentException {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ else sb.append(cs.internalsprintf(x));
+ }
+ return sb.toString();
+ }
+ /**
+ * Format an Object. Convert wrapper types to
+ * their primitive equivalents and call the
+ * appropriate internal formatting method. Convert
+ * Strings using an internal formatting method for
+ * Strings. Otherwise use the default formatter
+ * (use toString).
+ * @param x the Object to format.
+ * @return the formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is inappropriate for
+ * formatting an unwrapped value.
+ */
+ public String sprintf(Object x)
+ throws IllegalArgumentException {
+ Enumeration e = vFmt.elements();
+ ConversionSpecification cs = null;
+ char c = 0;
+ StringBuffer sb=new StringBuffer();
+ while (e.hasMoreElements()) {
+ cs = (ConversionSpecification)
+ e.nextElement();
+ c = cs.getConversionCharacter();
+ if (c=='\0') sb.append(cs.getLiteral());
+ else if (c=='%') sb.append("%");
+ else {
+ if (x instanceof Byte)
+ sb.append(cs.internalsprintf(
+ ((Byte)x).byteValue()));
+ else if (x instanceof Short)
+ sb.append(cs.internalsprintf(
+ ((Short)x).shortValue()));
+ else if (x instanceof Integer)
+ sb.append(cs.internalsprintf(
+ ((Integer)x).intValue()));
+ else if (x instanceof Long)
+ sb.append(cs.internalsprintf(
+ ((Long)x).longValue()));
+ else if (x instanceof Float)
+ sb.append(cs.internalsprintf(
+ ((Float)x).floatValue()));
+ else if (x instanceof Double)
+ sb.append(cs.internalsprintf(
+ ((Double)x).doubleValue()));
+ else if (x instanceof Character)
+ sb.append(cs.internalsprintf(
+ ((Character)x).charValue()));
+ else if (x instanceof String)
+ sb.append(cs.internalsprintf(
+ (String)x));
+ else
+ sb.append(cs.internalsprintf(x));
+ }
+ }
+ return sb.toString();
+ }
+ /**
+ *<p>
+ * ConversionSpecification allows the formatting of
+ * a single primitive or object embedded within a
+ * string. The formatting is controlled by a
+ * format string. Only one Java primitive or
+ * object can be formatted at a time.
+ *<p>
+ * A format string is a Java string that contains
+ * a control string. The control string starts at
+ * the first percent sign (%) in the string,
+ * provided that this percent sign
+ *<ol>
+ *<li>is not escaped protected by a matching % or
+ * is not an escape % character,
+ *<li>is not at the end of the format string, and
+ *<li>precedes a sequence of characters that parses
+ * as a valid control string.
+ *</ol>
+ *<p>
+ * A control string takes the form:
+ *<pre> % ['-+ #0]* [0..9]* { . [0..9]* }+
+ * { [hlL] }+ [idfgGoxXeEcs]
+ *</pre>
+ *<p>
+ * The behavior is like printf. One (hopefully the
+ * only) exception is that the minimum number of
+ * exponent digits is 3 instead of 2 for e and E
+ * formats when the optional L is used before the
+ * e, E, g, or G conversion character. The
+ * optional L does not imply conversion to a long
+ * long double.
+ */
+ private class ConversionSpecification {
+ /**
+ * Constructor. Used to prepare an instance
+ * to hold a literal, not a control string.
+ */
+ ConversionSpecification() { }
+ /**
+ * Constructor for a conversion specification.
+ * The argument must begin with a % and end
+ * with the conversion character for the
+ * conversion specification.
+ * @param fmtArg String specifying the
+ * conversion specification.
+ * @exception IllegalArgumentException if the
+ * input string is null, zero length, or
+ * otherwise malformed.
+ */
+ ConversionSpecification(String fmtArg)
+ throws IllegalArgumentException {
+ if (fmtArg==null)
+ throw new NullPointerException();
+ if (fmtArg.length()==0)
+ throw new IllegalArgumentException(
+ "Control strings must have positive"+
+ " lengths.");
+ if (fmtArg.charAt(0)=='%') {
+ fmt = fmtArg;
+ pos=1;
+ setArgPosition();
+ setFlagCharacters();
+ setFieldWidth();
+ setPrecision();
+ setOptionalHL();
+ if (setConversionCharacter()) {
+ if (pos==fmtArg.length()) {
+ if(leadingZeros&&leftJustify)
+ leadingZeros=false;
+ if(precisionSet&&leadingZeros){
+ if(conversionCharacter=='d'
+ ||conversionCharacter=='i'
+ ||conversionCharacter=='o'
+ ||conversionCharacter=='x')
+ {
+ leadingZeros=false;
+ }
+ }
+ }
+ else
+ throw new IllegalArgumentException(
+ "Malformed conversion specification="+
+ fmtArg);
+ }
+ else
+ throw new IllegalArgumentException(
+ "Malformed conversion specification="+
+ fmtArg);
+ }
+ else
+ throw new IllegalArgumentException(
+ "Control strings must begin with %.");
+ }
+ /**
+ * Set the String for this instance.
+ * @param s the String to store.
+ */
+ void setLiteral(String s) {
+ fmt = s;
+ }
+ /**
+ * Get the String for this instance. Translate
+ * any escape sequences.
+ *
+ * @return s the stored String.
+ */
+ String getLiteral() {
+ StringBuffer sb=new StringBuffer();
+ int i=0;
+ while (i<fmt.length()) {
+ if (fmt.charAt(i)=='\\') {
+ i++;
+ if (i<fmt.length()) {
+ char c=fmt.charAt(i);
+ switch(c) {
+ case 'a':
+ sb.append((char)0x07);
+ break;
+ case 'b':
+ sb.append('\b');
+ break;
+ case 'f':
+ sb.append('\f');
+ break;
+ case 'n':
+ sb.append(System.getProperty("line.separator"));
+ break;
+ case 'r':
+ sb.append('\r');
+ break;
+ case 't':
+ sb.append('\t');
+ break;
+ case 'v':
+ sb.append((char)0x0b);
+ break;
+ case '\\':
+ sb.append('\\');
+ break;
+ }
+ i++;
+ }
+ else
+ sb.append('\\');
+ }
+ else
+ i++;
+ }
+ return fmt;
+ }
+ /**
+ * Get the conversion character that tells what
+ * type of control character this instance has.
+ *
+ * @return the conversion character.
+ */
+ char getConversionCharacter() {
+ return conversionCharacter;
+ }
+ /**
+ * Check whether the specifier has a variable
+ * field width that is going to be set by an
+ * argument.
+ * @return <code>true</code> if the conversion
+ * uses an * field width; otherwise
+ * <code>false</code>.
+ */
+ boolean isVariableFieldWidth() {
+ return variableFieldWidth;
+ }
+ /**
+ * Set the field width with an argument. A
+ * negative field width is taken as a - flag
+ * followed by a positive field width.
+ * @param fw the field width.
+ */
+ void setFieldWidthWithArg(int fw) {
+ if (fw<0) leftJustify = true;
+ fieldWidthSet = true;
+ fieldWidth = Math.abs(fw);
+ }
+ /**
+ * Check whether the specifier has a variable
+ * precision that is going to be set by an
+ * argument.
+ * @return <code>true</code> if the conversion
+ * uses an * precision; otherwise
+ * <code>false</code>.
+ */
+ boolean isVariablePrecision() {
+ return variablePrecision;
+ }
+ /**
+ * Set the precision with an argument. A
+ * negative precision will be changed to zero.
+ * @param pr the precision.
+ */
+ void setPrecisionWithArg(int pr) {
+ precisionSet = true;
+ precision = Math.max(pr,0);
+ }
+ /**
+ * Format an int argument using this conversion
+ * specification.
+ * @param s the int to format.
+ * @return the formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is f, e, E, g, or G.
+ */
+ String internalsprintf(int s)
+ throws IllegalArgumentException {
+ String s2 = "";
+ switch(conversionCharacter) {
+ case 'd':
+ case 'i':
+ if (optionalh)
+ s2 = printDFormat((short)s);
+ else if (optionall)
+ s2 = printDFormat((long)s);
+ else
+ s2 = printDFormat(s);
+ break;
+ case 'x':
+ case 'X':
+ if (optionalh)
+ s2 = printXFormat((short)s);
+ else if (optionall)
+ s2 = printXFormat((long)s);
+ else
+ s2 = printXFormat(s);
+ break;
+ case 'o':
+ if (optionalh)
+ s2 = printOFormat((short)s);
+ else if (optionall)
+ s2 = printOFormat((long)s);
+ else
+ s2 = printOFormat(s);
+ break;
+ case 'c':
+ case 'C':
+ s2 = printCFormat((char)s);
+ break;
+ default:
+ throw new IllegalArgumentException(
+ "Cannot format a int with a format using a "+
+ conversionCharacter+
+ " conversion character.");
+ }
+ return s2;
+ }
+ /**
+ * Format a long argument using this conversion
+ * specification.
+ * @param s the long to format.
+ * @return the formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is f, e, E, g, or G.
+ */
+ String internalsprintf(long s)
+ throws IllegalArgumentException {
+ String s2 = "";
+ switch(conversionCharacter) {
+ case 'd':
+ case 'i':
+ if (optionalh)
+ s2 = printDFormat((short)s);
+ else if (optionall)
+ s2 = printDFormat(s);
+ else
+ s2 = printDFormat((int)s);
+ break;
+ case 'x':
+ case 'X':
+ if (optionalh)
+ s2 = printXFormat((short)s);
+ else if (optionall)
+ s2 = printXFormat(s);
+ else
+ s2 = printXFormat((int)s);
+ break;
+ case 'o':
+ if (optionalh)
+ s2 = printOFormat((short)s);
+ else if (optionall)
+ s2 = printOFormat(s);
+ else
+ s2 = printOFormat((int)s);
+ break;
+ case 'c':
+ case 'C':
+ s2 = printCFormat((char)s);
+ break;
+ default:
+ throw new IllegalArgumentException(
+ "Cannot format a long with a format using a "+
+ conversionCharacter+" conversion character.");
+ }
+ return s2;
+ }
+ /**
+ * Format a double argument using this conversion
+ * specification.
+ * @param s the double to format.
+ * @return the formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is c, C, s, S, i, d,
+ * x, X, or o.
+ */
+ String internalsprintf(double s)
+ throws IllegalArgumentException {
+ String s2 = "";
+ switch(conversionCharacter) {
+ case 'f':
+ s2 = printFFormat(s);
+ break;
+ case 'E':
+ case 'e':
+ s2 = printEFormat(s);
+ break;
+ case 'G':
+ case 'g':
+ s2 = printGFormat(s);
+ break;
+ default:
+ throw new IllegalArgumentException("Cannot "+
+ "format a double with a format using a "+
+ conversionCharacter+" conversion character.");
+ }
+ return s2;
+ }
+ /**
+ * Format a String argument using this conversion
+ * specification.
+ * @param s the String to format.
+ * @return the formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is neither s nor S.
+ */
+ String internalsprintf(String s)
+ throws IllegalArgumentException {
+ String s2 = "";
+ if(conversionCharacter=='s'
+ || conversionCharacter=='S')
+ s2 = printSFormat(s);
+ else
+ throw new IllegalArgumentException("Cannot "+
+ "format a String with a format using a "+
+ conversionCharacter+" conversion character.");
+ return s2;
+ }
+ /**
+ * Format an Object argument using this conversion
+ * specification.
+ * @param s the Object to format.
+ * @return the formatted String.
+ * @exception IllegalArgumentException if the
+ * conversion character is neither s nor S.
+ */
+ String internalsprintf(Object s) {
+ String s2 = "";
+ if(conversionCharacter=='s'
+ || conversionCharacter=='S')
+ s2 = printSFormat(s.toString());
+ else
+ throw new IllegalArgumentException(
+ "Cannot format a String with a format using"+
+ " a "+conversionCharacter+
+ " conversion character.");
+ return s2;
+ }
+ /**
+ * For f format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. '+' character means that the conversion
+ * will always begin with a sign (+ or -). The
+ * blank flag character means that a non-negative
+ * input will be preceded with a blank. If both
+ * a '+' and a ' ' are specified, the blank flag
+ * is ignored. The '0' flag character implies that
+ * padding to the field width will be done with
+ * zeros instead of blanks.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the number of digits
+ * to appear after the radix character. Padding is
+ * with trailing 0s.
+ */
+ private char[] fFormatDigits(double x) {
+ // int defaultDigits=6;
+ String sx,sxOut;
+ int i,j,k;
+ int n1In,n2In;
+ int expon=0;
+ boolean minusSign=false;
+ if (x>0.0)
+ sx = Double.toString(x);
+ else if (x<0.0) {
+ sx = Double.toString(-x);
+ minusSign=true;
+ }
+ else {
+ sx = Double.toString(x);
+ if (sx.charAt(0)=='-') {
+ minusSign=true;
+ sx=sx.substring(1);
+ }
+ }
+ int ePos = sx.indexOf('E');
+ int rPos = sx.indexOf('.');
+ if (rPos!=-1) n1In=rPos;
+ else if (ePos!=-1) n1In=ePos;
+ else n1In=sx.length();
+ if (rPos!=-1) {
+ if (ePos!=-1) n2In = ePos-rPos-1;
+ else n2In = sx.length()-rPos-1;
+ }
+ else
+ n2In = 0;
+ if (ePos!=-1) {
+ int ie=ePos+1;
+ expon=0;
+ if (sx.charAt(ie)=='-') {
+ for (++ie; ie<sx.length(); ie++)
+ if (sx.charAt(ie)!='0') break;
+ if (ie<sx.length())
+ expon=-Integer.parseInt(sx.substring(ie));
+ }
+ else {
+ if (sx.charAt(ie)=='+') ++ie;
+ for (; ie<sx.length(); ie++)
+ if (sx.charAt(ie)!='0') break;
+ if (ie<sx.length())
+ expon=Integer.parseInt(sx.substring(ie));
+ }
+ }
+ int p;
+ if (precisionSet) p = precision;
+ else p = defaultDigits-1;
+ char[] ca1 = sx.toCharArray();
+ char[] ca2 = new char[n1In+n2In];
+ char[] ca3,ca4,ca5;
+ for (j=0; j<n1In; j++)
+ ca2[j] = ca1[j];
+ i = j+1;
+ for (k=0; k<n2In; j++,i++,k++)
+ ca2[j] = ca1[i];
+ if (n1In+expon<=0) {
+ ca3 = new char[-expon+n2In];
+ for (j=0,k=0; k<(-n1In-expon); k++,j++)
+ ca3[j]='0';
+ for (i=0; i<(n1In+n2In); i++,j++)
+ ca3[j]=ca2[i];
+ }
+ else
+ ca3 = ca2;
+ boolean carry=false;
+ if (p<-expon+n2In) {
+ if (expon<0) i = p;
+ else i = p+n1In;
+ carry=checkForCarry(ca3,i);
+ if (carry)
+ carry=startSymbolicCarry(ca3,i-1,0);
+ }
+ if (n1In+expon<=0) {
+ ca4 = new char[2+p];
+ if (!carry) ca4[0]='0';
+ else ca4[0]='1';
+ if(alternateForm||!precisionSet||precision!=0){
+ ca4[1]='.';
+ for(i=0,j=2;i<Math.min(p,ca3.length);i++,j++)
+ ca4[j]=ca3[i];
+ for (; j<ca4.length; j++) ca4[j]='0';
+ }
+ }
+ else {
+ if (!carry) {
+ if(alternateForm||!precisionSet
+ ||precision!=0)
+ ca4 = new char[n1In+expon+p+1];
+ else
+ ca4 = new char[n1In+expon];
+ j=0;
+ }
+ else {
+ if(alternateForm||!precisionSet
+ ||precision!=0)
+ ca4 = new char[n1In+expon+p+2];
+ else
+ ca4 = new char[n1In+expon+1];
+ ca4[0]='1';
+ j=1;
+ }
+ for (i=0; i<Math.min(n1In+expon,ca3.length); i++,j++)
+ ca4[j]=ca3[i];
+ for (; i<n1In+expon; i++,j++)
+ ca4[j]='0';
+ if(alternateForm||!precisionSet||precision!=0){
+ ca4[j]='.'; j++;
+ for (k=0; i<ca3.length && k<p; i++,j++,k++)
+ ca4[j]=ca3[i];
+ for (; j<ca4.length; j++) ca4[j]='0';
+ }
+ }
+ int nZeros=0;
+ if (!leftJustify && leadingZeros) {
+ int xThousands=0;
+ if (thousands) {
+ int xlead=0;
+ if (ca4[0]=='+'||ca4[0]=='-'||ca4[0]==' ')
+ xlead=1;
+ int xdp=xlead;
+ for (; xdp<ca4.length; xdp++)
+ if (ca4[xdp]=='.') break;
+ xThousands=(xdp-xlead)/3;
+ }
+ if (fieldWidthSet)
+ nZeros = fieldWidth-ca4.length;
+ if ((!minusSign&&(leadingSign||leadingSpace))||minusSign)
+ nZeros--;
+ nZeros-=xThousands;
+ if (nZeros<0) nZeros=0;
+ }
+ j=0;
+ if ((!minusSign&&(leadingSign||leadingSpace))||minusSign) {
+ ca5 = new char[ca4.length+nZeros+1];
+ j++;
+ }
+ else
+ ca5 = new char[ca4.length+nZeros];
+ if (!minusSign) {
+ if (leadingSign) ca5[0]='+';
+ if (leadingSpace) ca5[0]=' ';
+ }
+ else
+ ca5[0]='-';
+ for (i=0; i<nZeros; i++,j++)
+ ca5[j]='0';
+ for (i=0; i<ca4.length; i++,j++) ca5[j]=ca4[i];
+
+ int lead=0;
+ if (ca5[0]=='+'||ca5[0]=='-'||ca5[0]==' ')
+ lead=1;
+ int dp=lead;
+ for (; dp<ca5.length; dp++)
+ if (ca5[dp]=='.') break;
+ int nThousands=(dp-lead)/3;
+ // Localize the decimal point.
+ if (dp<ca5.length)
+ ca5[dp]=dfs.getDecimalSeparator();
+ char[] ca6 = ca5;
+ if (thousands && nThousands>0) {
+ ca6 = new char[ca5.length+nThousands+lead];
+ ca6[0]=ca5[0];
+ for (i=lead,k=lead; i<dp; i++) {
+ if (i>0 && (dp-i)%3==0) {
+ // ca6[k]=',';
+ ca6[k]=dfs.getGroupingSeparator();
+ ca6[k+1]=ca5[i];
+ k+=2;
+ }
+ else {
+ ca6[k]=ca5[i]; k++;
+ }
+ }
+ for (; i<ca5.length; i++,k++) {
+ ca6[k]=ca5[i];
+ }
+ }
+ return ca6;
+ }
+ /**
+ * An intermediate routine on the way to creating
+ * an f format String. The method decides whether
+ * the input double value is an infinity,
+ * not-a-number, or a finite double and formats
+ * each type of input appropriately.
+ * @param x the double value to be formatted.
+ * @return the converted double value.
+ */
+ private String fFormatString(double x) {
+ boolean noDigits=false;
+ char[] ca6,ca7;
+ if (Double.isInfinite(x)) {
+ if (x==Double.POSITIVE_INFINITY) {
+ if (leadingSign) ca6 = "+Inf".toCharArray();
+ else if (leadingSpace)
+ ca6 = " Inf".toCharArray();
+ else ca6 = "Inf".toCharArray();
+ }
+ else
+ ca6 = "-Inf".toCharArray();
+ noDigits = true;
+ }
+ else if (Double.isNaN(x)) {
+ if (leadingSign) ca6 = "+NaN".toCharArray();
+ else if (leadingSpace)
+ ca6 = " NaN".toCharArray();
+ else ca6 = "NaN".toCharArray();
+ noDigits = true;
+ }
+ else
+ ca6 = fFormatDigits(x);
+ ca7 = applyFloatPadding(ca6,false);
+ return new String(ca7);
+ }
+ /**
+ * For e format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. '+' character means that the conversion
+ * will always begin with a sign (+ or -). The
+ * blank flag character means that a non-negative
+ * input will be preceded with a blank. If both a
+ * '+' and a ' ' are specified, the blank flag is
+ * ignored. The '0' flag character implies that
+ * padding to the field width will be done with
+ * zeros instead of blanks.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear after the radix character.
+ * Padding is with trailing 0s.
+ *
+ * The behavior is like printf. One (hopefully the
+ * only) exception is that the minimum number of
+ * exponent digits is 3 instead of 2 for e and E
+ * formats when the optional L is used before the
+ * e, E, g, or G conversion character. The optional
+ * L does not imply conversion to a long long
+ * double.
+ */
+ private char[] eFormatDigits(double x,char eChar) {
+ char[] ca1,ca2,ca3;
+ // int defaultDigits=6;
+ String sx,sxOut;
+ int i,j,k,p;
+ int n1In,n2In;
+ int expon=0;
+ int ePos,rPos,eSize;
+ boolean minusSign=false;
+ if (x>0.0)
+ sx = Double.toString(x);
+ else if (x<0.0) {
+ sx = Double.toString(-x);
+ minusSign=true;
+ }
+ else {
+ sx = Double.toString(x);
+ if (sx.charAt(0)=='-') {
+ minusSign=true;
+ sx=sx.substring(1);
+ }
+ }
+ ePos = sx.indexOf('E');
+ if (ePos==-1) ePos = sx.indexOf('e');
+ rPos = sx.indexOf('.');
+ if (rPos!=-1) n1In=rPos;
+ else if (ePos!=-1) n1In=ePos;
+ else n1In=sx.length();
+ if (rPos!=-1) {
+ if (ePos!=-1) n2In = ePos-rPos-1;
+ else n2In = sx.length()-rPos-1;
+ }
+ else
+ n2In = 0;
+ if (ePos!=-1) {
+ int ie=ePos+1;
+ expon=0;
+ if (sx.charAt(ie)=='-') {
+ for (++ie; ie<sx.length(); ie++)
+ if (sx.charAt(ie)!='0') break;
+ if (ie<sx.length())
+ expon=-Integer.parseInt(sx.substring(ie));
+ }
+ else {
+ if (sx.charAt(ie)=='+') ++ie;
+ for (; ie<sx.length(); ie++)
+ if (sx.charAt(ie)!='0') break;
+ if (ie<sx.length())
+ expon=Integer.parseInt(sx.substring(ie));
+ }
+ }
+ if (rPos!=-1) expon += rPos-1;
+ if (precisionSet) p = precision;
+ else p = defaultDigits-1;
+ if (rPos!=-1 && ePos!=-1)
+ ca1=(sx.substring(0,rPos)+
+ sx.substring(rPos+1,ePos)).toCharArray();
+ else if (rPos!=-1)
+ ca1 = (sx.substring(0,rPos)+
+ sx.substring(rPos+1)).toCharArray();
+ else if (ePos!=-1)
+ ca1 = sx.substring(0,ePos).toCharArray();
+ else
+ ca1 = sx.toCharArray();
+ boolean carry=false;
+ int i0=0;
+ if (ca1[0]!='0')
+ i0 = 0;
+ else
+ for (i0=0; i0<ca1.length; i0++)
+ if (ca1[i0]!='0') break;
+ if (i0+p<ca1.length-1) {
+ carry=checkForCarry(ca1,i0+p+1);
+ if (carry)
+ carry = startSymbolicCarry(ca1,i0+p,i0);
+ if (carry) {
+ ca2 = new char[i0+p+1];
+ ca2[i0]='1';
+ for (j=0; j<i0; j++) ca2[j]='0';
+ for (i=i0,j=i0+1; j<p+1; i++,j++)
+ ca2[j] = ca1[i];
+ expon++;
+ ca1 = ca2;
+ }
+ }
+ if (Math.abs(expon)<100 && !optionalL) eSize=4;
+ else eSize=5;
+ if (alternateForm||!precisionSet||precision!=0)
+ ca2 = new char[2+p+eSize];
+ else
+ ca2 = new char[1+eSize];
+ if (ca1[0]!='0') {
+ ca2[0] = ca1[0];
+ j=1;
+ }
+ else {
+ for (j=1; j<(ePos==-1?ca1.length:ePos); j++)
+ if (ca1[j]!='0') break;
+ if ((ePos!=-1 && j<ePos)||
+ (ePos==-1 && j<ca1.length)) {
+ ca2[0] = ca1[j];
+ expon -= j;
+ j++;
+ }
+ else {
+ ca2[0]='0';
+ j=2;
+ }
+ }
+ if (alternateForm||!precisionSet||precision!=0) {
+ ca2[1] = '.';
+ i=2;
+ }
+ else
+ i=1;
+ for (k=0; k<p && j<ca1.length; j++,i++,k++)
+ ca2[i] = ca1[j];
+ for (;i<ca2.length-eSize; i++)
+ ca2[i] = '0';
+ ca2[i++] = eChar;
+ if (expon<0) ca2[i++]='-';
+ else ca2[i++]='+';
+ expon = Math.abs(expon);
+ if (expon>=100) {
+ switch(expon/100) {
+ case 1: ca2[i]='1'; break;
+ case 2: ca2[i]='2'; break;
+ case 3: ca2[i]='3'; break;
+ case 4: ca2[i]='4'; break;
+ case 5: ca2[i]='5'; break;
+ case 6: ca2[i]='6'; break;
+ case 7: ca2[i]='7'; break;
+ case 8: ca2[i]='8'; break;
+ case 9: ca2[i]='9'; break;
+ }
+ i++;
+ }
+ switch((expon%100)/10) {
+ case 0: ca2[i]='0'; break;
+ case 1: ca2[i]='1'; break;
+ case 2: ca2[i]='2'; break;
+ case 3: ca2[i]='3'; break;
+ case 4: ca2[i]='4'; break;
+ case 5: ca2[i]='5'; break;
+ case 6: ca2[i]='6'; break;
+ case 7: ca2[i]='7'; break;
+ case 8: ca2[i]='8'; break;
+ case 9: ca2[i]='9'; break;
+ }
+ i++;
+ switch(expon%10) {
+ case 0: ca2[i]='0'; break;
+ case 1: ca2[i]='1'; break;
+ case 2: ca2[i]='2'; break;
+ case 3: ca2[i]='3'; break;
+ case 4: ca2[i]='4'; break;
+ case 5: ca2[i]='5'; break;
+ case 6: ca2[i]='6'; break;
+ case 7: ca2[i]='7'; break;
+ case 8: ca2[i]='8'; break;
+ case 9: ca2[i]='9'; break;
+ }
+ int nZeros=0;
+ if (!leftJustify && leadingZeros) {
+ int xThousands=0;
+ if (thousands) {
+ int xlead=0;
+ if (ca2[0]=='+'||ca2[0]=='-'||ca2[0]==' ')
+ xlead=1;
+ int xdp=xlead;
+ for (; xdp<ca2.length; xdp++)
+ if (ca2[xdp]=='.') break;
+ xThousands=(xdp-xlead)/3;
+ }
+ if (fieldWidthSet)
+ nZeros = fieldWidth-ca2.length;
+ if ((!minusSign&&(leadingSign||leadingSpace))||minusSign)
+ nZeros--;
+ nZeros-=xThousands;
+ if (nZeros<0) nZeros=0;
+ }
+ j=0;
+ if ((!minusSign&&(leadingSign || leadingSpace))||minusSign) {
+ ca3 = new char[ca2.length+nZeros+1];
+ j++;
+ }
+ else
+ ca3 = new char[ca2.length+nZeros];
+ if (!minusSign) {
+ if (leadingSign) ca3[0]='+';
+ if (leadingSpace) ca3[0]=' ';
+ }
+ else
+ ca3[0]='-';
+ for (k=0; k<nZeros; j++,k++)
+ ca3[j]='0';
+ for (i=0; i<ca2.length && j<ca3.length; i++,j++)
+ ca3[j]=ca2[i];
+
+ int lead=0;
+ if (ca3[0]=='+'||ca3[0]=='-'||ca3[0]==' ')
+ lead=1;
+ int dp=lead;
+ for (; dp<ca3.length; dp++)
+ if (ca3[dp]=='.') break;
+ int nThousands=dp/3;
+ // Localize the decimal point.
+ if (dp < ca3.length)
+ ca3[dp] = dfs.getDecimalSeparator();
+ char[] ca4 = ca3;
+ if (thousands && nThousands>0) {
+ ca4 = new char[ca3.length+nThousands+lead];
+ ca4[0]=ca3[0];
+ for (i=lead,k=lead; i<dp; i++) {
+ if (i>0 && (dp-i)%3==0) {
+ // ca4[k]=',';
+ ca4[k]=dfs.getGroupingSeparator();
+ ca4[k+1]=ca3[i];
+ k+=2;
+ }
+ else {
+ ca4[k]=ca3[i]; k++;
+ }
+ }
+ for (; i<ca3.length; i++,k++)
+ ca4[k]=ca3[i];
+ }
+ return ca4;
+ }
+ /**
+ * Check to see if the digits that are going to
+ * be truncated because of the precision should
+ * force a round in the preceding digits.
+ * @param ca1 the array of digits
+ * @param icarry the index of the first digit that
+ * is to be truncated from the print
+ * @return <code>true</code> if the truncation forces
+ * a round that will change the print
+ */
+ private boolean checkForCarry(char[] ca1,int icarry) {
+ boolean carry=false;
+ if (icarry<ca1.length) {
+ if (ca1[icarry]=='6'||ca1[icarry]=='7'
+ ||ca1[icarry]=='8'||ca1[icarry]=='9') carry=true;
+ else if (ca1[icarry]=='5') {
+ int ii=icarry+1;
+ for (;ii<ca1.length; ii++)
+ if (ca1[ii]!='0') break;
+ carry=ii<ca1.length;
+ if (!carry&&icarry>0) {
+ carry=(ca1[icarry-1]=='1'||ca1[icarry-1]=='3'
+ ||ca1[icarry-1]=='5'||ca1[icarry-1]=='7'
+ ||ca1[icarry-1]=='9');
+ }
+ }
+ }
+ return carry;
+ }
+ /**
+ * Start the symbolic carry process. The process
+ * is not quite finished because the symbolic
+ * carry may change the length of the string and
+ * change the exponent (in e format).
+ * @param cLast index of the last digit changed
+ * by the round
+ * @param cFirst index of the first digit allowed
+ * to be changed by this phase of the round
+ * @return <code>true</code> if the carry forces
+ * a round that will change the print still
+ * more
+ */
+ private boolean startSymbolicCarry(
+ char[] ca,int cLast,int cFirst) {
+ boolean carry=true;
+ for (int i=cLast; carry && i>=cFirst; i--) {
+ carry = false;
+ switch(ca[i]) {
+ case '0': ca[i]='1'; break;
+ case '1': ca[i]='2'; break;
+ case '2': ca[i]='3'; break;
+ case '3': ca[i]='4'; break;
+ case '4': ca[i]='5'; break;
+ case '5': ca[i]='6'; break;
+ case '6': ca[i]='7'; break;
+ case '7': ca[i]='8'; break;
+ case '8': ca[i]='9'; break;
+ case '9': ca[i]='0'; carry=true; break;
+ }
+ }
+ return carry;
+ }
+ /**
+ * An intermediate routine on the way to creating
+ * an e format String. The method decides whether
+ * the input double value is an infinity,
+ * not-a-number, or a finite double and formats
+ * each type of input appropriately.
+ * @param x the double value to be formatted.
+ * @param eChar an 'e' or 'E' to use in the
+ * converted double value.
+ * @return the converted double value.
+ */
+ private String eFormatString(double x,char eChar) {
+ boolean noDigits=false;
+ char[] ca4,ca5;
+ if (Double.isInfinite(x)) {
+ if (x==Double.POSITIVE_INFINITY) {
+ if (leadingSign) ca4 = "+Inf".toCharArray();
+ else if (leadingSpace)
+ ca4 = " Inf".toCharArray();
+ else ca4 = "Inf".toCharArray();
+ }
+ else
+ ca4 = "-Inf".toCharArray();
+ noDigits = true;
+ }
+ else if (Double.isNaN(x)) {
+ if (leadingSign) ca4 = "+NaN".toCharArray();
+ else if (leadingSpace)
+ ca4 = " NaN".toCharArray();
+ else ca4 = "NaN".toCharArray();
+ noDigits = true;
+ }
+ else
+ ca4 = eFormatDigits(x,eChar);
+ ca5 = applyFloatPadding(ca4,false);
+ return new String(ca5);
+ }
+ /**
+ * Apply zero or blank, left or right padding.
+ * @param ca4 array of characters before padding is
+ * finished
+ * @param noDigits NaN or signed Inf
+ * @return a padded array of characters
+ */
+ private char[] applyFloatPadding(
+ char[] ca4,boolean noDigits) {
+ char[] ca5 = ca4;
+ if (fieldWidthSet) {
+ int i,j,nBlanks;
+ if (leftJustify) {
+ nBlanks = fieldWidth-ca4.length;
+ if (nBlanks > 0) {
+ ca5 = new char[ca4.length+nBlanks];
+ for (i=0; i<ca4.length; i++)
+ ca5[i] = ca4[i];
+ for (j=0; j<nBlanks; j++,i++)
+ ca5[i] = ' ';
+ }
+ }
+ else if (!leadingZeros || noDigits) {
+ nBlanks = fieldWidth-ca4.length;
+ if (nBlanks > 0) {
+ ca5 = new char[ca4.length+nBlanks];
+ for (i=0; i<nBlanks; i++)
+ ca5[i] = ' ';
+ for (j=0; j<ca4.length; i++,j++)
+ ca5[i] = ca4[j];
+ }
+ }
+ else if (leadingZeros) {
+ nBlanks = fieldWidth-ca4.length;
+ if (nBlanks > 0) {
+ ca5 = new char[ca4.length+nBlanks];
+ i=0; j=0;
+ if (ca4[0]=='-') { ca5[0]='-'; i++; j++; }
+ for (int k=0; k<nBlanks; i++,k++)
+ ca5[i] = '0';
+ for (; j<ca4.length; i++,j++)
+ ca5[i] = ca4[j];
+ }
+ }
+ }
+ return ca5;
+ }
+ /**
+ * Format method for the f conversion character.
+ * @param x the double to format.
+ * @return the formatted String.
+ */
+ private String printFFormat(double x) {
+ return fFormatString(x);
+ }
+ /**
+ * Format method for the e or E conversion
+ * character.
+ * @param x the double to format.
+ * @return the formatted String.
+ */
+ private String printEFormat(double x) {
+ if (conversionCharacter=='e')
+ return eFormatString(x,'e');
+ else
+ return eFormatString(x,'E');
+ }
+ /**
+ * Format method for the g conversion character.
+ *
+ * For g format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. '+' character means that the conversion
+ * will always begin with a sign (+ or -). The
+ * blank flag character means that a non-negative
+ * input will be preceded with a blank. If both a
+ * '+' and a ' ' are specified, the blank flag is
+ * ignored. The '0' flag character implies that
+ * padding to the field width will be done with
+ * zeros instead of blanks.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear after the radix character.
+ * Padding is with trailing 0s.
+ * @param x the double to format.
+ * @return the formatted String.
+ */
+ private String printGFormat(double x) {
+ String sx,sy,sz,ret;
+ int savePrecision=precision;
+ int i;
+ char[] ca4,ca5;
+ boolean noDigits=false;
+ if (Double.isInfinite(x)) {
+ if (x==Double.POSITIVE_INFINITY) {
+ if (leadingSign) ca4 = "+Inf".toCharArray();
+ else if (leadingSpace)
+ ca4 = " Inf".toCharArray();
+ else ca4 = "Inf".toCharArray();
+ }
+ else
+ ca4 = "-Inf".toCharArray();
+ noDigits = true;
+ }
+ else if (Double.isNaN(x)) {
+ if (leadingSign) ca4 = "+NaN".toCharArray();
+ else if (leadingSpace)
+ ca4 = " NaN".toCharArray();
+ else ca4 = "NaN".toCharArray();
+ noDigits = true;
+ }
+ else {
+ if (!precisionSet) precision=defaultDigits;
+ if (precision==0) precision=1;
+ int ePos=-1;
+ if (conversionCharacter=='g') {
+ sx = eFormatString(x,'e').trim();
+ ePos=sx.indexOf('e');
+ }
+ else {
+ sx = eFormatString(x,'E').trim();
+ ePos=sx.indexOf('E');
+ }
+ i=ePos+1;
+ int expon=0;
+ if (sx.charAt(i)=='-') {
+ for (++i; i<sx.length(); i++)
+ if (sx.charAt(i)!='0') break;
+ if (i<sx.length())
+ expon=-Integer.parseInt(sx.substring(i));
+ }
+ else {
+ if (sx.charAt(i)=='+') ++i;
+ for (; i<sx.length(); i++)
+ if (sx.charAt(i)!='0') break;
+ if (i<sx.length())
+ expon=Integer.parseInt(sx.substring(i));
+ }
+ // Trim trailing zeros.
+ // If the radix character is not followed by
+ // a digit, trim it, too.
+ if (!alternateForm) {
+ if (expon>=-4 && expon<precision)
+ sy = fFormatString(x).trim();
+ else
+ sy = sx.substring(0,ePos);
+ i=sy.length()-1;
+ for (; i>=0; i--)
+ if (sy.charAt(i)!='0') break;
+ if (i>=0 && sy.charAt(i)=='.') i--;
+ if (i==-1) sz="0";
+ else if (!Character.isDigit(sy.charAt(i)))
+ sz=sy.substring(0,i+1)+"0";
+ else sz=sy.substring(0,i+1);
+ if (expon>=-4 && expon<precision)
+ ret=sz;
+ else
+ ret=sz+sx.substring(ePos);
+ }
+ else {
+ if (expon>=-4 && expon<precision)
+ ret = fFormatString(x).trim();
+ else
+ ret = sx;
+ }
+ // leading space was trimmed off during
+ // construction
+ if (leadingSpace) if (x>=0) ret = " "+ret;
+ ca4 = ret.toCharArray();
+ }
+ // Pad with blanks or zeros.
+ ca5 = applyFloatPadding(ca4,false);
+ precision=savePrecision;
+ return new String(ca5);
+ }
+ /**
+ * Format method for the d conversion specifer and
+ * short argument.
+ *
+ * For d format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. A '+' character means that the conversion
+ * will always begin with a sign (+ or -). The
+ * blank flag character means that a non-negative
+ * input will be preceded with a blank. If both a
+ * '+' and a ' ' are specified, the blank flag is
+ * ignored. The '0' flag character implies that
+ * padding to the field width will be done with
+ * zeros instead of blanks.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the short to format.
+ * @return the formatted String.
+ */
+ private String printDFormat(short x) {
+ return printDFormat(Short.toString(x));
+ }
+ /**
+ * Format method for the d conversion character and
+ * long argument.
+ *
+ * For d format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. A '+' character means that the conversion
+ * will always begin with a sign (+ or -). The
+ * blank flag character means that a non-negative
+ * input will be preceded with a blank. If both a
+ * '+' and a ' ' are specified, the blank flag is
+ * ignored. The '0' flag character implies that
+ * padding to the field width will be done with
+ * zeros instead of blanks.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the long to format.
+ * @return the formatted String.
+ */
+ private String printDFormat(long x) {
+ return printDFormat(Long.toString(x));
+ }
+ /**
+ * Format method for the d conversion character and
+ * int argument.
+ *
+ * For d format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. A '+' character means that the conversion
+ * will always begin with a sign (+ or -). The
+ * blank flag character means that a non-negative
+ * input will be preceded with a blank. If both a
+ * '+' and a ' ' are specified, the blank flag is
+ * ignored. The '0' flag character implies that
+ * padding to the field width will be done with
+ * zeros instead of blanks.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the int to format.
+ * @return the formatted String.
+ */
+ private String printDFormat(int x) {
+ return printDFormat(Integer.toString(x));
+ }
+ /**
+ * Utility method for formatting using the d
+ * conversion character.
+ * @param sx the String to format, the result of
+ * converting a short, int, or long to a
+ * String.
+ * @return the formatted String.
+ */
+ private String printDFormat(String sx) {
+ int nLeadingZeros=0;
+ int nBlanks=0,n=0;
+ int i=0,jFirst=0;
+ boolean neg = sx.charAt(0)=='-';
+ if (sx.equals("0")&&precisionSet&&precision==0)
+ sx="";
+ if (!neg) {
+ if (precisionSet && sx.length() < precision)
+ nLeadingZeros = precision-sx.length();
+ }
+ else {
+ if (precisionSet&&(sx.length()-1)<precision)
+ nLeadingZeros = precision-sx.length()+1;
+ }
+ if (nLeadingZeros<0) nLeadingZeros=0;
+ if (fieldWidthSet) {
+ nBlanks = fieldWidth-nLeadingZeros-sx.length();
+ if (!neg&&(leadingSign||leadingSpace))
+ nBlanks--;
+ }
+ if (nBlanks<0) nBlanks=0;
+ if (leadingSign) n++;
+ else if (leadingSpace) n++;
+ n += nBlanks;
+ n += nLeadingZeros;
+ n += sx.length();
+ char[] ca = new char[n];
+ if (leftJustify) {
+ if (neg) ca[i++] = '-';
+ else if (leadingSign) ca[i++] = '+';
+ else if (leadingSpace) ca[i++] = ' ';
+ char[] csx = sx.toCharArray();
+ jFirst = neg?1:0;
+ for (int j=0; j<nLeadingZeros; i++,j++)
+ ca[i]='0';
+ for (int j=jFirst; j<csx.length; j++,i++)
+ ca[i] = csx[j];
+ for (int j=0; j<nBlanks; i++,j++)
+ ca[i] = ' ';
+ }
+ else {
+ if (!leadingZeros) {
+ for (i=0; i<nBlanks; i++)
+ ca[i] = ' ';
+ if (neg) ca[i++] = '-';
+ else if (leadingSign) ca[i++] = '+';
+ else if (leadingSpace) ca[i++] = ' ';
+ }
+ else {
+ if (neg) ca[i++] = '-';
+ else if (leadingSign) ca[i++] = '+';
+ else if (leadingSpace) ca[i++] = ' ';
+ for (int j=0; j<nBlanks; j++,i++)
+ ca[i] = '0';
+ }
+ for (int j=0; j<nLeadingZeros; j++,i++)
+ ca[i] = '0';
+ char[] csx = sx.toCharArray();
+ jFirst = neg?1:0;
+ for (int j=jFirst; j<csx.length; j++,i++)
+ ca[i] = csx[j];
+ }
+ return new String(ca);
+ }
+ /**
+ * Format method for the x conversion character and
+ * short argument.
+ *
+ * For x format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. The '#' flag character means to lead with
+ * '0x'.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the short to format.
+ * @return the formatted String.
+ */
+ private String printXFormat(short x) {
+ String sx=null;
+ if (x == Short.MIN_VALUE)
+ sx = "8000";
+ else if (x < 0) {
+ String t;
+ if (x==Short.MIN_VALUE)
+ t = "0";
+ else {
+ t = Integer.toString(
+ (~(-x-1))^Short.MIN_VALUE,16);
+ if (t.charAt(0)=='F'||t.charAt(0)=='f')
+ t = t.substring(16,32);
+ }
+ switch (t.length()) {
+ case 1:
+ sx = "800"+t;
+ break;
+ case 2:
+ sx = "80"+t;
+ break;
+ case 3:
+ sx = "8"+t;
+ break;
+ case 4:
+ switch (t.charAt(0)) {
+ case '1':
+ sx = "9"+t.substring(1,4);
+ break;
+ case '2':
+ sx = "a"+t.substring(1,4);
+ break;
+ case '3':
+ sx = "b"+t.substring(1,4);
+ break;
+ case '4':
+ sx = "c"+t.substring(1,4);
+ break;
+ case '5':
+ sx = "d"+t.substring(1,4);
+ break;
+ case '6':
+ sx = "e"+t.substring(1,4);
+ break;
+ case '7':
+ sx = "f"+t.substring(1,4);
+ break;
+ }
+ break;
+ }
+ }
+ else
+ sx = Integer.toString((int)x,16);
+ return printXFormat(sx);
+ }
+ /**
+ * Format method for the x conversion character and
+ * long argument.
+ *
+ * For x format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. The '#' flag character means to lead with
+ * '0x'.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the long to format.
+ * @return the formatted String.
+ */
+ private String printXFormat(long x) {
+ String sx=null;
+ if (x == Long.MIN_VALUE)
+ sx = "8000000000000000";
+ else if (x < 0) {
+ String t = Long.toString(
+ (~(-x-1))^Long.MIN_VALUE,16);
+ switch (t.length()) {
+ case 1:
+ sx = "800000000000000"+t;
+ break;
+ case 2:
+ sx = "80000000000000"+t;
+ break;
+ case 3:
+ sx = "8000000000000"+t;
+ break;
+ case 4:
+ sx = "800000000000"+t;
+ break;
+ case 5:
+ sx = "80000000000"+t;
+ break;
+ case 6:
+ sx = "8000000000"+t;
+ break;
+ case 7:
+ sx = "800000000"+t;
+ break;
+ case 8:
+ sx = "80000000"+t;
+ break;
+ case 9:
+ sx = "8000000"+t;
+ break;
+ case 10:
+ sx = "800000"+t;
+ break;
+ case 11:
+ sx = "80000"+t;
+ break;
+ case 12:
+ sx = "8000"+t;
+ break;
+ case 13:
+ sx = "800"+t;
+ break;
+ case 14:
+ sx = "80"+t;
+ break;
+ case 15:
+ sx = "8"+t;
+ break;
+ case 16:
+ switch (t.charAt(0)) {
+ case '1':
+ sx = "9"+t.substring(1,16);
+ break;
+ case '2':
+ sx = "a"+t.substring(1,16);
+ break;
+ case '3':
+ sx = "b"+t.substring(1,16);
+ break;
+ case '4':
+ sx = "c"+t.substring(1,16);
+ break;
+ case '5':
+ sx = "d"+t.substring(1,16);
+ break;
+ case '6':
+ sx = "e"+t.substring(1,16);
+ break;
+ case '7':
+ sx = "f"+t.substring(1,16);
+ break;
+ }
+ break;
+ }
+ }
+ else
+ sx = Long.toString(x,16);
+ return printXFormat(sx);
+ }
+ /**
+ * Format method for the x conversion character and
+ * int argument.
+ *
+ * For x format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. The '#' flag character means to lead with
+ * '0x'.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the int to format.
+ * @return the formatted String.
+ */
+ private String printXFormat(int x) {
+ String sx=null;
+ if (x == Integer.MIN_VALUE)
+ sx = "80000000";
+ else if (x < 0) {
+ String t = Integer.toString(
+ (~(-x-1))^Integer.MIN_VALUE,16);
+ switch (t.length()) {
+ case 1:
+ sx = "8000000"+t;
+ break;
+ case 2:
+ sx = "800000"+t;
+ break;
+ case 3:
+ sx = "80000"+t;
+ break;
+ case 4:
+ sx = "8000"+t;
+ break;
+ case 5:
+ sx = "800"+t;
+ break;
+ case 6:
+ sx = "80"+t;
+ break;
+ case 7:
+ sx = "8"+t;
+ break;
+ case 8:
+ switch (t.charAt(0)) {
+ case '1':
+ sx = "9"+t.substring(1,8);
+ break;
+ case '2':
+ sx = "a"+t.substring(1,8);
+ break;
+ case '3':
+ sx = "b"+t.substring(1,8);
+ break;
+ case '4':
+ sx = "c"+t.substring(1,8);
+ break;
+ case '5':
+ sx = "d"+t.substring(1,8);
+ break;
+ case '6':
+ sx = "e"+t.substring(1,8);
+ break;
+ case '7':
+ sx = "f"+t.substring(1,8);
+ break;
+ }
+ break;
+ }
+ }
+ else
+ sx = Integer.toString(x,16);
+ return printXFormat(sx);
+ }
+ /**
+ * Utility method for formatting using the x
+ * conversion character.
+ * @param sx the String to format, the result of
+ * converting a short, int, or long to a
+ * String.
+ * @return the formatted String.
+ */
+ private String printXFormat(String sx) {
+ int nLeadingZeros = 0;
+ int nBlanks = 0;
+ if (sx.equals("0")&&precisionSet&&precision==0)
+ sx="";
+ if (precisionSet)
+ nLeadingZeros = precision-sx.length();
+ if (nLeadingZeros<0) nLeadingZeros=0;
+ if (fieldWidthSet) {
+ nBlanks = fieldWidth-nLeadingZeros-sx.length();
+ if (alternateForm) nBlanks = nBlanks - 2;
+ }
+ if (nBlanks<0) nBlanks=0;
+ int n=0;
+ if (alternateForm) n+=2;
+ n += nLeadingZeros;
+ n += sx.length();
+ n += nBlanks;
+ char[] ca = new char[n];
+ int i=0;
+ if (leftJustify) {
+ if (alternateForm) {
+ ca[i++]='0'; ca[i++]='x';
+ }
+ for (int j=0; j<nLeadingZeros; j++,i++)
+ ca[i]='0';
+ char[] csx = sx.toCharArray();
+ for (int j=0; j<csx.length; j++,i++)
+ ca[i] = csx[j];
+ for (int j=0; j<nBlanks; j++,i++)
+ ca[i] = ' ';
+ }
+ else {
+ if (!leadingZeros)
+ for (int j=0; j<nBlanks; j++,i++)
+ ca[i] = ' ';
+ if (alternateForm) {
+ ca[i++]='0'; ca[i++]='x';
+ }
+ if (leadingZeros)
+ for (int j=0; j<nBlanks; j++,i++)
+ ca[i] = '0';
+ for (int j=0; j<nLeadingZeros; j++,i++)
+ ca[i]='0';
+ char[] csx = sx.toCharArray();
+ for (int j=0; j<csx.length; j++,i++)
+ ca[i] = csx[j];
+ }
+ String caReturn=new String(ca);
+ if (conversionCharacter=='X')
+ caReturn = caReturn.toUpperCase();
+ return caReturn;
+ }
+ /**
+ * Format method for the o conversion character and
+ * short argument.
+ *
+ * For o format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. The '#' flag character means that the
+ * output begins with a leading 0 and the precision
+ * is increased by 1.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the short to format.
+ * @return the formatted String.
+ */
+ private String printOFormat(short x) {
+ String sx=null;
+ if (x == Short.MIN_VALUE)
+ sx = "100000";
+ else if (x < 0) {
+ String t = Integer.toString(
+ (~(-x-1))^Short.MIN_VALUE,8);
+ switch (t.length()) {
+ case 1:
+ sx = "10000"+t;
+ break;
+ case 2:
+ sx = "1000"+t;
+ break;
+ case 3:
+ sx = "100"+t;
+ break;
+ case 4:
+ sx = "10"+t;
+ break;
+ case 5:
+ sx = "1"+t;
+ break;
+ }
+ }
+ else
+ sx = Integer.toString((int)x,8);
+ return printOFormat(sx);
+ }
+ /**
+ * Format method for the o conversion character and
+ * long argument.
+ *
+ * For o format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. The '#' flag character means that the
+ * output begins with a leading 0 and the precision
+ * is increased by 1.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the long to format.
+ * @return the formatted String.
+ */
+ private String printOFormat(long x) {
+ String sx=null;
+ if (x == Long.MIN_VALUE)
+ sx = "1000000000000000000000";
+ else if (x < 0) {
+ String t = Long.toString(
+ (~(-x-1))^Long.MIN_VALUE,8);
+ switch (t.length()) {
+ case 1:
+ sx = "100000000000000000000"+t;
+ break;
+ case 2:
+ sx = "10000000000000000000"+t;
+ break;
+ case 3:
+ sx = "1000000000000000000"+t;
+ break;
+ case 4:
+ sx = "100000000000000000"+t;
+ break;
+ case 5:
+ sx = "10000000000000000"+t;
+ break;
+ case 6:
+ sx = "1000000000000000"+t;
+ break;
+ case 7:
+ sx = "100000000000000"+t;
+ break;
+ case 8:
+ sx = "10000000000000"+t;
+ break;
+ case 9:
+ sx = "1000000000000"+t;
+ break;
+ case 10:
+ sx = "100000000000"+t;
+ break;
+ case 11:
+ sx = "10000000000"+t;
+ break;
+ case 12:
+ sx = "1000000000"+t;
+ break;
+ case 13:
+ sx = "100000000"+t;
+ break;
+ case 14:
+ sx = "10000000"+t;
+ break;
+ case 15:
+ sx = "1000000"+t;
+ break;
+ case 16:
+ sx = "100000"+t;
+ break;
+ case 17:
+ sx = "10000"+t;
+ break;
+ case 18:
+ sx = "1000"+t;
+ break;
+ case 19:
+ sx = "100"+t;
+ break;
+ case 20:
+ sx = "10"+t;
+ break;
+ case 21:
+ sx = "1"+t;
+ break;
+ }
+ }
+ else
+ sx = Long.toString(x,8);
+ return printOFormat(sx);
+ }
+ /**
+ * Format method for the o conversion character and
+ * int argument.
+ *
+ * For o format, the flag character '-', means that
+ * the output should be left justified within the
+ * field. The default is to pad with blanks on the
+ * left. The '#' flag character means that the
+ * output begins with a leading 0 and the precision
+ * is increased by 1.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is to
+ * add no padding. Padding is with blanks by
+ * default.
+ *
+ * The precision, if set, is the minimum number of
+ * digits to appear. Padding is with leading 0s.
+ * @param x the int to format.
+ * @return the formatted String.
+ */
+ private String printOFormat(int x) {
+ String sx=null;
+ if (x == Integer.MIN_VALUE)
+ sx = "20000000000";
+ else if (x < 0) {
+ String t = Integer.toString(
+ (~(-x-1))^Integer.MIN_VALUE,8);
+ switch (t.length()) {
+ case 1:
+ sx = "2000000000"+t;
+ break;
+ case 2:
+ sx = "200000000"+t;
+ break;
+ case 3:
+ sx = "20000000"+t;
+ break;
+ case 4:
+ sx = "2000000"+t;
+ break;
+ case 5:
+ sx = "200000"+t;
+ break;
+ case 6:
+ sx = "20000"+t;
+ break;
+ case 7:
+ sx = "2000"+t;
+ break;
+ case 8:
+ sx = "200"+t;
+ break;
+ case 9:
+ sx = "20"+t;
+ break;
+ case 10:
+ sx = "2"+t;
+ break;
+ case 11:
+ sx = "3"+t.substring(1);
+ break;
+ }
+ }
+ else
+ sx = Integer.toString(x,8);
+ return printOFormat(sx);
+ }
+ /**
+ * Utility method for formatting using the o
+ * conversion character.
+ * @param sx the String to format, the result of
+ * converting a short, int, or long to a
+ * String.
+ * @return the formatted String.
+ */
+ private String printOFormat(String sx) {
+ int nLeadingZeros = 0;
+ int nBlanks = 0;
+ if (sx.equals("0")&&precisionSet&&precision==0)
+ sx="";
+ if (precisionSet)
+ nLeadingZeros = precision-sx.length();
+ if (alternateForm) nLeadingZeros++;
+ if (nLeadingZeros<0) nLeadingZeros=0;
+ if (fieldWidthSet)
+ nBlanks = fieldWidth-nLeadingZeros-sx.length();
+ if (nBlanks<0) nBlanks=0;
+ int n=nLeadingZeros+sx.length()+nBlanks;
+ char[] ca = new char[n];
+ int i;
+ if (leftJustify) {
+ for (i=0; i<nLeadingZeros; i++) ca[i]='0';
+ char[] csx = sx.toCharArray();
+ for (int j=0; j<csx.length; j++,i++)
+ ca[i] = csx[j];
+ for (int j=0; j<nBlanks; j++,i++) ca[i] = ' ';
+ }
+ else {
+ if (leadingZeros)
+ for (i=0; i<nBlanks; i++) ca[i]='0';
+ else
+ for (i=0; i<nBlanks; i++) ca[i]=' ';
+ for (int j=0; j<nLeadingZeros; j++,i++)
+ ca[i]='0';
+ char[] csx = sx.toCharArray();
+ for (int j=0; j<csx.length; j++,i++)
+ ca[i] = csx[j];
+ }
+ return new String(ca);
+ }
+ /**
+ * Format method for the c conversion character and
+ * char argument.
+ *
+ * The only flag character that affects c format is
+ * the '-', meaning that the output should be left
+ * justified within the field. The default is to
+ * pad with blanks on the left.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. Padding is with
+ * blanks by default. The default width is 1.
+ *
+ * The precision, if set, is ignored.
+ * @param x the char to format.
+ * @return the formatted String.
+ */
+ private String printCFormat(char x) {
+ int nPrint = 1;
+ int width = fieldWidth;
+ if (!fieldWidthSet) width = nPrint;
+ char[] ca = new char[width];
+ int i=0;
+ if (leftJustify) {
+ ca[0] = x;
+ for (i=1; i<=width-nPrint; i++) ca[i]=' ';
+ }
+ else {
+ for (i=0; i<width-nPrint; i++) ca[i]=' ';
+ ca[i] = x;
+ }
+ return new String(ca);
+ }
+ /**
+ * Format method for the s conversion character and
+ * String argument.
+ *
+ * The only flag character that affects s format is
+ * the '-', meaning that the output should be left
+ * justified within the field. The default is to
+ * pad with blanks on the left.
+ *
+ * The field width is treated as the minimum number
+ * of characters to be printed. The default is the
+ * smaller of the number of characters in the the
+ * input and the precision. Padding is with blanks
+ * by default.
+ *
+ * The precision, if set, specifies the maximum
+ * number of characters to be printed from the
+ * string. A null digit string is treated
+ * as a 0. The default is not to set a maximum
+ * number of characters to be printed.
+ * @param x the String to format.
+ * @return the formatted String.
+ */
+ private String printSFormat(String x) {
+ int nPrint = x.length();
+ int width = fieldWidth;
+ if (precisionSet && nPrint>precision)
+ nPrint=precision;
+ if (!fieldWidthSet) width = nPrint;
+ int n=0;
+ if (width>nPrint) n+=width-nPrint;
+ if (nPrint>=x.length()) n+= x.length();
+ else n+= nPrint;
+ char[] ca = new char[n];
+ int i=0;
+ if (leftJustify) {
+ if (nPrint>=x.length()) {
+ char[] csx = x.toCharArray();
+ for (i=0; i<x.length(); i++) ca[i]=csx[i];
+ }
+ else {
+ char[] csx =
+ x.substring(0,nPrint).toCharArray();
+ for (i=0; i<nPrint; i++) ca[i]=csx[i];
+ }
+ for (int j=0; j<width-nPrint; j++,i++)
+ ca[i]=' ';
+ }
+ else {
+ for (i=0; i<width-nPrint; i++) ca[i]=' ';
+ if (nPrint>=x.length()) {
+ char[] csx = x.toCharArray();
+ for (int j=0; j<x.length(); i++,j++)
+ ca[i]=csx[j];
+ }
+ else {
+ char[] csx =
+ x.substring(0,nPrint).toCharArray();
+ for (int j=0; j<nPrint; i++,j++)
+ ca[i]=csx[j];
+ }
+ }
+ return new String(ca);
+ }
+ /**
+ * Check for a conversion character. If it is
+ * there, store it.
+ * * @return <code>true</code> if the conversion
+ * character is there, and
+ * <code>false</code> otherwise.
+ */
+ private boolean setConversionCharacter() {
+ /* idfgGoxXeEcs */
+ boolean ret = false;
+ conversionCharacter='\0';
+ if (pos < fmt.length()) {
+ char c = fmt.charAt(pos);
+ if (c=='i'||c=='d'||c=='f'||c=='g'||c=='G'
+ || c=='o' || c=='x' || c=='X' || c=='e'
+ || c=='E' || c=='c' || c=='s' || c=='%') {
+ conversionCharacter = c;
+ pos++;
+ ret = true;
+ }
+ }
+ return ret;
+ }
+ /**
+ * Check for an h, l, or L in a format. An L is
+ * used to control the minimum number of digits
+ * in an exponent when using floating point
+ * formats. An l or h is used to control
+ * conversion of the input to a long or short,
+ * respectively, before formatting. If any of
+ * these is present, store them.
+ */
+ private void setOptionalHL() {
+ optionalh=false;
+ optionall=false;
+ optionalL=false;
+ if (pos < fmt.length()) {
+ char c = fmt.charAt(pos);
+ if (c=='h') { optionalh=true; pos++; }
+ else if (c=='l') { optionall=true; pos++; }
+ else if (c=='L') { optionalL=true; pos++; }
+ }
+ }
+ /**
+ * Set the precision.
+ */
+ private void setPrecision() {
+ int firstPos = pos;
+ precisionSet = false;
+ if (pos<fmt.length()&&fmt.charAt(pos)=='.') {
+ pos++;
+ if ((pos < fmt.length())
+ && (fmt.charAt(pos)=='*')) {
+ pos++;
+ if (!setPrecisionArgPosition()) {
+ variablePrecision = true;
+ precisionSet = true;
+ }
+ return;
+ }
+ else {
+ while (pos < fmt.length()) {
+ char c = fmt.charAt(pos);
+ if (Character.isDigit(c)) pos++;
+ else break;
+ }
+ if (pos > firstPos+1) {
+ String sz = fmt.substring(firstPos+1,pos);
+ precision = Integer.parseInt(sz);
+ precisionSet = true;
+ }
+ }
+ }
+ }
+ /**
+ * Set the field width.
+ */
+ private void setFieldWidth() {
+ int firstPos = pos;
+ fieldWidth = 0;
+ fieldWidthSet = false;
+ if ((pos < fmt.length())
+ && (fmt.charAt(pos)=='*')) {
+ pos++;
+ if (!setFieldWidthArgPosition()) {
+ variableFieldWidth = true;
+ fieldWidthSet = true;
+ }
+ }
+ else {
+ while (pos < fmt.length()) {
+ char c = fmt.charAt(pos);
+ if (Character.isDigit(c)) pos++;
+ else break;
+ }
+ if (firstPos<pos && firstPos < fmt.length()) {
+ String sz = fmt.substring(firstPos,pos);
+ fieldWidth = Integer.parseInt(sz);
+ fieldWidthSet = true;
+ }
+ }
+ }
+ /**
+ * Store the digits <code>n</code> in %n$ forms.
+ */
+ private void setArgPosition() {
+ int xPos;
+ for (xPos=pos; xPos<fmt.length(); xPos++) {
+ if (!Character.isDigit(fmt.charAt(xPos)))
+ break;
+ }
+ if (xPos>pos && xPos<fmt.length()) {
+ if (fmt.charAt(xPos)=='$') {
+ positionalSpecification = true;
+ argumentPosition=
+ Integer.parseInt(fmt.substring(pos,xPos));
+ pos=xPos+1;
+ }
+ }
+ }
+ /**
+ * Store the digits <code>n</code> in *n$ forms.
+ */
+ private boolean setFieldWidthArgPosition() {
+ boolean ret=false;
+ int xPos;
+ for (xPos=pos; xPos<fmt.length(); xPos++) {
+ if (!Character.isDigit(fmt.charAt(xPos)))
+ break;
+ }
+ if (xPos>pos && xPos<fmt.length()) {
+ if (fmt.charAt(xPos)=='$') {
+ positionalFieldWidth = true;
+ argumentPositionForFieldWidth=
+ Integer.parseInt(fmt.substring(pos,xPos));
+ pos=xPos+1;
+ ret=true;
+ }
+ }
+ return ret;
+ }
+ /**
+ * Store the digits <code>n</code> in *n$ forms.
+ */
+ private boolean setPrecisionArgPosition() {
+ boolean ret=false;
+ int xPos;
+ for (xPos=pos; xPos<fmt.length(); xPos++) {
+ if (!Character.isDigit(fmt.charAt(xPos)))
+ break;
+ }
+ if (xPos>pos && xPos<fmt.length()) {
+ if (fmt.charAt(xPos)=='$') {
+ positionalPrecision = true;
+ argumentPositionForPrecision=
+ Integer.parseInt(fmt.substring(pos,xPos));
+ pos=xPos+1;
+ ret=true;
+ }
+ }
+ return ret;
+ }
+ boolean isPositionalSpecification() {
+ return positionalSpecification;
+ }
+ int getArgumentPosition() { return argumentPosition; }
+ boolean isPositionalFieldWidth() {
+ return positionalFieldWidth;
+ }
+ int getArgumentPositionForFieldWidth() {
+ return argumentPositionForFieldWidth;
+ }
+ boolean isPositionalPrecision() {
+ return positionalPrecision;
+ }
+ int getArgumentPositionForPrecision() {
+ return argumentPositionForPrecision;
+ }
+ /**
+ * Set flag characters, one of '-+#0 or a space.
+ */
+ private void setFlagCharacters() {
+ /* '-+ #0 */
+ thousands = false;
+ leftJustify = false;
+ leadingSign = false;
+ leadingSpace = false;
+ alternateForm = false;
+ leadingZeros = false;
+ for ( ; pos < fmt.length(); pos++) {
+ char c = fmt.charAt(pos);
+ if (c == '\'') thousands = true;
+ else if (c == '-') {
+ leftJustify = true;
+ leadingZeros = false;
+ }
+ else if (c == '+') {
+ leadingSign = true;
+ leadingSpace = false;
+ }
+ else if (c == ' ') {
+ if (!leadingSign) leadingSpace = true;
+ }
+ else if (c == '#') alternateForm = true;
+ else if (c == '0') {
+ if (!leftJustify) leadingZeros = true;
+ }
+ else break;
+ }
+ }
+ /**
+ * The integer portion of the result of a decimal
+ * conversion (i, d, u, f, g, or G) will be
+ * formatted with thousands' grouping characters.
+ * For other conversions the flag is ignored.
+ */
+ private boolean thousands = false;
+ /**
+ * The result of the conversion will be
+ * left-justified within the field.
+ */
+ private boolean leftJustify = false;
+ /**
+ * The result of a signed conversion will always
+ * begin with a sign (+ or -).
+ */
+ private boolean leadingSign = false;
+ /**
+ * Flag indicating that left padding with spaces is
+ * specified.
+ */
+ private boolean leadingSpace = false;
+ /**
+ * For an o conversion, increase the precision to
+ * force the first digit of the result to be a
+ * zero. For x (or X) conversions, a non-zero
+ * result will have 0x (or 0X) prepended to it.
+ * For e, E, f, g, or G conversions, the result
+ * will always contain a radix character, even if
+ * no digits follow the point. For g and G
+ * conversions, trailing zeros will not be removed
+ * from the result.
+ */
+ private boolean alternateForm = false;
+ /**
+ * Flag indicating that left padding with zeroes is
+ * specified.
+ */
+ private boolean leadingZeros = false;
+ /**
+ * Flag indicating that the field width is *.
+ */
+ private boolean variableFieldWidth = false;
+ /**
+ * If the converted value has fewer bytes than the
+ * field width, it will be padded with spaces or
+ * zeroes.
+ */
+ private int fieldWidth = 0;
+ /**
+ * Flag indicating whether or not the field width
+ * has been set.
+ */
+ private boolean fieldWidthSet = false;
+ /**
+ * The minimum number of digits to appear for the
+ * d, i, o, u, x, or X conversions. The number of
+ * digits to appear after the radix character for
+ * the e, E, and f conversions. The maximum number
+ * of significant digits for the g and G
+ * conversions. The maximum number of bytes to be
+ * printed from a string in s and S conversions.
+ */
+ private int precision = 0;
+ /** Default precision. */
+ private final static int defaultDigits=6;
+ /**
+ * Flag indicating that the precision is *.
+ */
+ private boolean variablePrecision = false;
+ /**
+ * Flag indicating whether or not the precision has
+ * been set.
+ */
+ private boolean precisionSet = false;
+ /*
+ */
+ private boolean positionalSpecification=false;
+ private int argumentPosition=0;
+ private boolean positionalFieldWidth=false;
+ private int argumentPositionForFieldWidth=0;
+ private boolean positionalPrecision=false;
+ private int argumentPositionForPrecision=0;
+ /**
+ * Flag specifying that a following d, i, o, u, x,
+ * or X conversion character applies to a type
+ * short int.
+ */
+ private boolean optionalh = false;
+ /**
+ * Flag specifying that a following d, i, o, u, x,
+ * or X conversion character applies to a type lont
+ * int argument.
+ */
+ private boolean optionall = false;
+ /**
+ * Flag specifying that a following e, E, f, g, or
+ * G conversion character applies to a type double
+ * argument. This is a noop in Java.
+ */
+ private boolean optionalL = false;
+ /** Control string type. */
+ private char conversionCharacter = '\0';
+ /**
+ * Position within the control string. Used by
+ * the constructor.
+ */
+ private int pos = 0;
+ /** Literal or control format string. */
+ private String fmt;
+ }
+ /** Vector of control strings and format literals. */
+ private Vector vFmt = new Vector();
+ /** Character position. Used by the constructor. */
+ private int cPos=0;
+ /** Character position. Used by the constructor. */
+ private DecimalFormatSymbols dfs=null;
+}