summaryrefslogtreecommitdiffstats
path: root/src/demos/proceduralTexturePhysics/Water.java
diff options
context:
space:
mode:
authorKenneth Russel <[email protected]>2009-06-15 23:12:27 +0000
committerKenneth Russel <[email protected]>2009-06-15 23:12:27 +0000
commit41cd6c47b23975098cd155517790e018670785e7 (patch)
tree247333528ad674d427ba96b1e05810f7961d609e /src/demos/proceduralTexturePhysics/Water.java
parent935d2596c13371bb745d921dbcb9f05b0c11a010 (diff)
Copied JOGL_2_SANDBOX r350 on to trunk; JOGL_2_SANDBOX branch is now closed
git-svn-id: file:///usr/local/projects/SUN/JOGL/git-svn/../svn-server-sync/jogl-demos/trunk@352 3298f667-5e0e-4b4a-8ed4-a3559d26a5f4
Diffstat (limited to 'src/demos/proceduralTexturePhysics/Water.java')
-rw-r--r--src/demos/proceduralTexturePhysics/Water.java1862
1 files changed, 1862 insertions, 0 deletions
diff --git a/src/demos/proceduralTexturePhysics/Water.java b/src/demos/proceduralTexturePhysics/Water.java
new file mode 100644
index 0000000..89c1495
--- /dev/null
+++ b/src/demos/proceduralTexturePhysics/Water.java
@@ -0,0 +1,1862 @@
+/*
+ * Portions Copyright (C) 2003 Sun Microsystems, Inc.
+ * All rights reserved.
+ */
+
+/*
+ *
+ * COPYRIGHT NVIDIA CORPORATION 2003. ALL RIGHTS RESERVED.
+ * BY ACCESSING OR USING THIS SOFTWARE, YOU AGREE TO:
+ *
+ * 1) ACKNOWLEDGE NVIDIA'S EXCLUSIVE OWNERSHIP OF ALL RIGHTS
+ * IN AND TO THE SOFTWARE;
+ *
+ * 2) NOT MAKE OR DISTRIBUTE COPIES OF THE SOFTWARE WITHOUT
+ * INCLUDING THIS NOTICE AND AGREEMENT;
+ *
+ * 3) ACKNOWLEDGE THAT TO THE MAXIMUM EXTENT PERMITTED BY
+ * APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND
+ * THAT NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
+ * EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
+ * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE.
+ *
+ * IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY
+ * SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
+ * WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
+ * OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
+ * INFORMATION, OR ANY OTHER PECUNIARY LOSS), INCLUDING ATTORNEYS'
+ * FEES, RELATING TO THE USE OF OR INABILITY TO USE THIS SOFTWARE,
+ * EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
+ *
+ */
+
+package demos.proceduralTexturePhysics;
+
+import com.sun.opengl.util.FileUtil;
+import com.sun.opengl.util.texture.Texture;
+import com.sun.opengl.util.texture.TextureData;
+import com.sun.opengl.util.texture.TextureIO;
+import demos.util.Cubemap;
+import gleem.linalg.Mat4f;
+import gleem.linalg.Rotf;
+import java.io.IOException;
+import java.nio.ByteBuffer;
+import java.util.ArrayList;
+import java.util.Iterator;
+import java.util.List;
+import javax.media.opengl.GL;
+import javax.media.opengl.GL2ES1;
+import javax.media.opengl.GL2;
+import javax.media.opengl.GLAutoDrawable;
+import javax.media.opengl.GLCapabilities;
+import javax.media.opengl.GLDrawableFactory;
+import javax.media.opengl.GLEventListener;
+import javax.media.opengl.GLException;
+import javax.media.opengl.GLPbuffer;
+import javax.media.opengl.glu.GLU;
+import com.sun.opengl.util.BufferUtil;
+
+
+
+/**
+ * Auxiliary Water simulation class used by ProceduralTexturePhysics
+ * main loop. Demonstration by NVidia Corporation.
+ *
+ * <P>
+ *
+ * Ported to Java and ARB_fragment_program by Kenneth Russell
+ */
+
+public class Water {
+ // Note: this class is organized differently than most of the demos
+ // due to the fact that it is used for two purposes: when the
+ // pbuffer's context is current it is used to update the cellular
+ // automata, and when the parent drawable's context is current it is
+ // used to render the water geometry (with the parent drawable's GL
+ // object).
+
+ private GLU glu = new GLU();
+
+ // Rendering modes
+ public static final int CA_FULLSCREEN_REFLECT = 0;
+ public static final int CA_FULLSCREEN_FORCE = 1;
+ public static final int CA_FULLSCREEN_HEIGHT = 2;
+ public static final int CA_FULLSCREEN_NORMALMAP = 3;
+ public static final int CA_TILED_THREE_WINDOWS = 4;
+ public static final int CA_DO_NOT_RENDER = 5;
+
+ private int[] initialMapDimensions = new int[2];
+ private TextureData initialMapData;
+
+ private String tmpSpinFilename;
+ private String tmpDropletFilename;
+ private String tmpCubeMapFilenamePrefix;
+ private String tmpCubeMapFilenameSuffix;
+
+ private GLPbuffer pbuffer;
+ private Rotf cameraOrientation = new Rotf();
+
+ // Dynamic texture names
+ private static final int CA_TEXTURE_FORCE_INTERMEDIATE = 0;
+ private static final int CA_TEXTURE_FORCE_TARGET = 1;
+ private static final int CA_TEXTURE_VELOCITY_SOURCE = 2;
+ private static final int CA_TEXTURE_VELOCITY_TARGET = 3;
+ private static final int CA_TEXTURE_HEIGHT_SOURCE = 4;
+ private static final int CA_TEXTURE_HEIGHT_TARGET = 5;
+ private static final int CA_TEXTURE_NORMAL_MAP = 6;
+ private static final int CA_NUM_DYNAMIC_TEXTURES = 7;
+
+ // List names
+ private static final int CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE = 0;
+ private static final int CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1 = 1;
+ private static final int CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2 = 2;
+ private static final int CA_FRAGMENT_PROGRAM_APPLY_FORCE = 3;
+ private static final int CA_FRAGMENT_PROGRAM_APPLY_VELOCITY = 4;
+ private static final int CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP = 5;
+ private static final int CA_FRAGMENT_PROGRAM_REFLECT = 6;
+ private static final int CA_DRAW_SCREEN_QUAD = 7;
+ private static final int CA_NUM_LISTS = 8;
+
+ // Static textures
+ private Texture initialMapTex;
+ private Texture spinTex;
+ private Texture dropletTex;
+ private Texture cubemap;
+
+ private Texture[] dynamicTextures = new Texture[CA_NUM_DYNAMIC_TEXTURES];
+
+ private int texHeightInput; // current input height texture ID.
+ private int texHeightOutput; // current output height texture ID.
+ private int texVelocityInput; // current input velocity texture ID.
+ private int texVelocityOutput; // current output velocity texture ID.
+ private int texForceStepOne; // intermediate force computation result texture ID.
+ private int texForceOutput; // current output force texture ID.
+
+ private int[] displayListIDs = new int[CA_NUM_LISTS];
+
+ private int vertexProgramID; // one vertex program is used to choose the texcoord offset
+
+ private int flipState; // used to flip target texture configurations.
+
+ private boolean wrap; // CA can either wrap its borders, or clamp (clamp by default)
+ private boolean reset = true; // are we resetting this frame? (user hit reset).
+ private boolean singleStep; // animation step on keypress.
+ private boolean animate = true; // continuous animation.
+ private boolean slow = true; // run slow.
+ private boolean wireframe; // render in wireframe mode
+ private boolean applyInteriorBoundaries = true; // enable / disable "boundary" image drawing.
+ private boolean spinLogo = true; // draw spinning logo.
+ private boolean createNormalMap = true; // enable / disable normal map creation.
+
+ private float perTexelWidth; // width of a texel (percentage of texture)
+ private float perTexelHeight; // height of a texel
+
+ private float blurDist = 0.5f; // distance over which to blur.
+ private boolean mustUpdateBlurOffsets; // flag indicating blurDist was set last tick
+
+ private float normalSTScale = 0.8f; // scale of normals in normal map.
+ private float bumpScale = 0.25f; // scale of bumps in water.
+
+ private float dropletFrequency = 0.175f; // frequency at which droplets are drawn in water...
+
+ private int slowDelay = 1; // amount (milliseconds) to delay when running slow.
+ private int skipInterval; // frames to skip simulation.
+ private int skipCount; // frame count for skipping rendering
+
+ private int angle; // angle in degrees for spinning logo
+
+ private List/*<Droplet>*/ droplets = new ArrayList/*<Droplet>*/(); // array of droplets
+
+ private int renderMode;
+
+ // Constant memory locations
+ private static final int CV_UV_OFFSET_TO_USE = 0;
+
+ private static final int CV_UV_T0_NO_OFFSET = 1;
+ private static final int CV_UV_T0_TYPE1 = 2;
+ private static final int CV_UV_T0_TYPE2 = 3;
+ private static final int CV_UV_T0_TYPE3 = 4;
+ private static final int CV_UV_T0_TYPE4 = 5;
+
+ private static final int CV_UV_T1_NO_OFFSET = 6;
+ private static final int CV_UV_T1_TYPE1 = 7;
+ private static final int CV_UV_T1_TYPE2 = 8;
+ private static final int CV_UV_T1_TYPE3 = 9;
+ private static final int CV_UV_T1_TYPE4 = 10;
+
+ private static final int CV_UV_T2_NO_OFFSET = 11;
+ private static final int CV_UV_T2_TYPE1 = 12;
+ private static final int CV_UV_T2_TYPE2 = 13;
+ private static final int CV_UV_T2_TYPE3 = 14;
+ private static final int CV_UV_T2_TYPE4 = 15;
+
+ private static final int CV_UV_T3_NO_OFFSET = 16;
+ private static final int CV_UV_T3_TYPE1 = 17;
+ private static final int CV_UV_T3_TYPE2 = 18;
+ private static final int CV_UV_T3_TYPE3 = 19;
+ private static final int CV_UV_T3_TYPE4 = 20;
+
+ private static final int CV_CONSTS_1 = 21;
+
+ public void initialize(String initialMapFilename,
+ String spinFilename,
+ String dropletFilename,
+ String cubeMapFilenamePrefix,
+ String cubeMapFilenameSuffix,
+ GLAutoDrawable parentWindow) {
+ loadInitialTexture(initialMapFilename);
+ tmpSpinFilename = spinFilename;
+ tmpDropletFilename = dropletFilename;
+ tmpCubeMapFilenamePrefix = cubeMapFilenamePrefix;
+ tmpCubeMapFilenameSuffix = cubeMapFilenameSuffix;
+
+ // create the pbuffer. Will use this as an offscreen rendering buffer.
+ // it allows rendering a texture larger than our window.
+ GLCapabilities caps = parentWindow.getChosenGLCapabilities();
+ caps.setDoubleBuffered(false);
+ if (!GLDrawableFactory.getFactory(caps.getGLProfile()).canCreateGLPbuffer()) {
+ throw new GLException("Pbuffers not supported with this graphics card");
+ }
+ pbuffer = GLDrawableFactory.getFactory(caps.getGLProfile()).createGLPbuffer(caps,
+ null,
+ initialMapDimensions[0],
+ initialMapDimensions[1],
+ parentWindow.getContext());
+ pbuffer.addGLEventListener(new Listener());
+ }
+
+ public void destroy() {
+ if (pbuffer != null) {
+ pbuffer.destroy();
+ pbuffer = null;
+ }
+ reset = true;
+ }
+
+ public void tick() {
+ pbuffer.display();
+ }
+
+ public void draw(GL2 gl, Rotf cameraOrientation) {
+ this.cameraOrientation.set(cameraOrientation);
+
+ if (skipCount >= skipInterval && renderMode != CA_DO_NOT_RENDER) {
+ skipCount = 0;
+ // Display the results of the rendering to texture
+ if (wireframe) {
+ gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_LINE);
+
+ // chances are the texture will be all dark, so lets not use a texture
+ gl.glDisable(GL2.GL_TEXTURE_2D);
+ } else {
+ gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_FILL);
+
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glEnable(GL2.GL_TEXTURE_2D);
+ }
+
+ switch (renderMode) {
+ case CA_FULLSCREEN_REFLECT: {
+ // include bump scale...
+ Mat4f bscale = new Mat4f();
+ bscale.makeIdent();
+ bscale.set(0, 0, bumpScale);
+ bscale.set(1, 1, bumpScale);
+ Mat4f rot = new Mat4f();
+ rot.makeIdent();
+ rot.setRotation(cameraOrientation);
+ Mat4f matRot = rot.mul(bscale);
+
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT]);
+
+ // Draw quad over full display
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind();
+ dynamicTextures[CA_TEXTURE_NORMAL_MAP].disable();
+ gl.glActiveTexture(GL2.GL_TEXTURE3);
+ cubemap.bind();
+ cubemap.enable();
+
+ gl.glColor4f(1, 1, 1, 1);
+ gl.glBegin(GL2.GL_QUADS);
+
+ gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 0,0);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), 1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), 1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1);
+ gl.glVertex2f(-1,-1);
+
+ gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 1,0);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), -1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), 1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1);
+ gl.glVertex2f( 1,-1);
+
+ gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 1,1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), -1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), -1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1);
+ gl.glVertex2f( 1, 1);
+
+ gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 0,1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), 1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), -1);
+ gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1);
+ gl.glVertex2f(-1, 1);
+
+ gl.glEnd();
+
+ cubemap.disable();
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ break;
+ }
+
+ case CA_FULLSCREEN_NORMALMAP: {
+ // Draw quad over full display
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind();
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ break;
+ }
+
+ case CA_FULLSCREEN_HEIGHT: {
+ // Draw quad over full display
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput);
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ break;
+ }
+
+ case CA_FULLSCREEN_FORCE: {
+ // Draw quad over full display
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind();
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ break;
+ }
+
+ case CA_TILED_THREE_WINDOWS: {
+ // Draw quad over full display
+ // lower left
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind();
+ gl.glMatrixMode(GL2.GL_MODELVIEW);
+ gl.glPushMatrix();
+
+ gl.glTranslatef(-0.5f, -0.5f, 0);
+ gl.glScalef(0.5f, 0.5f, 1);
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ gl.glPopMatrix();
+
+ // lower right
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityOutput);
+ gl.glPushMatrix();
+
+ gl.glTranslatef(0.5f, -0.5f, 0);
+ gl.glScalef(0.5f, 0.5f, 1);
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ gl.glPopMatrix();
+
+ // upper left
+ dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind();
+ gl.glMatrixMode(GL2.GL_MODELVIEW);
+ gl.glPushMatrix();
+
+ gl.glTranslatef(-0.5f, 0.5f, 0);
+ gl.glScalef(0.5f, 0.5f, 1);
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ gl.glPopMatrix();
+
+ // upper right
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput);
+ gl.glMatrixMode(GL2.GL_MODELVIEW);
+ gl.glPushMatrix();
+
+ gl.glTranslatef(0.5f, 0.5f, 0);
+ gl.glScalef(0.5f, 0.5f, 1);
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ gl.glPopMatrix();
+
+ break;
+ }
+ }
+ } else {
+ // skip rendering this frame
+ skipCount++;
+ }
+ }
+
+ public void singleStep() { singleStep = true; }
+ public void enableAnimation(boolean enable) { animate = enable; }
+ public void enableSlowAnimation(boolean enable) { slow = enable; }
+ public void reset() { reset = true; }
+ public void setRenderMode(int mode) { renderMode = mode; }
+
+ public void enableWireframe(boolean enable) { wireframe = enable; }
+ public void enableBorderWrapping(boolean enable) { wrap = enable; }
+
+ public void enableBoundaryApplication(boolean enable) { applyInteriorBoundaries = enable; }
+ public void enableSpinningLogo(boolean enable) { spinLogo = enable; }
+
+ public void setBlurDistance(float distance) { blurDist = distance;
+ mustUpdateBlurOffsets = true; }
+ public float getBlurDistance() { return blurDist; }
+
+ public void setBumpScale(float scale) { bumpScale = scale; }
+ public float getBumpScale() { return bumpScale; }
+
+ public void setDropFrequency(float frequency) { dropletFrequency = frequency; }
+ public float getDropFrequency() { return dropletFrequency; }
+
+ public static class Droplet {
+ private float rX;
+ private float rY;
+ private float rScale;
+
+ Droplet(float rX, float rY, float rScale) {
+ this.rX = rX;
+ this.rY = rY;
+ this.rScale = rScale;
+ }
+
+ float rX() { return rX; }
+ float rY() { return rY; }
+ float rScale() { return rScale; }
+ }
+
+ public synchronized void addDroplet(Droplet drop) {
+ droplets.add(drop);
+ }
+
+ //----------------------------------------------------------------------
+ // Internals only below this point
+ //
+
+ class Listener implements GLEventListener {
+
+ public void init(GLAutoDrawable drawable) {
+ GL2 gl = drawable.getGL().getGL2();
+
+ initOpenGL(gl);
+ }
+
+ public void dispose(GLAutoDrawable drawable) {
+ }
+
+ public void display(GLAutoDrawable drawable) {
+
+ GL2 gl = drawable.getGL().getGL2();
+ if (mustUpdateBlurOffsets) {
+ updateBlurVertOffset(gl);
+ mustUpdateBlurOffsets = false;
+ }
+
+ // Take a single step in the cellular automaton
+
+ // Disable culling
+ gl.glDisable(GL2.GL_CULL_FACE);
+
+ if (reset) {
+ reset = false;
+ flipState = 0;
+ }
+
+ if (animate) {
+ // Update the textures for one step of the simulation
+ doSingleTimeStep(gl);
+ } else if (singleStep) {
+ doSingleTimeStep(gl);
+ singleStep = false;
+ }
+
+ // Force rendering to pbuffer to complete
+ gl.glFlush();
+
+ if (slow && (slowDelay > 0) ) {
+ try {
+ Thread.sleep(slowDelay);
+ } catch (InterruptedException e) {
+ }
+ }
+ }
+
+ public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) {}
+
+ // Unused routines
+ public void displayChanged(GLAutoDrawable drawable, boolean modeChanged, boolean deviceChanged) {}
+ }
+
+ // We need to load the initial texture file early to get the width
+ // and height for the pbuffer
+ private void loadInitialTexture(String initialMapFilename) {
+ try {
+ initialMapData = TextureIO.newTextureData(getClass().getClassLoader().getResourceAsStream(initialMapFilename),
+ false,
+ FileUtil.getFileSuffix(initialMapFilename));
+ } catch (IOException e) {
+ throw new GLException(e);
+ }
+ initialMapDimensions[0] = initialMapData.getWidth();
+ initialMapDimensions[1] = initialMapData.getHeight();
+ }
+
+ private void initOpenGL(GL2 gl) {
+ try {
+ loadTextures(gl, tmpSpinFilename, tmpDropletFilename, tmpCubeMapFilenamePrefix, tmpCubeMapFilenameSuffix);
+ } catch (IOException e) {
+ throw new GLException(e);
+ }
+ tmpSpinFilename = null;
+ tmpDropletFilename = null;
+ tmpCubeMapFilenamePrefix = null;
+ tmpCubeMapFilenameSuffix = null;
+
+ gl.glMatrixMode(GL2.GL_MODELVIEW);
+ gl.glLoadIdentity();
+ gl.glMatrixMode(GL2.GL_PROJECTION);
+ gl.glLoadIdentity();
+ glu.gluOrtho2D(-1, 1, -1, 1);
+
+ gl.glClearColor(0, 0, 0, 0);
+ gl.glDisable(GL2.GL_LIGHTING);
+ gl.glDisable(GL2.GL_DEPTH_TEST);
+
+ createAndWriteUVOffsets(gl, initialMapDimensions[0], initialMapDimensions[1]);
+
+ checkExtension(gl, "GL_ARB_vertex_program");
+ checkExtension(gl, "GL_ARB_fragment_program");
+ checkExtension(gl, "GL_ARB_multitexture");
+
+ ///////////////////////////////////////////////////////////////////////////
+ // UV Offset Vertex Program
+ ///////////////////////////////////////////////////////////////////////////
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ vertexProgramID = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, vertexProgramID);
+
+ String programBuffer =
+"!!ARBvp1.0\n" +
+"# Constant memory location declarations (must match those in Java sources)\n" +
+"# CV_UV_OFFSET_TO_USE = 0\n" +
+"\n" +
+"# CV_UV_T0_NO_OFFSET = 1\n" +
+"# CV_UV_T0_TYPE1 = 2\n" +
+"# CV_UV_T0_TYPE2 = 3\n" +
+"# CV_UV_T0_TYPE3 = 4\n" +
+"# CV_UV_T0_TYPE4 = 5\n" +
+"\n" +
+"# CV_UV_T1_NO_OFFSET = 6\n" +
+"# CV_UV_T1_TYPE1 = 7\n" +
+"# CV_UV_T1_TYPE2 = 8\n" +
+"# CV_UV_T1_TYPE3 = 9\n" +
+"# CV_UV_T1_TYPE4 = 10\n" +
+"\n" +
+"# CV_UV_T2_NO_OFFSET = 11\n" +
+"# CV_UV_T2_TYPE1 = 12\n" +
+"# CV_UV_T2_TYPE2 = 13\n" +
+"# CV_UV_T2_TYPE3 = 14\n" +
+"# CV_UV_T2_TYPE4 = 15\n" +
+"\n" +
+"# CV_UV_T3_NO_OFFSET = 16\n" +
+"# CV_UV_T3_TYPE1 = 17\n" +
+"# CV_UV_T3_TYPE2 = 18\n" +
+"# CV_UV_T3_TYPE3 = 19\n" +
+"# CV_UV_T3_TYPE4 = 20\n" +
+"\n" +
+"# CV_CONSTS_1 = 21\n" +
+"\n" +
+"# Parameters\n" +
+"PARAM mvp [4] = { state.matrix.mvp }; # modelview projection matrix\n" +
+"PARAM uvOffsetToUse = program.env[0];\n" +
+"PARAM uvOffsets[20] = { program.env[1..20] };\n" +
+"\n" +
+"# Addresses\n" +
+"ADDRESS addr;\n" +
+"\n" +
+"# Per vertex inputs\n" +
+"ATTRIB iPos = vertex.position; #position\n" +
+"\n" +
+"# Outputs\n" +
+"OUTPUT oPos = result.position; #position\n" +
+"\n" +
+"# Transform vertex-position to clip-space\n" +
+"DP4 oPos.x, iPos, mvp[0];\n" +
+"DP4 oPos.y, iPos, mvp[1];\n" +
+"DP4 oPos.z, iPos, mvp[2];\n" +
+"DP4 oPos.w, iPos, mvp[3];\n" +
+"\n" +
+"# Read which set of offsets to use\n" +
+"ARL addr.x, uvOffsetToUse.x;\n" +
+"\n" +
+"# c[CV_CONSTS_1] = c[28]\n" +
+"# x = 0\n" +
+"# y = 0.5\n" +
+"# z = 1\n" +
+"# w = 2.0f\n" +
+"\n" +
+"# Put a scale factor into r0 so the sample points\n" +
+"# can be moved farther from the texel being written\n" +
+"# MOV R0, c[28].z;\n" +
+"\n" +
+"# Add the offsets to the input texture\n" +
+"# coordinate, creating 4 sets of independent\n" +
+"# texture coordinates.\n" +
+"ADD result.texcoord[0], uvOffsets[addr.x ], vertex.texcoord[0];\n" +
+"ADD result.texcoord[1], uvOffsets[addr.x + 5 ], vertex.texcoord[0];\n" +
+"ADD result.texcoord[2], uvOffsets[addr.x + 10], vertex.texcoord[0];\n" +
+"ADD result.texcoord[3], uvOffsets[addr.x + 15], vertex.texcoord[0];\n" +
+"\n" +
+"END\n";
+
+ // set up constants (not currently used in the vertex program, though)
+ float[] rCVConsts = new float[] { 0, 0.5f, 1.0f, 2.0f };
+ gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_CONSTS_1, rCVConsts, 0);
+
+ loadProgram(gl, GL2.GL_VERTEX_PROGRAM_ARB, programBuffer);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup for equal weight combination of texels
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE] = gl.glGenLists(1);
+ initEqWeightCombine_PostMult(gl, displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup for computing force from neighbors (step 1)
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1] = gl.glGenLists(1);
+ initNeighborForceCalcStep1(gl, displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup for computing force from neighbors (step 2)
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2] = gl.glGenLists(1);
+ initNeighborForceCalcStep2(gl, displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup to apply force
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE] = gl.glGenLists(1);
+ initApplyForce(gl, displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup to apply velocity
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY] = gl.glGenLists(1);
+ initApplyVelocity(gl, displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup to create a normal map
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP] = gl.glGenLists(1);
+ initCreateNormalMap(gl, displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // fragment program setup for dot product reflection
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT] = gl.glGenLists(1);
+ initDotProductReflect(gl, displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT]);
+
+ ///////////////////////////////////////////////////////////////////////////
+ // display list to render a single screen space quad.
+ ///////////////////////////////////////////////////////////////////////////
+ displayListIDs[CA_DRAW_SCREEN_QUAD] = gl.glGenLists(1);
+ gl.glNewList(displayListIDs[CA_DRAW_SCREEN_QUAD], GL2.GL_COMPILE);
+ gl.glColor4f(1, 1, 1, 1);
+ gl.glBegin(GL2.GL_TRIANGLE_STRIP);
+ gl.glTexCoord2f(0, 1); gl.glVertex2f(-1, 1);
+ gl.glTexCoord2f(0, 0); gl.glVertex2f(-1, -1);
+ gl.glTexCoord2f(1, 1); gl.glVertex2f( 1, 1);
+ gl.glTexCoord2f(1, 0); gl.glVertex2f( 1, -1);
+ gl.glEnd();
+ gl.glEndList();
+ }
+
+ private void checkExtension(GL gl, String extensionName) {
+ if (!gl.isExtensionAvailable(extensionName)) {
+ throw new GLException("Unable to initialize " + extensionName + " OpenGL extension");
+ }
+ }
+
+ private void doSingleTimeStep(GL2 gl) {
+ int temp;
+
+ // Swap texture source & target indices & pointers
+ // 0 = start from initial loaded texture
+ // 1/2 = flip flop back and forth between targets & sources
+
+ switch (flipState) {
+ case 0:
+ texHeightInput = dynamicTextures[CA_TEXTURE_HEIGHT_SOURCE].getTextureObject(); // initial height map.
+ texHeightOutput = dynamicTextures[CA_TEXTURE_HEIGHT_TARGET].getTextureObject(); // next height map.
+
+ texVelocityInput = dynamicTextures[CA_TEXTURE_VELOCITY_SOURCE].getTextureObject(); // initial velocity.
+ texVelocityOutput = dynamicTextures[CA_TEXTURE_VELOCITY_TARGET].getTextureObject(); // next velocity.
+
+ // Clear initial velocity texture to 0x80 == gray
+ gl.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
+ gl.glClear(GL2.GL_COLOR_BUFFER_BIT);
+
+ // Now we need to copy the resulting pixels into the intermediate force field texture
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityInput);
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+
+ break;
+
+ case 1:
+ temp = texHeightInput;
+ texHeightInput = texHeightOutput;
+ texHeightOutput = temp;
+
+ temp = texVelocityInput;
+ texVelocityInput = texVelocityOutput;
+ texVelocityOutput = temp;
+
+ break;
+
+ case 2:
+ temp = texHeightInput;
+ texHeightInput = texHeightOutput;
+ texHeightOutput = temp;
+
+ temp = texVelocityInput;
+ texVelocityInput = texVelocityOutput;
+ texVelocityOutput = temp;
+ break;
+ }
+
+ // even if wireframe mode, render to texture as solid
+ gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_FILL);
+
+ /////////////////////////////////////////////////////////////
+ // Render first 3 components of force from three neighbors
+ // Offsets selected are 1 center texel for center height
+ // and 3 of the 4 nearest neighbors. Texture selected
+ // is same for all stages as we're turning height difference
+ // of nearest neightbor texels into a force value.
+
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1]);
+
+ // set current source texture for stage 0 texture
+ for (int i = 0; i < 4; i++)
+ {
+ gl.glActiveTexture(GL2.GL_TEXTURE0 + i);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput);
+ gl.glEnable(GL2.GL_TEXTURE_2D);
+ }
+
+ int wrapMode = wrap ? GL2.GL_REPEAT : GL2.GL_CLAMP_TO_EDGE;
+ gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, wrapMode);
+ gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, wrapMode);
+
+ // disable blending
+ gl.glDisable(GL2.GL_BLEND);
+
+ // render using offset 1 (type 1 -- center + 3 of 4 nearest neighbors).
+ gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 1, 0, 0, 0);
+
+ // bind the vertex program to be used for this step and the next one.
+ gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, vertexProgramID);
+ gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB);
+
+ // render a screen quad. with texture coords doing difference of nearby texels for force calc.
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ // Now we need to copy the resulting pixels into the intermediate force field texture
+ gl.glActiveTexture(GL2.GL_TEXTURE2);
+ dynamicTextures[CA_TEXTURE_FORCE_INTERMEDIATE].bind();
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+
+ ////////////////////////////////////////////////////////////////
+ // Now add in last component of force for the 4th neighbor
+ // that we didn't have enough texture lookups to do in the
+ // first pass
+
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2]);
+
+ // Cannot use additive blending as the force contribution might
+ // be negative and would have to subtract from the dest.
+ // We must instead use an additional texture as target and read
+ // the previous partial 3-neighbor result into the pixel shader
+ // for possible subtraction
+
+ // Alphablend must be false
+
+ //; t0 = center (same as last phase)
+ //; t1 = 2nd axis final point (same as last phase)
+ //; t2 = previous partial result texture sampled at center (result of last phase copied to texture)
+ //; t3 = not used (disable now)
+
+ gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, wrapMode);
+ gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, wrapMode);
+
+ gl.glActiveTexture(GL2.GL_TEXTURE3);
+ gl.glDisable(GL2.GL_TEXTURE_2D);
+
+ // vertex program already bound.
+ // render using offset 2 (type 2 -- final nearest neighbor plus center of previous result).
+ gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 2, 0, 0, 0);
+
+ // render a screen quad
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ // Now we need to copy the resulting pixels into the intermediate force field texture
+ gl.glActiveTexture(GL2.GL_TEXTURE1);
+ dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind();
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+
+ /////////////////////////////////////////////////////////////////
+ // Apply the force with a scale factor to reduce it's magnitude.
+ // Add this to the current texture representing the water height.
+
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE]);
+
+ // use offsets of zero
+ gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 0, 0, 0, 0);
+
+ // bind the vertex program to be used for this step and the next one.
+
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityInput);
+ gl.glActiveTexture(GL2.GL_TEXTURE1);
+ dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind();
+ gl.glActiveTexture(GL2.GL_TEXTURE2);
+ gl.glDisable(GL2.GL_TEXTURE_2D);
+ gl.glActiveTexture(GL2.GL_TEXTURE3);
+ gl.glDisable(GL2.GL_TEXTURE_2D);
+
+ // Draw the quad to add in force.
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ ///////////////////////////////////////////////////////////////////
+ // With velocity texture selected, render new excitation droplets
+ // at random freq.
+
+ float randomFrequency = (float) Math.random();
+
+ if (dropletFrequency > randomFrequency) {
+ // a drop falls - decide where
+ Droplet drop = new Droplet(2 * ((float)Math.random() - 0.5f),
+ 2 * ((float)Math.random() - 0.5f),
+ 0.02f + 0.1f * ((float)Math.random()));
+ addDroplet(drop);
+ }
+
+ // Now draw the droplets:
+ if (!droplets.isEmpty()) {
+ drawDroplets(gl);
+ droplets.clear();
+ }
+
+ // Now we need to copy the resulting pixels into the velocity texture
+ gl.glActiveTexture(GL2.GL_TEXTURE1);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityOutput);
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+
+ //////////////////////////////////////////////////////////////////////
+ // Apply velocity to position
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY]);
+ gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB);
+
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput);
+ gl.glActiveTexture(GL2.GL_TEXTURE1); // velocity output already bound
+ gl.glEnable(GL2.GL_TEXTURE_2D);
+
+ // use offsets of zero
+ gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 0, 0, 0, 0);
+
+ // Draw the quad to add in force.
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ // Now we need to copy the resulting pixels into the input height texture
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput);
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+
+ ///////////////////////////////////////////////////////////////////
+ // blur positions to smooth noise & generaly dampen things
+ // degree of blur is controlled by magnitude of 4 neighbor texel
+ // offsets with bilinear on
+
+ for (int i = 1; i < 4; i++) {
+ gl.glActiveTexture(GL2.GL_TEXTURE0 + i);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput);
+ gl.glEnable(GL2.GL_TEXTURE_2D);
+ }
+
+ // use offsets of 3
+ gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 3, 0, 0, 0);
+
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE]);
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ // Draw the logo in the water.
+ if (applyInteriorBoundaries) {
+ gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB);
+ drawInteriorBoundaryObjects(gl);
+ }
+
+ // Now we need to copy the resulting pixels into the velocity texture
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput);
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+
+ ///////////////////////////////////////////////////////////////////
+ // If selected, create a normal map from the height
+
+ if (createNormalMap) {
+ createNormalMap(gl);
+ }
+
+ ///////////////////////////////////////////////////////////
+ // Flip the state variable for the next round of rendering
+ switch (flipState) {
+ case 0:
+ flipState = 1;
+ break;
+ case 1:
+ flipState = 2;
+ break;
+ case 2:
+ flipState = 1;
+ break;
+ }
+ }
+
+ private void createNormalMap(GL2 gl) {
+ // use the height output on all four texture stages
+ for (int i = 0; i < 4; i++) {
+ gl.glActiveTexture(GL2.GL_TEXTURE0 + i);
+ gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput);
+ gl.glEnable(GL2.GL_TEXTURE_2D);
+ }
+
+ // Set constants for red & green scale factors (also essential color masks)
+ // Red mask first
+ float[] pixMasks = new float[] { normalSTScale, 0.0f, 0.0f, 0.0f };
+
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, pixMasks, 0);
+
+ // Now green mask & scale:
+ pixMasks[0] = 0.0f;
+ pixMasks[1] = normalSTScale;
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 1, pixMasks, 0);
+
+ gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP]);
+
+ // set vp offsets to nearest neighbors
+ gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 4, 0, 0, 0);
+ gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB);
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+
+ // Now we need to copy the resulting pixels into the normal map
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind();
+
+ // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture
+ gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]);
+ }
+
+ private void drawInteriorBoundaryObjects(GL2 gl) {
+
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ initialMapTex.bind();
+ initialMapTex.enable();
+
+ gl.glEnable(GL2.GL_ALPHA_TEST);
+
+ // disable other texture units.
+ for (int i = 1; i < 4; i++) {
+ gl.glActiveTexture(GL2.GL_TEXTURE0 + i);
+ gl.glDisable(GL2.GL_TEXTURE_2D);
+ }
+
+ gl.glBlendFunc(GL2.GL_SRC_ALPHA, GL2.GL_ONE_MINUS_SRC_ALPHA);
+ gl.glEnable(GL2.GL_BLEND);
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ if (spinLogo) {
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ spinTex.bind();
+ gl.glMatrixMode(GL2.GL_MODELVIEW);
+ gl.glPushMatrix();
+ gl.glRotatef(angle, 0, 0, 1);
+ angle += 1;
+
+ gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]);
+
+ gl.glPopMatrix();
+ }
+
+ gl.glDisable(GL2.GL_ALPHA_TEST);
+ gl.glDisable(GL2.GL_BLEND);
+ }
+
+ private void loadTextures(GL gl,
+ String spinFilename,
+ String dropletFilename,
+ String cubeMapFilenamePrefix,
+ String cubeMapFilenameSuffix) throws IOException {
+ if (initialMapData == null) {
+ throw new GLException("Must call loadInitialTexture ahead of time");
+ }
+
+ initialMapTex = TextureIO.newTexture(initialMapData);
+ spinTex = TextureIO.newTexture(getClass().getClassLoader().getResourceAsStream(spinFilename), false,
+ FileUtil.getFileSuffix(spinFilename));
+ dropletTex = TextureIO.newTexture(getClass().getClassLoader().getResourceAsStream(dropletFilename), false,
+ FileUtil.getFileSuffix(dropletFilename));
+
+ // load the cubemap texture
+ cubemap = Cubemap.loadFromStreams(getClass().getClassLoader(),
+ cubeMapFilenamePrefix,
+ cubeMapFilenameSuffix,
+ true);
+
+ // now create dummy intermediate textures from the initial map texture
+ for (int i = 0; i < CA_NUM_DYNAMIC_TEXTURES; i++) {
+ dynamicTextures[i] = TextureIO.newTexture(initialMapData);
+ }
+
+ initialMapData = null;
+
+ texHeightInput = initialMapTex.getTextureObject(); // initial height map.
+ texHeightOutput = dynamicTextures[CA_TEXTURE_HEIGHT_TARGET].getTextureObject(); // next height map.
+
+ texVelocityInput = dynamicTextures[CA_TEXTURE_VELOCITY_SOURCE].getTextureObject(); // initial velocity.
+ texVelocityOutput = dynamicTextures[CA_TEXTURE_VELOCITY_TARGET].getTextureObject(); // next velocity.
+ }
+
+ private void createAndWriteUVOffsets(GL2 gl, int width, int height) {
+ // This sets vertex shader constants used to displace the
+ // source texture over several additive samples. This is
+ // used to accumulate neighboring texel information that we
+ // need to run the game - the 8 surrounding texels, and the
+ // single source texel which will either spawn or die in the
+ // next generation.
+ // Label the texels as follows, for a source texel "e" that
+ // we want to compute for the next generation:
+ //
+ // abc
+ // def
+ // ghi:
+
+ // first the easy one: no offsets for sampling center
+ // occupied or unoccupied
+ // Use index offset value 0.0 to access these in the
+ // vertex shader.
+
+ perTexelWidth = 1.0f / width;
+ perTexelHeight = 1.0f / height;
+
+ // Offset set 0 : center texel sampling
+ float[] noOffsetX = new float[] { 0, 0, 0, 0 };
+ float[] noOffsetY = new float[] { 0, 0, 0, 0 };
+
+ // Offset set 1: For use with neighbor force pixel shader 1
+ // samples center with 0, +u, -u, and +v,
+ // ie the 'e','d', 'f', and 'h' texels
+ float dist = 1.5f;
+ float[] type1OffsetX = new float[] { 0.0f, -dist * perTexelWidth, dist * perTexelWidth, dist * perTexelWidth };
+ float[] type1OffsetY = new float[] { 0.0f, dist * perTexelHeight, dist * perTexelHeight, -dist * perTexelHeight };
+
+ // Offset set 2: for use with neighbor force pixel shader 2
+ // samples center with 0, and -v texels
+ // ie the 'e' and 'b' texels
+ // This completes a pattern of sampling center texel and it's
+ // 4 nearest neighbors to run the height-based water simulation
+ // 3rd must be 0 0 to sample texel center from partial result
+ // texture.
+
+ float[] type2OffsetX = new float[] { 0.0f, -dist * perTexelWidth, 0.0f, 0.0f };
+ float[] type2OffsetY = new float[] { 0.0f, -dist * perTexelHeight, 0.0f, 0.0f };
+
+ // type 3 offsets
+ updateBlurVertOffset(gl);
+
+ /////////////////////////////////////////////////////////////
+ // Nearest neighbor offsets:
+
+ float[] type4OffsetX = new float[] { -perTexelWidth, perTexelWidth, 0.0f, 0.0f };
+ float[] type4OffsetY = new float[] { 0.0f, 0.0f, -perTexelHeight, perTexelHeight };
+
+ // write all these offsets to constant memory
+ for (int i = 0; i < 4; ++i) {
+ float noOffset[] = { noOffsetX[i], noOffsetY[i], 0.0f, 0.0f };
+ float type1Offset[] = { type1OffsetX[i], type1OffsetY[i], 0.0f, 0.0f };
+ float type2Offset[] = { type2OffsetX[i], type2OffsetY[i], 0.0f, 0.0f };
+ float type4Offset[] = { type4OffsetX[i], type4OffsetY[i], 0.0f, 0.0f };
+
+ gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_NO_OFFSET + 5 * i, noOffset, 0);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE1 + 5 * i, type1Offset, 0);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE2 + 5 * i, type2Offset, 0);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE4 + 5 * i, type4Offset, 0);
+ }
+ }
+
+ private void updateBlurVertOffset(GL2 gl) {
+ float[] type3OffsetX = new float[] { -perTexelWidth * 0.5f,
+ perTexelWidth,
+ perTexelWidth * 0.5f,
+ -perTexelWidth
+ };
+ float[] type3OffsetY = new float[] { perTexelHeight,
+ perTexelHeight * 0.5f,
+ -perTexelHeight,
+ -perTexelHeight * 0.5f
+ };
+ float[] offsets = new float[] { 0, 0, 0, 0 };
+
+ for (int i = 0; i < 4; ++i) {
+ offsets[0] = blurDist * ( type3OffsetX[i]);
+ offsets[1] = blurDist * ( type3OffsetY[i]);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE3 + 5 * i, offsets, 0);
+ }
+ }
+
+ private synchronized void drawDroplets(GL2 gl) {
+ gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB);
+
+ gl.glActiveTexture(GL2.GL_TEXTURE0);
+ dropletTex.bind();
+ dropletTex.enable();
+
+ gl.glActiveTexture(GL2.GL_TEXTURE1);
+ gl.glDisable(GL2.GL_TEXTURE_2D);
+
+ gl.glBlendFunc(GL2.GL_ONE, GL2.GL_ONE);
+ gl.glEnable(GL2.GL_BLEND);
+
+ gl.glBegin(GL2.GL_QUADS);
+ gl.glColor4f(1, 1, 1, 1);
+ for (Iterator iter = droplets.iterator(); iter.hasNext(); ) {
+ Droplet droplet = (Droplet) iter.next();
+ // coords in [-1,1] range
+
+ // Draw a single quad to the texture render target
+ // The quad is textured with the initial droplet texture, and
+ // covers some small portion of the render target
+ // Draw the droplet
+
+ gl.glTexCoord2f(0, 0); gl.glVertex2f(droplet.rX() - droplet.rScale(), droplet.rY() - droplet.rScale());
+ gl.glTexCoord2f(1, 0); gl.glVertex2f(droplet.rX() + droplet.rScale(), droplet.rY() - droplet.rScale());
+ gl.glTexCoord2f(1, 1); gl.glVertex2f(droplet.rX() + droplet.rScale(), droplet.rY() + droplet.rScale());
+ gl.glTexCoord2f(0, 1); gl.glVertex2f(droplet.rX() - droplet.rScale(), droplet.rY() + droplet.rScale());
+ }
+ gl.glEnd();
+
+ gl.glDisable(GL2.GL_BLEND);
+ }
+
+ //----------------------------------------------------------------------
+ // Inlined register combiner and texture shader programs
+ // (don't want to port nvparse as it's a dead-end; we'll focus on Cg instead)
+
+ private void initEqWeightCombine_PostMult(GL2 gl, int displayListID) {
+ // Take samples of all four texture inputs and average them,
+ // adding on a bias
+ //
+ // Original register combiner program:
+ //
+ // Stage 0
+ // rgb
+ // {
+ // discard = half_bias(tex0);
+ // discard = half_bias(tex1);
+ // spare0 = sum();
+ // scale_by_one_half();
+ // }
+ // Stage 1
+ // rgb
+ // {
+ // discard = half_bias(tex2);
+ // discard = half_bias(tex3);
+ // spare1 = sum();
+ // scale_by_one_half();
+ // }
+ // Stage 2
+ // rgb
+ // {
+ // discard = spare0;
+ // discard = spare1;
+ // spare0 = sum();
+ // scale_by_one_half();
+ // }
+ // Stage 3
+ // rgb
+ // {
+ // discard = const0;
+ // discard = spare0;
+ // spare0 = sum();
+ // }
+
+ float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f };
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM const0 = program.env[0];\n" +
+"PARAM oneQtr = { 0.25, 0.25, 0.25, 0.25 };\n" +
+"PARAM two = { 2.0, 2.0, 2.0, 2.0 };\n" +
+"TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" +
+"TEMP spare0, spare1;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" +
+"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" +
+"TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" +
+"ADD spare0, texSamp0, texSamp1;\n" +
+"ADD spare1, texSamp2, texSamp3;\n" +
+"ADD spare0, spare0, spare1;\n" +
+"SUB spare0, spare0, two;\n" +
+"MAD result.color, oneQtr, spare0, const0;\n" +
+"\n" +
+"END\n";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void initNeighborForceCalcStep1(GL2 gl, int displayListID) {
+ // Step one in the nearest-neighbor force calculation for height-based water
+ // simulation. NeighborForceCalc2 is the second step.
+ //
+ // This step takes the center point and three neighboring points, and computes
+ // the texel difference as the "force" acting to pull the center texel.
+ //
+ // The amount to which the computed force is applied to the texel is controlled
+ // in a separate shader.
+
+ // get colors from all 4 texture stages
+ // tex0 = center texel
+ // tex1 = 1st neighbor
+ // tex2 = 2nd neighbor - same axis as 1st neighbor point
+ // so force for that axis == t1 - t0 + t2 - t0
+ // tex3 = 3rd neighbor on other axis
+
+ // Original register combiner program:
+ //
+ // Stage 0
+ // rgb
+ // {
+ // //s0 = t1 - t0;
+ // discard = -tex0;
+ // discard = tex1;
+ // spare0 = sum();
+ // }
+ // Stage 1
+ // rgb
+ // {
+ // //s1 = t2 - t0;
+ // discard = -tex0;
+ // discard = tex2;
+ // spare1 = sum();
+ // }
+ // Stage 2
+ // // 'force' for 1st axis
+ // rgb
+ // {
+ // //s0 = s0 + s1 = t1 - t0 + t2 - t0;
+ // discard = spare0;
+ // discard = spare1;
+ // spare0 = sum();
+ // }
+ // Stage 3
+ // // one more point for 2nd axis
+ // rgb
+ // {
+ // //s1 = t3 - t0;
+ // discard = -tex0;
+ // discard = tex3;
+ // spare1 = sum();
+ // }
+ // Stage 4
+ // rgb
+ // {
+ // //s0 = s0 + s1 = t3 - t0 + t2 - t0 + t1 - t0;
+ // discard = spare0;
+ // discard = spare1;
+ // spare0 = sum();
+ // }
+ // Stage 5
+ // // Now add in a force to gently pull the center texel's
+ // // value to 0.5. The strength of this is controlled by
+ // // the PCN_EQ_REST_FAC - restoration factor
+ // // Without this, the simulation will fade to zero or fly
+ // // away to saturate at 1.0
+ // rgb
+ // {
+ // //s1 = 0.5 - t0;
+ // discard = -tex0;
+ // discard = const0;
+ // spare1 = sum();
+ // }
+ // Stage 6
+ // {
+ // rgb
+ // {
+ // discard = spare1 * const0;
+ // discard = spare0;
+ // spare0 = sum();
+ // }
+ // }
+ // Stage 7
+ // rgb
+ // {
+ // discard = spare0;
+ // discard = const0;
+ // spare0 = sum();
+ // }
+
+ float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f };
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM const0 = program.env[0];\n" +
+"PARAM three = { 3, 3, 3, 1.0 };\n" +
+"TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" +
+"TEMP spare0, spare1;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" +
+"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" +
+"TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" +
+"ADD spare0, texSamp1, texSamp2;\n" +
+"MAD spare1, const0, const0, const0;\n" +
+"ADD spare0, texSamp3, spare0;\n" +
+"ADD spare0, spare1, spare0;\n" +
+"ADD spare1, three, const0;\n" +
+"MAD result.color, -spare1, texSamp0, spare0;\n" +
+
+// Faster version which hardcodes in value of const0:
+//"ADD spare0, texSamp1, texSamp2;\n" +
+//"ADD spare1, texSamp3, pointSevenFive;\n" +
+//"ADD spare0, spare0, spare1;\n" +
+//"MAD result.color, minusThreePointFive, texSamp0, spare0;\n" +
+
+// Straightforward port:
+//"SUB spare0, texSamp1, texSamp0;\n" +
+//"SUB spare1, texSamp2, texSamp0;\n" +
+//"ADD spare0, spare0, spare1;\n" +
+//"SUB spare1, texSamp3, texSamp0;\n" +
+//"ADD spare0, spare0, spare1;\n" +
+//"SUB spare1, const0, texSamp0;\n" +
+//"MAD spare0, const0, spare1, spare0;\n" +
+//"ADD result.color, spare0, const0;\n" +
+
+"\n" +
+"END\n";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void initNeighborForceCalcStep2(GL2 gl, int displayListID) {
+ // 2nd step of force calc for render-to-texture
+ // water simulation.
+ //
+ // Adds the 4th & final neighbor point to the
+ // force calc..
+ //
+ // Bias and scale the values so 0 force is 0.5,
+ // full negative force is 0.0, and full pos is
+ // 1.0
+ //
+ // tex0 Center texel
+ // tex1 2nd axis neighbor point
+ // tex2 previous partial force amount
+ // Result from t1 - t0 is added to this t2
+ // partial result & output
+
+ // Original register combiner program:
+ //
+ // Stage 0
+ // last element of neighbor force
+ // rgb
+ // {
+ // discard = -tex0;
+ // discard = tex1;
+ // spare0 = sum();
+ // }
+ // Stage 1
+ // add with previous partial force amount
+ // rgb
+ // {
+ // discard = spare0;
+ // discard = tex2;
+ // spare0 = sum();
+ // }
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM const0 = program.env[0];\n" +
+"TEMP texSamp0, texSamp1, texSamp2;\n" +
+"TEMP spare0;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" +
+"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" +
+"SUB spare0, texSamp1, texSamp0;\n" +
+"ADD result.color, spare0, texSamp2;\n" +
+"\n" +
+"END\n";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void initApplyForce(GL2 gl, int displayListID) {
+ // This shader samples t1, biases its value to a signed number, and applies this
+ // value multiplied by a scale factor to the t0 sample.
+ //
+ // This is used to apply a "force" texture value to a "velocity" state texture
+ // for nearest-neighbor height-based water simulations. The output pixel is
+ // the new "velocity" value to replace the t0 sample in rendering to a new
+ // texture which will replace the texture selected into t0.
+ //
+ // A nearly identical shader using a different scaling constant is used to
+ // apply the "velocity" value to a "height" texture at each texel.
+ //
+ // t1 comes in the range [0,1] but needs to hold signed values, so a value of
+ // 0.5 in t1 represents zero force. This is biased to a signed value in
+ // computing the new velocity.
+ //
+ // tex0 = previous velocity
+ // tex1 = force
+ //
+ // Bias the force so that 0.5 input = no change in t0 value
+ // and 0.0 input means -0.5 * scale change in t0 value
+ //
+ // New velocity = force * scale + previous velocity
+
+ // Original register combiner program:
+ //
+ // Stage 0
+ // rgb
+ // {
+ // discard = expand(tex1) * const0;
+ // discard = expand(tex0);
+ // spare0 = sum();
+ // scale_by_one_half();
+ // }
+ // Stage 1
+ // rgb
+ // {
+ // discard = spare0;
+ // discard = const1;
+ // spare0 = sum();
+ // }
+
+ float[] const0 = new float[] { 0.25f, 0.25f, 0.25f, 1.0f };
+ float[] const1 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f };
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM const0 = program.env[0];\n" +
+"PARAM const1 = program.env[1];\n" +
+"PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" +
+"PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" +
+"PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" +
+"TEMP texSamp0, texSamp1;\n" +
+"TEMP spare0, spare1;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" +
+"MAD spare0, two, texSamp1, -one;\n" +
+"MAD spare1, two, texSamp0, -one;\n" +
+"MAD spare0, spare0, const0, spare1;\n" +
+"MAD result.color, oneHalf, spare0, const1;\n" +
+"\n" +
+"END\n";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 1, const1, 0);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void initApplyVelocity(GL2 gl, int displayListID) {
+ // This shader samples t1, biases its value to a signed number, and applies this
+ // value multiplied by a scale factor to the t0 sample.
+ //
+ // This is used to apply a "velocity" texture value to a "height" state texture
+ // for nearest-neighbor height-based water simulations. The output pixel is
+ // the new "height" value to replace the t0 sample in rendering to a new
+ // texture which will replace the texture selected into t0.
+ //
+ // A nearly identical shader using a different scaling constant is used to
+ // apply the "force" value to the "velocity" texture at each texel.
+ //
+ // t1 comes in the range [0,1] but needs to hold signed values, so a value of
+ // 0.5 in t1 represents zero velocity. This is biased to a signed value in
+ // computing the new position.
+ //
+ // tex0 = height field
+ // tex1 = velocity
+ //
+ // Bias the force/velocity to a signed value so we can subtract from
+ // the t0 position sample.
+ //
+ // New height = velocity * scale factor + old height
+
+ // Original register combiner program:
+ //
+ // Stage 0
+ // rgb
+ // {
+ // discard = expand(tex1) * const0;
+ // discard = expand(tex0);
+ // spare0 = sum();
+ // scale_by_one_half();
+ // }
+ // Stage 1
+ // rgb
+ // {
+ // discard = spare0;
+ // discard = const0;
+ // spare0 = sum();
+ // }
+ // }
+
+ float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f };
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM const0 = program.env[0];\n" +
+"PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" +
+"PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" +
+"PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" +
+"TEMP texSamp0, texSamp1;\n" +
+"TEMP spare0, spare1;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" +
+"MAD spare0, two, texSamp1, -one;\n" +
+"MAD spare1, two, texSamp0, -one;\n" +
+"MAD spare0, spare0, const0, spare1;\n" +
+"MAD result.color, oneHalf, spare0, const0;\n" +
+"\n" +
+"END\n";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void initCreateNormalMap(GL2 gl, int displayListID) {
+ // Neighbor-differencing for RGB normal map creation. Scale factors for s and t
+ // axis components are set in program code.
+ // This does a crude 1-s^2-t^2 calculation for the blue component in order to
+ // approximately normalize the RGB normal map vector. For s^2+t^2 close to 1.0,
+ // this is a close approximation to blue = sqrt(1 - s^2 - t^2) which would give a
+ // normalized vector.
+ // An additional pass with a dependent texture lookup (alpha-red or green-blue)
+ // could be used to produce an exactly normalized normal.
+
+ // colors from all 4 texture stages
+ // tex0 = -s, 0
+ // tex1 = +s, 0
+ // tex2 = 0, +t
+ // tex3 = 0, -t
+
+ // Original register combiner program:
+ //
+ // Stage 0
+ // rgb
+ // {
+ // // (t0 - t1)*4 : 4 for higher scale
+ // discard = -tex1;
+ // discard = tex0;
+ // spare0 = sum();
+ // scale_by_four();
+ // }
+ // Stage 1
+ // rgb
+ // {
+ // // (t3 - t2)*4 : 4 for higher scale
+ // discard = -tex2;
+ // discard = tex3;
+ // spare1 = sum();
+ // scale_by_four();
+ // }
+ // Stage 2
+ // Define const0 in the third general combiner as RGBA = (scale, 0, 0, 0)
+ // Where scale [0,1] is applied to reduce the magnitude
+ // of the s axis component of the normal.
+ // Define const1 in the third combiner similarly to affect the t axis component
+ // define these by "ramboing" them in the C++ code that uses this combiner script.
+ // Note: these variables have been renamed to "redMask" and "greenMask" in
+ // the fragment program below.
+ // rgb
+ // {
+ // // see comment about consts above!
+ // // t0 = s result in red only
+ // discard = spare0 * const0;
+ // discard = spare1 * const1;
+ // spare0 = sum();
+ // }
+ // Stage 3
+ // rgb
+ // {
+ // tex1 = spare0 * spare0;
+ // scale_by_two();
+ // }
+ // Stage 4
+ // const0 = (1, 1, 0, 0);
+ // rgb
+ // {
+ // spare1 = unsigned_invert(tex1) . const0;
+ // scale_by_one_half();
+ // }
+ // Stage 5
+ // const0 = (0.5, 0.5, 0, 0);
+ // rgb
+ // {
+ // discard = spare0;
+ // discard = const0;
+ // spare0 = sum();
+ // }
+ // Stage 6
+ // const0 = (0, 0, 1, 1);
+ // rgb
+ // {
+ // discard = spare1 * const0;
+ // discard = spare0;
+ // spare0 = sum();
+ // }
+
+
+ float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f };
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM redMask = program.env[0];\n" +
+"PARAM greenMask = program.env[1];\n" +
+"PARAM const0 = { 1.0, 1.0, 0.0, 0.0 };\n" +
+"PARAM const1 = { 0.5, 0.5, 0.0, 0.0 };\n" +
+"PARAM const2 = { 0.0, 0.0, 1.0, 1.0 };\n" +
+"PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" +
+"PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" +
+"PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" +
+"PARAM four = { 4.0, 4.0, 4.0, 1.0 };\n" +
+"TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" +
+"TEMP spare0, spare1, spare2;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" +
+"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" +
+"TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" +
+"SUB spare0, texSamp0, texSamp1;\n" +
+"MUL spare0, spare0, four;\n" +
+"SUB spare1, texSamp3, texSamp2;\n" +
+"MUL spare1, spare1, four;\n" +
+"MUL spare0, spare0, redMask;\n" +
+"MAD spare0, greenMask, spare1, spare0;\n" +
+"MUL_SAT spare2, spare0, spare0;\n" +
+"SUB spare2, one, spare2;\n" +
+"DP3 spare1, spare2, const0;\n" +
+"ADD spare0, spare0, const1;\n" +
+"MAD result.color, const2, spare1, spare0;\n" +
+"\n" +
+"END\n";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void initDotProductReflect(GL2 gl, int displayListID) {
+ // Pseudocode for this operation, derived from the NVidia
+ // texture_shader.txt documentation at
+ // http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader.txt
+
+ // TEX texSamp0, fragment.texcoord[0], texture[0], 2D;
+ // MAD texSamp0, two, texSamp0, minusOne;
+ // TEMP dotPP = texSamp0 . texcoord[1];
+ // TEMP dotP = texSamp0 . texcoord[2];
+ // TEMP dotC = texSamp0 . texcoord[3];
+ // TEMP R, N, E;
+ // N = [dotPP, dotP, dotC];
+ // ooNLength = N dot N;
+ // RCP ooNLength, ooNLength;
+ // E = [texcoord[1].w, texcoord[2].w, texcoord[3].w];
+ // nDotE = N dot E;
+ // MUL R, nDotE, N;
+ // MUL R, R, two;
+ // MUL R, R, ooNLength;
+ // SUB R, R, E;
+ // TEX result.color, R, texture[3], CUBE;
+
+ // This fragment program is pretty length-sensitive; making it too
+ // big causes the frame rate to be cut in half on my machine
+ // (Quadro FX Go700) due to sync-to-vertical-refresh. The program
+ // below is more optimized in its use of temporaries. Some of the
+ // scaling operations on the first component of the normal vector
+ // (before subtracting off the E vector) don't appear to make much
+ // of a visual difference so they are skipped as well.
+
+ int[] tmpInt = new int[1];
+ gl.glGenProgramsARB(1, tmpInt, 0);
+ int fragProg = tmpInt[0];
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+
+ String program =
+"!!ARBfp1.0\n" +
+"PARAM minusOne = { -1.0, -1.0, -1.0, 0.0 };\n" +
+"PARAM two = { 2.0, 2.0, 2.0, 0.0 };\n" +
+"TEMP texSamp0, R, N, E;\n" +
+"\n" +
+"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" +
+"MAD texSamp0, two, texSamp0, minusOne;\n" +
+"DP3 N.x, texSamp0, fragment.texcoord[1];\n" +
+"DP3 N.y, texSamp0, fragment.texcoord[2];\n" +
+"DP3 N.z, texSamp0, fragment.texcoord[3];\n" +
+"MOV E.x, fragment.texcoord[1].w;\n" +
+"MOV E.y, fragment.texcoord[2].w;\n" +
+"MOV E.z, fragment.texcoord[3].w;\n" +
+"MUL N, N, two;\n" +
+"SUB R, N, E;\n" +
+"TEX result.color, R, texture[3], CUBE;\n" +
+"\n" +
+"END";
+
+ loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program);
+
+ gl.glNewList(displayListID, GL2.GL_COMPILE);
+ gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg);
+ gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB);
+ gl.glEndList();
+ }
+
+ private void loadProgram(GL2 gl,
+ int target,
+ String programBuffer) {
+
+ gl.glProgramStringARB(target, GL2.GL_PROGRAM_FORMAT_ASCII_ARB, programBuffer.length(), programBuffer);
+
+ int[] errPos = new int[1];
+ gl.glGetIntegerv(GL2.GL_PROGRAM_ERROR_POSITION_ARB, errPos, 0);
+ if (errPos[0] >= 0) {
+ String kind = "Program";
+ if (target == GL2.GL_VERTEX_PROGRAM_ARB) {
+ kind = "Vertex program";
+ } else if (target == GL2.GL_FRAGMENT_PROGRAM_ARB) {
+ kind = "Fragment program";
+ }
+ System.out.println(kind + " failed to load:");
+ String errMsg = gl.glGetString(GL2.GL_PROGRAM_ERROR_STRING_ARB);
+ if (errMsg == null) {
+ System.out.println("[No error message available]");
+ } else {
+ System.out.println("Error message: \"" + errMsg + "\"");
+ }
+ System.out.println("Error occurred at position " + errPos[0] + " in program:");
+ int endPos = errPos[0];
+ while (endPos < programBuffer.length() && programBuffer.charAt(endPos) != '\n') {
+ ++endPos;
+ }
+ System.out.println(programBuffer.substring(errPos[0], endPos));
+ throw new GLException("Error loading " + kind);
+ } else {
+ if (target == GL2.GL_FRAGMENT_PROGRAM_ARB) {
+ int[] isNative = new int[1];
+ gl.glGetProgramivARB(GL2.GL_FRAGMENT_PROGRAM_ARB,
+ GL2.GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB,
+ isNative, 0);
+ if (isNative[0] != 1) {
+ System.out.println("WARNING: fragment program is over native resource limits");
+ Thread.dumpStack();
+ }
+ }
+ }
+ }
+}