diff options
author | Kenneth Russel <[email protected]> | 2009-06-15 23:12:27 +0000 |
---|---|---|
committer | Kenneth Russel <[email protected]> | 2009-06-15 23:12:27 +0000 |
commit | 41cd6c47b23975098cd155517790e018670785e7 (patch) | |
tree | 247333528ad674d427ba96b1e05810f7961d609e /src/demos/proceduralTexturePhysics/Water.java | |
parent | 935d2596c13371bb745d921dbcb9f05b0c11a010 (diff) |
Copied JOGL_2_SANDBOX r350 on to trunk; JOGL_2_SANDBOX branch is now closed
git-svn-id: file:///usr/local/projects/SUN/JOGL/git-svn/../svn-server-sync/jogl-demos/trunk@352 3298f667-5e0e-4b4a-8ed4-a3559d26a5f4
Diffstat (limited to 'src/demos/proceduralTexturePhysics/Water.java')
-rw-r--r-- | src/demos/proceduralTexturePhysics/Water.java | 1862 |
1 files changed, 1862 insertions, 0 deletions
diff --git a/src/demos/proceduralTexturePhysics/Water.java b/src/demos/proceduralTexturePhysics/Water.java new file mode 100644 index 0000000..89c1495 --- /dev/null +++ b/src/demos/proceduralTexturePhysics/Water.java @@ -0,0 +1,1862 @@ +/* + * Portions Copyright (C) 2003 Sun Microsystems, Inc. + * All rights reserved. + */ + +/* + * + * COPYRIGHT NVIDIA CORPORATION 2003. ALL RIGHTS RESERVED. + * BY ACCESSING OR USING THIS SOFTWARE, YOU AGREE TO: + * + * 1) ACKNOWLEDGE NVIDIA'S EXCLUSIVE OWNERSHIP OF ALL RIGHTS + * IN AND TO THE SOFTWARE; + * + * 2) NOT MAKE OR DISTRIBUTE COPIES OF THE SOFTWARE WITHOUT + * INCLUDING THIS NOTICE AND AGREEMENT; + * + * 3) ACKNOWLEDGE THAT TO THE MAXIMUM EXTENT PERMITTED BY + * APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND + * THAT NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, + * EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED + * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE. + * + * IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY + * SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES + * WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS + * OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS + * INFORMATION, OR ANY OTHER PECUNIARY LOSS), INCLUDING ATTORNEYS' + * FEES, RELATING TO THE USE OF OR INABILITY TO USE THIS SOFTWARE, + * EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. + * + */ + +package demos.proceduralTexturePhysics; + +import com.sun.opengl.util.FileUtil; +import com.sun.opengl.util.texture.Texture; +import com.sun.opengl.util.texture.TextureData; +import com.sun.opengl.util.texture.TextureIO; +import demos.util.Cubemap; +import gleem.linalg.Mat4f; +import gleem.linalg.Rotf; +import java.io.IOException; +import java.nio.ByteBuffer; +import java.util.ArrayList; +import java.util.Iterator; +import java.util.List; +import javax.media.opengl.GL; +import javax.media.opengl.GL2ES1; +import javax.media.opengl.GL2; +import javax.media.opengl.GLAutoDrawable; +import javax.media.opengl.GLCapabilities; +import javax.media.opengl.GLDrawableFactory; +import javax.media.opengl.GLEventListener; +import javax.media.opengl.GLException; +import javax.media.opengl.GLPbuffer; +import javax.media.opengl.glu.GLU; +import com.sun.opengl.util.BufferUtil; + + + +/** + * Auxiliary Water simulation class used by ProceduralTexturePhysics + * main loop. Demonstration by NVidia Corporation. + * + * <P> + * + * Ported to Java and ARB_fragment_program by Kenneth Russell + */ + +public class Water { + // Note: this class is organized differently than most of the demos + // due to the fact that it is used for two purposes: when the + // pbuffer's context is current it is used to update the cellular + // automata, and when the parent drawable's context is current it is + // used to render the water geometry (with the parent drawable's GL + // object). + + private GLU glu = new GLU(); + + // Rendering modes + public static final int CA_FULLSCREEN_REFLECT = 0; + public static final int CA_FULLSCREEN_FORCE = 1; + public static final int CA_FULLSCREEN_HEIGHT = 2; + public static final int CA_FULLSCREEN_NORMALMAP = 3; + public static final int CA_TILED_THREE_WINDOWS = 4; + public static final int CA_DO_NOT_RENDER = 5; + + private int[] initialMapDimensions = new int[2]; + private TextureData initialMapData; + + private String tmpSpinFilename; + private String tmpDropletFilename; + private String tmpCubeMapFilenamePrefix; + private String tmpCubeMapFilenameSuffix; + + private GLPbuffer pbuffer; + private Rotf cameraOrientation = new Rotf(); + + // Dynamic texture names + private static final int CA_TEXTURE_FORCE_INTERMEDIATE = 0; + private static final int CA_TEXTURE_FORCE_TARGET = 1; + private static final int CA_TEXTURE_VELOCITY_SOURCE = 2; + private static final int CA_TEXTURE_VELOCITY_TARGET = 3; + private static final int CA_TEXTURE_HEIGHT_SOURCE = 4; + private static final int CA_TEXTURE_HEIGHT_TARGET = 5; + private static final int CA_TEXTURE_NORMAL_MAP = 6; + private static final int CA_NUM_DYNAMIC_TEXTURES = 7; + + // List names + private static final int CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE = 0; + private static final int CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1 = 1; + private static final int CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2 = 2; + private static final int CA_FRAGMENT_PROGRAM_APPLY_FORCE = 3; + private static final int CA_FRAGMENT_PROGRAM_APPLY_VELOCITY = 4; + private static final int CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP = 5; + private static final int CA_FRAGMENT_PROGRAM_REFLECT = 6; + private static final int CA_DRAW_SCREEN_QUAD = 7; + private static final int CA_NUM_LISTS = 8; + + // Static textures + private Texture initialMapTex; + private Texture spinTex; + private Texture dropletTex; + private Texture cubemap; + + private Texture[] dynamicTextures = new Texture[CA_NUM_DYNAMIC_TEXTURES]; + + private int texHeightInput; // current input height texture ID. + private int texHeightOutput; // current output height texture ID. + private int texVelocityInput; // current input velocity texture ID. + private int texVelocityOutput; // current output velocity texture ID. + private int texForceStepOne; // intermediate force computation result texture ID. + private int texForceOutput; // current output force texture ID. + + private int[] displayListIDs = new int[CA_NUM_LISTS]; + + private int vertexProgramID; // one vertex program is used to choose the texcoord offset + + private int flipState; // used to flip target texture configurations. + + private boolean wrap; // CA can either wrap its borders, or clamp (clamp by default) + private boolean reset = true; // are we resetting this frame? (user hit reset). + private boolean singleStep; // animation step on keypress. + private boolean animate = true; // continuous animation. + private boolean slow = true; // run slow. + private boolean wireframe; // render in wireframe mode + private boolean applyInteriorBoundaries = true; // enable / disable "boundary" image drawing. + private boolean spinLogo = true; // draw spinning logo. + private boolean createNormalMap = true; // enable / disable normal map creation. + + private float perTexelWidth; // width of a texel (percentage of texture) + private float perTexelHeight; // height of a texel + + private float blurDist = 0.5f; // distance over which to blur. + private boolean mustUpdateBlurOffsets; // flag indicating blurDist was set last tick + + private float normalSTScale = 0.8f; // scale of normals in normal map. + private float bumpScale = 0.25f; // scale of bumps in water. + + private float dropletFrequency = 0.175f; // frequency at which droplets are drawn in water... + + private int slowDelay = 1; // amount (milliseconds) to delay when running slow. + private int skipInterval; // frames to skip simulation. + private int skipCount; // frame count for skipping rendering + + private int angle; // angle in degrees for spinning logo + + private List/*<Droplet>*/ droplets = new ArrayList/*<Droplet>*/(); // array of droplets + + private int renderMode; + + // Constant memory locations + private static final int CV_UV_OFFSET_TO_USE = 0; + + private static final int CV_UV_T0_NO_OFFSET = 1; + private static final int CV_UV_T0_TYPE1 = 2; + private static final int CV_UV_T0_TYPE2 = 3; + private static final int CV_UV_T0_TYPE3 = 4; + private static final int CV_UV_T0_TYPE4 = 5; + + private static final int CV_UV_T1_NO_OFFSET = 6; + private static final int CV_UV_T1_TYPE1 = 7; + private static final int CV_UV_T1_TYPE2 = 8; + private static final int CV_UV_T1_TYPE3 = 9; + private static final int CV_UV_T1_TYPE4 = 10; + + private static final int CV_UV_T2_NO_OFFSET = 11; + private static final int CV_UV_T2_TYPE1 = 12; + private static final int CV_UV_T2_TYPE2 = 13; + private static final int CV_UV_T2_TYPE3 = 14; + private static final int CV_UV_T2_TYPE4 = 15; + + private static final int CV_UV_T3_NO_OFFSET = 16; + private static final int CV_UV_T3_TYPE1 = 17; + private static final int CV_UV_T3_TYPE2 = 18; + private static final int CV_UV_T3_TYPE3 = 19; + private static final int CV_UV_T3_TYPE4 = 20; + + private static final int CV_CONSTS_1 = 21; + + public void initialize(String initialMapFilename, + String spinFilename, + String dropletFilename, + String cubeMapFilenamePrefix, + String cubeMapFilenameSuffix, + GLAutoDrawable parentWindow) { + loadInitialTexture(initialMapFilename); + tmpSpinFilename = spinFilename; + tmpDropletFilename = dropletFilename; + tmpCubeMapFilenamePrefix = cubeMapFilenamePrefix; + tmpCubeMapFilenameSuffix = cubeMapFilenameSuffix; + + // create the pbuffer. Will use this as an offscreen rendering buffer. + // it allows rendering a texture larger than our window. + GLCapabilities caps = parentWindow.getChosenGLCapabilities(); + caps.setDoubleBuffered(false); + if (!GLDrawableFactory.getFactory(caps.getGLProfile()).canCreateGLPbuffer()) { + throw new GLException("Pbuffers not supported with this graphics card"); + } + pbuffer = GLDrawableFactory.getFactory(caps.getGLProfile()).createGLPbuffer(caps, + null, + initialMapDimensions[0], + initialMapDimensions[1], + parentWindow.getContext()); + pbuffer.addGLEventListener(new Listener()); + } + + public void destroy() { + if (pbuffer != null) { + pbuffer.destroy(); + pbuffer = null; + } + reset = true; + } + + public void tick() { + pbuffer.display(); + } + + public void draw(GL2 gl, Rotf cameraOrientation) { + this.cameraOrientation.set(cameraOrientation); + + if (skipCount >= skipInterval && renderMode != CA_DO_NOT_RENDER) { + skipCount = 0; + // Display the results of the rendering to texture + if (wireframe) { + gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_LINE); + + // chances are the texture will be all dark, so lets not use a texture + gl.glDisable(GL2.GL_TEXTURE_2D); + } else { + gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_FILL); + + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glEnable(GL2.GL_TEXTURE_2D); + } + + switch (renderMode) { + case CA_FULLSCREEN_REFLECT: { + // include bump scale... + Mat4f bscale = new Mat4f(); + bscale.makeIdent(); + bscale.set(0, 0, bumpScale); + bscale.set(1, 1, bumpScale); + Mat4f rot = new Mat4f(); + rot.makeIdent(); + rot.setRotation(cameraOrientation); + Mat4f matRot = rot.mul(bscale); + + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT]); + + // Draw quad over full display + gl.glActiveTexture(GL2.GL_TEXTURE0); + dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); + dynamicTextures[CA_TEXTURE_NORMAL_MAP].disable(); + gl.glActiveTexture(GL2.GL_TEXTURE3); + cubemap.bind(); + cubemap.enable(); + + gl.glColor4f(1, 1, 1, 1); + gl.glBegin(GL2.GL_QUADS); + + gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 0,0); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), 1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), 1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); + gl.glVertex2f(-1,-1); + + gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 1,0); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), -1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), 1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); + gl.glVertex2f( 1,-1); + + gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 1,1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), -1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), -1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); + gl.glVertex2f( 1, 1); + + gl.glMultiTexCoord2f(GL2.GL_TEXTURE0, 0,1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE1, matRot.get(0,0), matRot.get(0,1), matRot.get(0,2), 1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE2, matRot.get(1,0), matRot.get(1,1), matRot.get(1,2), -1); + gl.glMultiTexCoord4f(GL2.GL_TEXTURE3, matRot.get(2,0), matRot.get(2,1), matRot.get(2,2), 1); + gl.glVertex2f(-1, 1); + + gl.glEnd(); + + cubemap.disable(); + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + break; + } + + case CA_FULLSCREEN_NORMALMAP: { + // Draw quad over full display + gl.glActiveTexture(GL2.GL_TEXTURE0); + dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + break; + } + + case CA_FULLSCREEN_HEIGHT: { + // Draw quad over full display + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + break; + } + + case CA_FULLSCREEN_FORCE: { + // Draw quad over full display + gl.glActiveTexture(GL2.GL_TEXTURE0); + dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + break; + } + + case CA_TILED_THREE_WINDOWS: { + // Draw quad over full display + // lower left + gl.glActiveTexture(GL2.GL_TEXTURE0); + dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); + gl.glMatrixMode(GL2.GL_MODELVIEW); + gl.glPushMatrix(); + + gl.glTranslatef(-0.5f, -0.5f, 0); + gl.glScalef(0.5f, 0.5f, 1); + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + gl.glPopMatrix(); + + // lower right + gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityOutput); + gl.glPushMatrix(); + + gl.glTranslatef(0.5f, -0.5f, 0); + gl.glScalef(0.5f, 0.5f, 1); + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + gl.glPopMatrix(); + + // upper left + dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); + gl.glMatrixMode(GL2.GL_MODELVIEW); + gl.glPushMatrix(); + + gl.glTranslatef(-0.5f, 0.5f, 0); + gl.glScalef(0.5f, 0.5f, 1); + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + gl.glPopMatrix(); + + // upper right + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); + gl.glMatrixMode(GL2.GL_MODELVIEW); + gl.glPushMatrix(); + + gl.glTranslatef(0.5f, 0.5f, 0); + gl.glScalef(0.5f, 0.5f, 1); + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + gl.glPopMatrix(); + + break; + } + } + } else { + // skip rendering this frame + skipCount++; + } + } + + public void singleStep() { singleStep = true; } + public void enableAnimation(boolean enable) { animate = enable; } + public void enableSlowAnimation(boolean enable) { slow = enable; } + public void reset() { reset = true; } + public void setRenderMode(int mode) { renderMode = mode; } + + public void enableWireframe(boolean enable) { wireframe = enable; } + public void enableBorderWrapping(boolean enable) { wrap = enable; } + + public void enableBoundaryApplication(boolean enable) { applyInteriorBoundaries = enable; } + public void enableSpinningLogo(boolean enable) { spinLogo = enable; } + + public void setBlurDistance(float distance) { blurDist = distance; + mustUpdateBlurOffsets = true; } + public float getBlurDistance() { return blurDist; } + + public void setBumpScale(float scale) { bumpScale = scale; } + public float getBumpScale() { return bumpScale; } + + public void setDropFrequency(float frequency) { dropletFrequency = frequency; } + public float getDropFrequency() { return dropletFrequency; } + + public static class Droplet { + private float rX; + private float rY; + private float rScale; + + Droplet(float rX, float rY, float rScale) { + this.rX = rX; + this.rY = rY; + this.rScale = rScale; + } + + float rX() { return rX; } + float rY() { return rY; } + float rScale() { return rScale; } + } + + public synchronized void addDroplet(Droplet drop) { + droplets.add(drop); + } + + //---------------------------------------------------------------------- + // Internals only below this point + // + + class Listener implements GLEventListener { + + public void init(GLAutoDrawable drawable) { + GL2 gl = drawable.getGL().getGL2(); + + initOpenGL(gl); + } + + public void dispose(GLAutoDrawable drawable) { + } + + public void display(GLAutoDrawable drawable) { + + GL2 gl = drawable.getGL().getGL2(); + if (mustUpdateBlurOffsets) { + updateBlurVertOffset(gl); + mustUpdateBlurOffsets = false; + } + + // Take a single step in the cellular automaton + + // Disable culling + gl.glDisable(GL2.GL_CULL_FACE); + + if (reset) { + reset = false; + flipState = 0; + } + + if (animate) { + // Update the textures for one step of the simulation + doSingleTimeStep(gl); + } else if (singleStep) { + doSingleTimeStep(gl); + singleStep = false; + } + + // Force rendering to pbuffer to complete + gl.glFlush(); + + if (slow && (slowDelay > 0) ) { + try { + Thread.sleep(slowDelay); + } catch (InterruptedException e) { + } + } + } + + public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) {} + + // Unused routines + public void displayChanged(GLAutoDrawable drawable, boolean modeChanged, boolean deviceChanged) {} + } + + // We need to load the initial texture file early to get the width + // and height for the pbuffer + private void loadInitialTexture(String initialMapFilename) { + try { + initialMapData = TextureIO.newTextureData(getClass().getClassLoader().getResourceAsStream(initialMapFilename), + false, + FileUtil.getFileSuffix(initialMapFilename)); + } catch (IOException e) { + throw new GLException(e); + } + initialMapDimensions[0] = initialMapData.getWidth(); + initialMapDimensions[1] = initialMapData.getHeight(); + } + + private void initOpenGL(GL2 gl) { + try { + loadTextures(gl, tmpSpinFilename, tmpDropletFilename, tmpCubeMapFilenamePrefix, tmpCubeMapFilenameSuffix); + } catch (IOException e) { + throw new GLException(e); + } + tmpSpinFilename = null; + tmpDropletFilename = null; + tmpCubeMapFilenamePrefix = null; + tmpCubeMapFilenameSuffix = null; + + gl.glMatrixMode(GL2.GL_MODELVIEW); + gl.glLoadIdentity(); + gl.glMatrixMode(GL2.GL_PROJECTION); + gl.glLoadIdentity(); + glu.gluOrtho2D(-1, 1, -1, 1); + + gl.glClearColor(0, 0, 0, 0); + gl.glDisable(GL2.GL_LIGHTING); + gl.glDisable(GL2.GL_DEPTH_TEST); + + createAndWriteUVOffsets(gl, initialMapDimensions[0], initialMapDimensions[1]); + + checkExtension(gl, "GL_ARB_vertex_program"); + checkExtension(gl, "GL_ARB_fragment_program"); + checkExtension(gl, "GL_ARB_multitexture"); + + /////////////////////////////////////////////////////////////////////////// + // UV Offset Vertex Program + /////////////////////////////////////////////////////////////////////////// + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + vertexProgramID = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, vertexProgramID); + + String programBuffer = +"!!ARBvp1.0\n" + +"# Constant memory location declarations (must match those in Java sources)\n" + +"# CV_UV_OFFSET_TO_USE = 0\n" + +"\n" + +"# CV_UV_T0_NO_OFFSET = 1\n" + +"# CV_UV_T0_TYPE1 = 2\n" + +"# CV_UV_T0_TYPE2 = 3\n" + +"# CV_UV_T0_TYPE3 = 4\n" + +"# CV_UV_T0_TYPE4 = 5\n" + +"\n" + +"# CV_UV_T1_NO_OFFSET = 6\n" + +"# CV_UV_T1_TYPE1 = 7\n" + +"# CV_UV_T1_TYPE2 = 8\n" + +"# CV_UV_T1_TYPE3 = 9\n" + +"# CV_UV_T1_TYPE4 = 10\n" + +"\n" + +"# CV_UV_T2_NO_OFFSET = 11\n" + +"# CV_UV_T2_TYPE1 = 12\n" + +"# CV_UV_T2_TYPE2 = 13\n" + +"# CV_UV_T2_TYPE3 = 14\n" + +"# CV_UV_T2_TYPE4 = 15\n" + +"\n" + +"# CV_UV_T3_NO_OFFSET = 16\n" + +"# CV_UV_T3_TYPE1 = 17\n" + +"# CV_UV_T3_TYPE2 = 18\n" + +"# CV_UV_T3_TYPE3 = 19\n" + +"# CV_UV_T3_TYPE4 = 20\n" + +"\n" + +"# CV_CONSTS_1 = 21\n" + +"\n" + +"# Parameters\n" + +"PARAM mvp [4] = { state.matrix.mvp }; # modelview projection matrix\n" + +"PARAM uvOffsetToUse = program.env[0];\n" + +"PARAM uvOffsets[20] = { program.env[1..20] };\n" + +"\n" + +"# Addresses\n" + +"ADDRESS addr;\n" + +"\n" + +"# Per vertex inputs\n" + +"ATTRIB iPos = vertex.position; #position\n" + +"\n" + +"# Outputs\n" + +"OUTPUT oPos = result.position; #position\n" + +"\n" + +"# Transform vertex-position to clip-space\n" + +"DP4 oPos.x, iPos, mvp[0];\n" + +"DP4 oPos.y, iPos, mvp[1];\n" + +"DP4 oPos.z, iPos, mvp[2];\n" + +"DP4 oPos.w, iPos, mvp[3];\n" + +"\n" + +"# Read which set of offsets to use\n" + +"ARL addr.x, uvOffsetToUse.x;\n" + +"\n" + +"# c[CV_CONSTS_1] = c[28]\n" + +"# x = 0\n" + +"# y = 0.5\n" + +"# z = 1\n" + +"# w = 2.0f\n" + +"\n" + +"# Put a scale factor into r0 so the sample points\n" + +"# can be moved farther from the texel being written\n" + +"# MOV R0, c[28].z;\n" + +"\n" + +"# Add the offsets to the input texture\n" + +"# coordinate, creating 4 sets of independent\n" + +"# texture coordinates.\n" + +"ADD result.texcoord[0], uvOffsets[addr.x ], vertex.texcoord[0];\n" + +"ADD result.texcoord[1], uvOffsets[addr.x + 5 ], vertex.texcoord[0];\n" + +"ADD result.texcoord[2], uvOffsets[addr.x + 10], vertex.texcoord[0];\n" + +"ADD result.texcoord[3], uvOffsets[addr.x + 15], vertex.texcoord[0];\n" + +"\n" + +"END\n"; + + // set up constants (not currently used in the vertex program, though) + float[] rCVConsts = new float[] { 0, 0.5f, 1.0f, 2.0f }; + gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_CONSTS_1, rCVConsts, 0); + + loadProgram(gl, GL2.GL_VERTEX_PROGRAM_ARB, programBuffer); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup for equal weight combination of texels + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE] = gl.glGenLists(1); + initEqWeightCombine_PostMult(gl, displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE]); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup for computing force from neighbors (step 1) + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1] = gl.glGenLists(1); + initNeighborForceCalcStep1(gl, displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1]); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup for computing force from neighbors (step 2) + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2] = gl.glGenLists(1); + initNeighborForceCalcStep2(gl, displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2]); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup to apply force + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE] = gl.glGenLists(1); + initApplyForce(gl, displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE]); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup to apply velocity + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY] = gl.glGenLists(1); + initApplyVelocity(gl, displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY]); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup to create a normal map + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP] = gl.glGenLists(1); + initCreateNormalMap(gl, displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP]); + + /////////////////////////////////////////////////////////////////////////// + // fragment program setup for dot product reflection + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT] = gl.glGenLists(1); + initDotProductReflect(gl, displayListIDs[CA_FRAGMENT_PROGRAM_REFLECT]); + + /////////////////////////////////////////////////////////////////////////// + // display list to render a single screen space quad. + /////////////////////////////////////////////////////////////////////////// + displayListIDs[CA_DRAW_SCREEN_QUAD] = gl.glGenLists(1); + gl.glNewList(displayListIDs[CA_DRAW_SCREEN_QUAD], GL2.GL_COMPILE); + gl.glColor4f(1, 1, 1, 1); + gl.glBegin(GL2.GL_TRIANGLE_STRIP); + gl.glTexCoord2f(0, 1); gl.glVertex2f(-1, 1); + gl.glTexCoord2f(0, 0); gl.glVertex2f(-1, -1); + gl.glTexCoord2f(1, 1); gl.glVertex2f( 1, 1); + gl.glTexCoord2f(1, 0); gl.glVertex2f( 1, -1); + gl.glEnd(); + gl.glEndList(); + } + + private void checkExtension(GL gl, String extensionName) { + if (!gl.isExtensionAvailable(extensionName)) { + throw new GLException("Unable to initialize " + extensionName + " OpenGL extension"); + } + } + + private void doSingleTimeStep(GL2 gl) { + int temp; + + // Swap texture source & target indices & pointers + // 0 = start from initial loaded texture + // 1/2 = flip flop back and forth between targets & sources + + switch (flipState) { + case 0: + texHeightInput = dynamicTextures[CA_TEXTURE_HEIGHT_SOURCE].getTextureObject(); // initial height map. + texHeightOutput = dynamicTextures[CA_TEXTURE_HEIGHT_TARGET].getTextureObject(); // next height map. + + texVelocityInput = dynamicTextures[CA_TEXTURE_VELOCITY_SOURCE].getTextureObject(); // initial velocity. + texVelocityOutput = dynamicTextures[CA_TEXTURE_VELOCITY_TARGET].getTextureObject(); // next velocity. + + // Clear initial velocity texture to 0x80 == gray + gl.glClearColor(0.5f, 0.5f, 0.5f, 1.0f); + gl.glClear(GL2.GL_COLOR_BUFFER_BIT); + + // Now we need to copy the resulting pixels into the intermediate force field texture + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityInput); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + + break; + + case 1: + temp = texHeightInput; + texHeightInput = texHeightOutput; + texHeightOutput = temp; + + temp = texVelocityInput; + texVelocityInput = texVelocityOutput; + texVelocityOutput = temp; + + break; + + case 2: + temp = texHeightInput; + texHeightInput = texHeightOutput; + texHeightOutput = temp; + + temp = texVelocityInput; + texVelocityInput = texVelocityOutput; + texVelocityOutput = temp; + break; + } + + // even if wireframe mode, render to texture as solid + gl.glPolygonMode(GL2.GL_FRONT_AND_BACK, GL2.GL_FILL); + + ///////////////////////////////////////////////////////////// + // Render first 3 components of force from three neighbors + // Offsets selected are 1 center texel for center height + // and 3 of the 4 nearest neighbors. Texture selected + // is same for all stages as we're turning height difference + // of nearest neightbor texels into a force value. + + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_1]); + + // set current source texture for stage 0 texture + for (int i = 0; i < 4; i++) + { + gl.glActiveTexture(GL2.GL_TEXTURE0 + i); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); + gl.glEnable(GL2.GL_TEXTURE_2D); + } + + int wrapMode = wrap ? GL2.GL_REPEAT : GL2.GL_CLAMP_TO_EDGE; + gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, wrapMode); + gl.glTexParameteri(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, wrapMode); + + // disable blending + gl.glDisable(GL2.GL_BLEND); + + // render using offset 1 (type 1 -- center + 3 of 4 nearest neighbors). + gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 1, 0, 0, 0); + + // bind the vertex program to be used for this step and the next one. + gl.glBindProgramARB(GL2.GL_VERTEX_PROGRAM_ARB, vertexProgramID); + gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); + + // render a screen quad. with texture coords doing difference of nearby texels for force calc. + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + // Now we need to copy the resulting pixels into the intermediate force field texture + gl.glActiveTexture(GL2.GL_TEXTURE2); + dynamicTextures[CA_TEXTURE_FORCE_INTERMEDIATE].bind(); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + + //////////////////////////////////////////////////////////////// + // Now add in last component of force for the 4th neighbor + // that we didn't have enough texture lookups to do in the + // first pass + + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_NEIGHBOR_FORCE_CALC_2]); + + // Cannot use additive blending as the force contribution might + // be negative and would have to subtract from the dest. + // We must instead use an additional texture as target and read + // the previous partial 3-neighbor result into the pixel shader + // for possible subtraction + + // Alphablend must be false + + //; t0 = center (same as last phase) + //; t1 = 2nd axis final point (same as last phase) + //; t2 = previous partial result texture sampled at center (result of last phase copied to texture) + //; t3 = not used (disable now) + + gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_S, wrapMode); + gl.glTexParameterf(GL2.GL_TEXTURE_2D, GL2.GL_TEXTURE_WRAP_T, wrapMode); + + gl.glActiveTexture(GL2.GL_TEXTURE3); + gl.glDisable(GL2.GL_TEXTURE_2D); + + // vertex program already bound. + // render using offset 2 (type 2 -- final nearest neighbor plus center of previous result). + gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 2, 0, 0, 0); + + // render a screen quad + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + // Now we need to copy the resulting pixels into the intermediate force field texture + gl.glActiveTexture(GL2.GL_TEXTURE1); + dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + + ///////////////////////////////////////////////////////////////// + // Apply the force with a scale factor to reduce it's magnitude. + // Add this to the current texture representing the water height. + + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_FORCE]); + + // use offsets of zero + gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 0, 0, 0, 0); + + // bind the vertex program to be used for this step and the next one. + + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityInput); + gl.glActiveTexture(GL2.GL_TEXTURE1); + dynamicTextures[CA_TEXTURE_FORCE_TARGET].bind(); + gl.glActiveTexture(GL2.GL_TEXTURE2); + gl.glDisable(GL2.GL_TEXTURE_2D); + gl.glActiveTexture(GL2.GL_TEXTURE3); + gl.glDisable(GL2.GL_TEXTURE_2D); + + // Draw the quad to add in force. + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + /////////////////////////////////////////////////////////////////// + // With velocity texture selected, render new excitation droplets + // at random freq. + + float randomFrequency = (float) Math.random(); + + if (dropletFrequency > randomFrequency) { + // a drop falls - decide where + Droplet drop = new Droplet(2 * ((float)Math.random() - 0.5f), + 2 * ((float)Math.random() - 0.5f), + 0.02f + 0.1f * ((float)Math.random())); + addDroplet(drop); + } + + // Now draw the droplets: + if (!droplets.isEmpty()) { + drawDroplets(gl); + droplets.clear(); + } + + // Now we need to copy the resulting pixels into the velocity texture + gl.glActiveTexture(GL2.GL_TEXTURE1); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texVelocityOutput); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + + ////////////////////////////////////////////////////////////////////// + // Apply velocity to position + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_APPLY_VELOCITY]); + gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); + + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); + gl.glActiveTexture(GL2.GL_TEXTURE1); // velocity output already bound + gl.glEnable(GL2.GL_TEXTURE_2D); + + // use offsets of zero + gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 0, 0, 0, 0); + + // Draw the quad to add in force. + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + // Now we need to copy the resulting pixels into the input height texture + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + + /////////////////////////////////////////////////////////////////// + // blur positions to smooth noise & generaly dampen things + // degree of blur is controlled by magnitude of 4 neighbor texel + // offsets with bilinear on + + for (int i = 1; i < 4; i++) { + gl.glActiveTexture(GL2.GL_TEXTURE0 + i); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightInput); + gl.glEnable(GL2.GL_TEXTURE_2D); + } + + // use offsets of 3 + gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 3, 0, 0, 0); + + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_EQ_WEIGHT_COMBINE]); + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + // Draw the logo in the water. + if (applyInteriorBoundaries) { + gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB); + drawInteriorBoundaryObjects(gl); + } + + // Now we need to copy the resulting pixels into the velocity texture + gl.glActiveTexture(GL2.GL_TEXTURE0); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + + /////////////////////////////////////////////////////////////////// + // If selected, create a normal map from the height + + if (createNormalMap) { + createNormalMap(gl); + } + + /////////////////////////////////////////////////////////// + // Flip the state variable for the next round of rendering + switch (flipState) { + case 0: + flipState = 1; + break; + case 1: + flipState = 2; + break; + case 2: + flipState = 1; + break; + } + } + + private void createNormalMap(GL2 gl) { + // use the height output on all four texture stages + for (int i = 0; i < 4; i++) { + gl.glActiveTexture(GL2.GL_TEXTURE0 + i); + gl.glBindTexture(GL2.GL_TEXTURE_2D, texHeightOutput); + gl.glEnable(GL2.GL_TEXTURE_2D); + } + + // Set constants for red & green scale factors (also essential color masks) + // Red mask first + float[] pixMasks = new float[] { normalSTScale, 0.0f, 0.0f, 0.0f }; + + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, pixMasks, 0); + + // Now green mask & scale: + pixMasks[0] = 0.0f; + pixMasks[1] = normalSTScale; + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 1, pixMasks, 0); + + gl.glCallList(displayListIDs[CA_FRAGMENT_PROGRAM_CREATE_NORMAL_MAP]); + + // set vp offsets to nearest neighbors + gl.glProgramEnvParameter4fARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_OFFSET_TO_USE, 4, 0, 0, 0); + gl.glEnable(GL2.GL_VERTEX_PROGRAM_ARB); + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + + // Now we need to copy the resulting pixels into the normal map + gl.glActiveTexture(GL2.GL_TEXTURE0); + dynamicTextures[CA_TEXTURE_NORMAL_MAP].bind(); + + // use CopyTexSubImage for speed (even though we copy all of it) since we pre-allocated the texture + gl.glCopyTexSubImage2D(GL2.GL_TEXTURE_2D, 0, 0, 0, 0, 0, initialMapDimensions[0], initialMapDimensions[1]); + } + + private void drawInteriorBoundaryObjects(GL2 gl) { + + gl.glActiveTexture(GL2.GL_TEXTURE0); + initialMapTex.bind(); + initialMapTex.enable(); + + gl.glEnable(GL2.GL_ALPHA_TEST); + + // disable other texture units. + for (int i = 1; i < 4; i++) { + gl.glActiveTexture(GL2.GL_TEXTURE0 + i); + gl.glDisable(GL2.GL_TEXTURE_2D); + } + + gl.glBlendFunc(GL2.GL_SRC_ALPHA, GL2.GL_ONE_MINUS_SRC_ALPHA); + gl.glEnable(GL2.GL_BLEND); + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + if (spinLogo) { + gl.glActiveTexture(GL2.GL_TEXTURE0); + spinTex.bind(); + gl.glMatrixMode(GL2.GL_MODELVIEW); + gl.glPushMatrix(); + gl.glRotatef(angle, 0, 0, 1); + angle += 1; + + gl.glCallList(displayListIDs[CA_DRAW_SCREEN_QUAD]); + + gl.glPopMatrix(); + } + + gl.glDisable(GL2.GL_ALPHA_TEST); + gl.glDisable(GL2.GL_BLEND); + } + + private void loadTextures(GL gl, + String spinFilename, + String dropletFilename, + String cubeMapFilenamePrefix, + String cubeMapFilenameSuffix) throws IOException { + if (initialMapData == null) { + throw new GLException("Must call loadInitialTexture ahead of time"); + } + + initialMapTex = TextureIO.newTexture(initialMapData); + spinTex = TextureIO.newTexture(getClass().getClassLoader().getResourceAsStream(spinFilename), false, + FileUtil.getFileSuffix(spinFilename)); + dropletTex = TextureIO.newTexture(getClass().getClassLoader().getResourceAsStream(dropletFilename), false, + FileUtil.getFileSuffix(dropletFilename)); + + // load the cubemap texture + cubemap = Cubemap.loadFromStreams(getClass().getClassLoader(), + cubeMapFilenamePrefix, + cubeMapFilenameSuffix, + true); + + // now create dummy intermediate textures from the initial map texture + for (int i = 0; i < CA_NUM_DYNAMIC_TEXTURES; i++) { + dynamicTextures[i] = TextureIO.newTexture(initialMapData); + } + + initialMapData = null; + + texHeightInput = initialMapTex.getTextureObject(); // initial height map. + texHeightOutput = dynamicTextures[CA_TEXTURE_HEIGHT_TARGET].getTextureObject(); // next height map. + + texVelocityInput = dynamicTextures[CA_TEXTURE_VELOCITY_SOURCE].getTextureObject(); // initial velocity. + texVelocityOutput = dynamicTextures[CA_TEXTURE_VELOCITY_TARGET].getTextureObject(); // next velocity. + } + + private void createAndWriteUVOffsets(GL2 gl, int width, int height) { + // This sets vertex shader constants used to displace the + // source texture over several additive samples. This is + // used to accumulate neighboring texel information that we + // need to run the game - the 8 surrounding texels, and the + // single source texel which will either spawn or die in the + // next generation. + // Label the texels as follows, for a source texel "e" that + // we want to compute for the next generation: + // + // abc + // def + // ghi: + + // first the easy one: no offsets for sampling center + // occupied or unoccupied + // Use index offset value 0.0 to access these in the + // vertex shader. + + perTexelWidth = 1.0f / width; + perTexelHeight = 1.0f / height; + + // Offset set 0 : center texel sampling + float[] noOffsetX = new float[] { 0, 0, 0, 0 }; + float[] noOffsetY = new float[] { 0, 0, 0, 0 }; + + // Offset set 1: For use with neighbor force pixel shader 1 + // samples center with 0, +u, -u, and +v, + // ie the 'e','d', 'f', and 'h' texels + float dist = 1.5f; + float[] type1OffsetX = new float[] { 0.0f, -dist * perTexelWidth, dist * perTexelWidth, dist * perTexelWidth }; + float[] type1OffsetY = new float[] { 0.0f, dist * perTexelHeight, dist * perTexelHeight, -dist * perTexelHeight }; + + // Offset set 2: for use with neighbor force pixel shader 2 + // samples center with 0, and -v texels + // ie the 'e' and 'b' texels + // This completes a pattern of sampling center texel and it's + // 4 nearest neighbors to run the height-based water simulation + // 3rd must be 0 0 to sample texel center from partial result + // texture. + + float[] type2OffsetX = new float[] { 0.0f, -dist * perTexelWidth, 0.0f, 0.0f }; + float[] type2OffsetY = new float[] { 0.0f, -dist * perTexelHeight, 0.0f, 0.0f }; + + // type 3 offsets + updateBlurVertOffset(gl); + + ///////////////////////////////////////////////////////////// + // Nearest neighbor offsets: + + float[] type4OffsetX = new float[] { -perTexelWidth, perTexelWidth, 0.0f, 0.0f }; + float[] type4OffsetY = new float[] { 0.0f, 0.0f, -perTexelHeight, perTexelHeight }; + + // write all these offsets to constant memory + for (int i = 0; i < 4; ++i) { + float noOffset[] = { noOffsetX[i], noOffsetY[i], 0.0f, 0.0f }; + float type1Offset[] = { type1OffsetX[i], type1OffsetY[i], 0.0f, 0.0f }; + float type2Offset[] = { type2OffsetX[i], type2OffsetY[i], 0.0f, 0.0f }; + float type4Offset[] = { type4OffsetX[i], type4OffsetY[i], 0.0f, 0.0f }; + + gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_NO_OFFSET + 5 * i, noOffset, 0); + gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE1 + 5 * i, type1Offset, 0); + gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE2 + 5 * i, type2Offset, 0); + gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE4 + 5 * i, type4Offset, 0); + } + } + + private void updateBlurVertOffset(GL2 gl) { + float[] type3OffsetX = new float[] { -perTexelWidth * 0.5f, + perTexelWidth, + perTexelWidth * 0.5f, + -perTexelWidth + }; + float[] type3OffsetY = new float[] { perTexelHeight, + perTexelHeight * 0.5f, + -perTexelHeight, + -perTexelHeight * 0.5f + }; + float[] offsets = new float[] { 0, 0, 0, 0 }; + + for (int i = 0; i < 4; ++i) { + offsets[0] = blurDist * ( type3OffsetX[i]); + offsets[1] = blurDist * ( type3OffsetY[i]); + gl.glProgramEnvParameter4fvARB(GL2.GL_VERTEX_PROGRAM_ARB, CV_UV_T0_TYPE3 + 5 * i, offsets, 0); + } + } + + private synchronized void drawDroplets(GL2 gl) { + gl.glDisable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glDisable(GL2.GL_VERTEX_PROGRAM_ARB); + + gl.glActiveTexture(GL2.GL_TEXTURE0); + dropletTex.bind(); + dropletTex.enable(); + + gl.glActiveTexture(GL2.GL_TEXTURE1); + gl.glDisable(GL2.GL_TEXTURE_2D); + + gl.glBlendFunc(GL2.GL_ONE, GL2.GL_ONE); + gl.glEnable(GL2.GL_BLEND); + + gl.glBegin(GL2.GL_QUADS); + gl.glColor4f(1, 1, 1, 1); + for (Iterator iter = droplets.iterator(); iter.hasNext(); ) { + Droplet droplet = (Droplet) iter.next(); + // coords in [-1,1] range + + // Draw a single quad to the texture render target + // The quad is textured with the initial droplet texture, and + // covers some small portion of the render target + // Draw the droplet + + gl.glTexCoord2f(0, 0); gl.glVertex2f(droplet.rX() - droplet.rScale(), droplet.rY() - droplet.rScale()); + gl.glTexCoord2f(1, 0); gl.glVertex2f(droplet.rX() + droplet.rScale(), droplet.rY() - droplet.rScale()); + gl.glTexCoord2f(1, 1); gl.glVertex2f(droplet.rX() + droplet.rScale(), droplet.rY() + droplet.rScale()); + gl.glTexCoord2f(0, 1); gl.glVertex2f(droplet.rX() - droplet.rScale(), droplet.rY() + droplet.rScale()); + } + gl.glEnd(); + + gl.glDisable(GL2.GL_BLEND); + } + + //---------------------------------------------------------------------- + // Inlined register combiner and texture shader programs + // (don't want to port nvparse as it's a dead-end; we'll focus on Cg instead) + + private void initEqWeightCombine_PostMult(GL2 gl, int displayListID) { + // Take samples of all four texture inputs and average them, + // adding on a bias + // + // Original register combiner program: + // + // Stage 0 + // rgb + // { + // discard = half_bias(tex0); + // discard = half_bias(tex1); + // spare0 = sum(); + // scale_by_one_half(); + // } + // Stage 1 + // rgb + // { + // discard = half_bias(tex2); + // discard = half_bias(tex3); + // spare1 = sum(); + // scale_by_one_half(); + // } + // Stage 2 + // rgb + // { + // discard = spare0; + // discard = spare1; + // spare0 = sum(); + // scale_by_one_half(); + // } + // Stage 3 + // rgb + // { + // discard = const0; + // discard = spare0; + // spare0 = sum(); + // } + + float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM const0 = program.env[0];\n" + +"PARAM oneQtr = { 0.25, 0.25, 0.25, 0.25 };\n" + +"PARAM two = { 2.0, 2.0, 2.0, 2.0 };\n" + +"TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" + +"TEMP spare0, spare1;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + +"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + +"TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" + +"ADD spare0, texSamp0, texSamp1;\n" + +"ADD spare1, texSamp2, texSamp3;\n" + +"ADD spare0, spare0, spare1;\n" + +"SUB spare0, spare0, two;\n" + +"MAD result.color, oneQtr, spare0, const0;\n" + +"\n" + +"END\n"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void initNeighborForceCalcStep1(GL2 gl, int displayListID) { + // Step one in the nearest-neighbor force calculation for height-based water + // simulation. NeighborForceCalc2 is the second step. + // + // This step takes the center point and three neighboring points, and computes + // the texel difference as the "force" acting to pull the center texel. + // + // The amount to which the computed force is applied to the texel is controlled + // in a separate shader. + + // get colors from all 4 texture stages + // tex0 = center texel + // tex1 = 1st neighbor + // tex2 = 2nd neighbor - same axis as 1st neighbor point + // so force for that axis == t1 - t0 + t2 - t0 + // tex3 = 3rd neighbor on other axis + + // Original register combiner program: + // + // Stage 0 + // rgb + // { + // //s0 = t1 - t0; + // discard = -tex0; + // discard = tex1; + // spare0 = sum(); + // } + // Stage 1 + // rgb + // { + // //s1 = t2 - t0; + // discard = -tex0; + // discard = tex2; + // spare1 = sum(); + // } + // Stage 2 + // // 'force' for 1st axis + // rgb + // { + // //s0 = s0 + s1 = t1 - t0 + t2 - t0; + // discard = spare0; + // discard = spare1; + // spare0 = sum(); + // } + // Stage 3 + // // one more point for 2nd axis + // rgb + // { + // //s1 = t3 - t0; + // discard = -tex0; + // discard = tex3; + // spare1 = sum(); + // } + // Stage 4 + // rgb + // { + // //s0 = s0 + s1 = t3 - t0 + t2 - t0 + t1 - t0; + // discard = spare0; + // discard = spare1; + // spare0 = sum(); + // } + // Stage 5 + // // Now add in a force to gently pull the center texel's + // // value to 0.5. The strength of this is controlled by + // // the PCN_EQ_REST_FAC - restoration factor + // // Without this, the simulation will fade to zero or fly + // // away to saturate at 1.0 + // rgb + // { + // //s1 = 0.5 - t0; + // discard = -tex0; + // discard = const0; + // spare1 = sum(); + // } + // Stage 6 + // { + // rgb + // { + // discard = spare1 * const0; + // discard = spare0; + // spare0 = sum(); + // } + // } + // Stage 7 + // rgb + // { + // discard = spare0; + // discard = const0; + // spare0 = sum(); + // } + + float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM const0 = program.env[0];\n" + +"PARAM three = { 3, 3, 3, 1.0 };\n" + +"TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" + +"TEMP spare0, spare1;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + +"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + +"TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" + +"ADD spare0, texSamp1, texSamp2;\n" + +"MAD spare1, const0, const0, const0;\n" + +"ADD spare0, texSamp3, spare0;\n" + +"ADD spare0, spare1, spare0;\n" + +"ADD spare1, three, const0;\n" + +"MAD result.color, -spare1, texSamp0, spare0;\n" + + +// Faster version which hardcodes in value of const0: +//"ADD spare0, texSamp1, texSamp2;\n" + +//"ADD spare1, texSamp3, pointSevenFive;\n" + +//"ADD spare0, spare0, spare1;\n" + +//"MAD result.color, minusThreePointFive, texSamp0, spare0;\n" + + +// Straightforward port: +//"SUB spare0, texSamp1, texSamp0;\n" + +//"SUB spare1, texSamp2, texSamp0;\n" + +//"ADD spare0, spare0, spare1;\n" + +//"SUB spare1, texSamp3, texSamp0;\n" + +//"ADD spare0, spare0, spare1;\n" + +//"SUB spare1, const0, texSamp0;\n" + +//"MAD spare0, const0, spare1, spare0;\n" + +//"ADD result.color, spare0, const0;\n" + + +"\n" + +"END\n"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void initNeighborForceCalcStep2(GL2 gl, int displayListID) { + // 2nd step of force calc for render-to-texture + // water simulation. + // + // Adds the 4th & final neighbor point to the + // force calc.. + // + // Bias and scale the values so 0 force is 0.5, + // full negative force is 0.0, and full pos is + // 1.0 + // + // tex0 Center texel + // tex1 2nd axis neighbor point + // tex2 previous partial force amount + // Result from t1 - t0 is added to this t2 + // partial result & output + + // Original register combiner program: + // + // Stage 0 + // last element of neighbor force + // rgb + // { + // discard = -tex0; + // discard = tex1; + // spare0 = sum(); + // } + // Stage 1 + // add with previous partial force amount + // rgb + // { + // discard = spare0; + // discard = tex2; + // spare0 = sum(); + // } + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM const0 = program.env[0];\n" + +"TEMP texSamp0, texSamp1, texSamp2;\n" + +"TEMP spare0;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + +"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + +"SUB spare0, texSamp1, texSamp0;\n" + +"ADD result.color, spare0, texSamp2;\n" + +"\n" + +"END\n"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void initApplyForce(GL2 gl, int displayListID) { + // This shader samples t1, biases its value to a signed number, and applies this + // value multiplied by a scale factor to the t0 sample. + // + // This is used to apply a "force" texture value to a "velocity" state texture + // for nearest-neighbor height-based water simulations. The output pixel is + // the new "velocity" value to replace the t0 sample in rendering to a new + // texture which will replace the texture selected into t0. + // + // A nearly identical shader using a different scaling constant is used to + // apply the "velocity" value to a "height" texture at each texel. + // + // t1 comes in the range [0,1] but needs to hold signed values, so a value of + // 0.5 in t1 represents zero force. This is biased to a signed value in + // computing the new velocity. + // + // tex0 = previous velocity + // tex1 = force + // + // Bias the force so that 0.5 input = no change in t0 value + // and 0.0 input means -0.5 * scale change in t0 value + // + // New velocity = force * scale + previous velocity + + // Original register combiner program: + // + // Stage 0 + // rgb + // { + // discard = expand(tex1) * const0; + // discard = expand(tex0); + // spare0 = sum(); + // scale_by_one_half(); + // } + // Stage 1 + // rgb + // { + // discard = spare0; + // discard = const1; + // spare0 = sum(); + // } + + float[] const0 = new float[] { 0.25f, 0.25f, 0.25f, 1.0f }; + float[] const1 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM const0 = program.env[0];\n" + +"PARAM const1 = program.env[1];\n" + +"PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" + +"PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" + +"PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" + +"TEMP texSamp0, texSamp1;\n" + +"TEMP spare0, spare1;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + +"MAD spare0, two, texSamp1, -one;\n" + +"MAD spare1, two, texSamp0, -one;\n" + +"MAD spare0, spare0, const0, spare1;\n" + +"MAD result.color, oneHalf, spare0, const1;\n" + +"\n" + +"END\n"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 1, const1, 0); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void initApplyVelocity(GL2 gl, int displayListID) { + // This shader samples t1, biases its value to a signed number, and applies this + // value multiplied by a scale factor to the t0 sample. + // + // This is used to apply a "velocity" texture value to a "height" state texture + // for nearest-neighbor height-based water simulations. The output pixel is + // the new "height" value to replace the t0 sample in rendering to a new + // texture which will replace the texture selected into t0. + // + // A nearly identical shader using a different scaling constant is used to + // apply the "force" value to the "velocity" texture at each texel. + // + // t1 comes in the range [0,1] but needs to hold signed values, so a value of + // 0.5 in t1 represents zero velocity. This is biased to a signed value in + // computing the new position. + // + // tex0 = height field + // tex1 = velocity + // + // Bias the force/velocity to a signed value so we can subtract from + // the t0 position sample. + // + // New height = velocity * scale factor + old height + + // Original register combiner program: + // + // Stage 0 + // rgb + // { + // discard = expand(tex1) * const0; + // discard = expand(tex0); + // spare0 = sum(); + // scale_by_one_half(); + // } + // Stage 1 + // rgb + // { + // discard = spare0; + // discard = const0; + // spare0 = sum(); + // } + // } + + float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM const0 = program.env[0];\n" + +"PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" + +"PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" + +"PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" + +"TEMP texSamp0, texSamp1;\n" + +"TEMP spare0, spare1;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + +"MAD spare0, two, texSamp1, -one;\n" + +"MAD spare1, two, texSamp0, -one;\n" + +"MAD spare0, spare0, const0, spare1;\n" + +"MAD result.color, oneHalf, spare0, const0;\n" + +"\n" + +"END\n"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glProgramEnvParameter4fvARB(GL2.GL_FRAGMENT_PROGRAM_ARB, 0, const0, 0); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void initCreateNormalMap(GL2 gl, int displayListID) { + // Neighbor-differencing for RGB normal map creation. Scale factors for s and t + // axis components are set in program code. + // This does a crude 1-s^2-t^2 calculation for the blue component in order to + // approximately normalize the RGB normal map vector. For s^2+t^2 close to 1.0, + // this is a close approximation to blue = sqrt(1 - s^2 - t^2) which would give a + // normalized vector. + // An additional pass with a dependent texture lookup (alpha-red or green-blue) + // could be used to produce an exactly normalized normal. + + // colors from all 4 texture stages + // tex0 = -s, 0 + // tex1 = +s, 0 + // tex2 = 0, +t + // tex3 = 0, -t + + // Original register combiner program: + // + // Stage 0 + // rgb + // { + // // (t0 - t1)*4 : 4 for higher scale + // discard = -tex1; + // discard = tex0; + // spare0 = sum(); + // scale_by_four(); + // } + // Stage 1 + // rgb + // { + // // (t3 - t2)*4 : 4 for higher scale + // discard = -tex2; + // discard = tex3; + // spare1 = sum(); + // scale_by_four(); + // } + // Stage 2 + // Define const0 in the third general combiner as RGBA = (scale, 0, 0, 0) + // Where scale [0,1] is applied to reduce the magnitude + // of the s axis component of the normal. + // Define const1 in the third combiner similarly to affect the t axis component + // define these by "ramboing" them in the C++ code that uses this combiner script. + // Note: these variables have been renamed to "redMask" and "greenMask" in + // the fragment program below. + // rgb + // { + // // see comment about consts above! + // // t0 = s result in red only + // discard = spare0 * const0; + // discard = spare1 * const1; + // spare0 = sum(); + // } + // Stage 3 + // rgb + // { + // tex1 = spare0 * spare0; + // scale_by_two(); + // } + // Stage 4 + // const0 = (1, 1, 0, 0); + // rgb + // { + // spare1 = unsigned_invert(tex1) . const0; + // scale_by_one_half(); + // } + // Stage 5 + // const0 = (0.5, 0.5, 0, 0); + // rgb + // { + // discard = spare0; + // discard = const0; + // spare0 = sum(); + // } + // Stage 6 + // const0 = (0, 0, 1, 1); + // rgb + // { + // discard = spare1 * const0; + // discard = spare0; + // spare0 = sum(); + // } + + + float[] const0 = new float[] { 0.5f, 0.5f, 0.5f, 1.0f }; + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM redMask = program.env[0];\n" + +"PARAM greenMask = program.env[1];\n" + +"PARAM const0 = { 1.0, 1.0, 0.0, 0.0 };\n" + +"PARAM const1 = { 0.5, 0.5, 0.0, 0.0 };\n" + +"PARAM const2 = { 0.0, 0.0, 1.0, 1.0 };\n" + +"PARAM one = { 1.0, 1.0, 1.0, 0.0 };\n" + +"PARAM oneHalf = { 0.5, 0.5, 0.5, 1.0 };\n" + +"PARAM two = { 2.0, 2.0, 2.0, 1.0 };\n" + +"PARAM four = { 4.0, 4.0, 4.0, 1.0 };\n" + +"TEMP texSamp0, texSamp1, texSamp2, texSamp3;\n" + +"TEMP spare0, spare1, spare2;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"TEX texSamp1, fragment.texcoord[1], texture[1], 2D;\n" + +"TEX texSamp2, fragment.texcoord[2], texture[2], 2D;\n" + +"TEX texSamp3, fragment.texcoord[3], texture[3], 2D;\n" + +"SUB spare0, texSamp0, texSamp1;\n" + +"MUL spare0, spare0, four;\n" + +"SUB spare1, texSamp3, texSamp2;\n" + +"MUL spare1, spare1, four;\n" + +"MUL spare0, spare0, redMask;\n" + +"MAD spare0, greenMask, spare1, spare0;\n" + +"MUL_SAT spare2, spare0, spare0;\n" + +"SUB spare2, one, spare2;\n" + +"DP3 spare1, spare2, const0;\n" + +"ADD spare0, spare0, const1;\n" + +"MAD result.color, const2, spare1, spare0;\n" + +"\n" + +"END\n"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void initDotProductReflect(GL2 gl, int displayListID) { + // Pseudocode for this operation, derived from the NVidia + // texture_shader.txt documentation at + // http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader.txt + + // TEX texSamp0, fragment.texcoord[0], texture[0], 2D; + // MAD texSamp0, two, texSamp0, minusOne; + // TEMP dotPP = texSamp0 . texcoord[1]; + // TEMP dotP = texSamp0 . texcoord[2]; + // TEMP dotC = texSamp0 . texcoord[3]; + // TEMP R, N, E; + // N = [dotPP, dotP, dotC]; + // ooNLength = N dot N; + // RCP ooNLength, ooNLength; + // E = [texcoord[1].w, texcoord[2].w, texcoord[3].w]; + // nDotE = N dot E; + // MUL R, nDotE, N; + // MUL R, R, two; + // MUL R, R, ooNLength; + // SUB R, R, E; + // TEX result.color, R, texture[3], CUBE; + + // This fragment program is pretty length-sensitive; making it too + // big causes the frame rate to be cut in half on my machine + // (Quadro FX Go700) due to sync-to-vertical-refresh. The program + // below is more optimized in its use of temporaries. Some of the + // scaling operations on the first component of the normal vector + // (before subtracting off the E vector) don't appear to make much + // of a visual difference so they are skipped as well. + + int[] tmpInt = new int[1]; + gl.glGenProgramsARB(1, tmpInt, 0); + int fragProg = tmpInt[0]; + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + + String program = +"!!ARBfp1.0\n" + +"PARAM minusOne = { -1.0, -1.0, -1.0, 0.0 };\n" + +"PARAM two = { 2.0, 2.0, 2.0, 0.0 };\n" + +"TEMP texSamp0, R, N, E;\n" + +"\n" + +"TEX texSamp0, fragment.texcoord[0], texture[0], 2D;\n" + +"MAD texSamp0, two, texSamp0, minusOne;\n" + +"DP3 N.x, texSamp0, fragment.texcoord[1];\n" + +"DP3 N.y, texSamp0, fragment.texcoord[2];\n" + +"DP3 N.z, texSamp0, fragment.texcoord[3];\n" + +"MOV E.x, fragment.texcoord[1].w;\n" + +"MOV E.y, fragment.texcoord[2].w;\n" + +"MOV E.z, fragment.texcoord[3].w;\n" + +"MUL N, N, two;\n" + +"SUB R, N, E;\n" + +"TEX result.color, R, texture[3], CUBE;\n" + +"\n" + +"END"; + + loadProgram(gl, GL2.GL_FRAGMENT_PROGRAM_ARB, program); + + gl.glNewList(displayListID, GL2.GL_COMPILE); + gl.glBindProgramARB(GL2.GL_FRAGMENT_PROGRAM_ARB, fragProg); + gl.glEnable(GL2.GL_FRAGMENT_PROGRAM_ARB); + gl.glEndList(); + } + + private void loadProgram(GL2 gl, + int target, + String programBuffer) { + + gl.glProgramStringARB(target, GL2.GL_PROGRAM_FORMAT_ASCII_ARB, programBuffer.length(), programBuffer); + + int[] errPos = new int[1]; + gl.glGetIntegerv(GL2.GL_PROGRAM_ERROR_POSITION_ARB, errPos, 0); + if (errPos[0] >= 0) { + String kind = "Program"; + if (target == GL2.GL_VERTEX_PROGRAM_ARB) { + kind = "Vertex program"; + } else if (target == GL2.GL_FRAGMENT_PROGRAM_ARB) { + kind = "Fragment program"; + } + System.out.println(kind + " failed to load:"); + String errMsg = gl.glGetString(GL2.GL_PROGRAM_ERROR_STRING_ARB); + if (errMsg == null) { + System.out.println("[No error message available]"); + } else { + System.out.println("Error message: \"" + errMsg + "\""); + } + System.out.println("Error occurred at position " + errPos[0] + " in program:"); + int endPos = errPos[0]; + while (endPos < programBuffer.length() && programBuffer.charAt(endPos) != '\n') { + ++endPos; + } + System.out.println(programBuffer.substring(errPos[0], endPos)); + throw new GLException("Error loading " + kind); + } else { + if (target == GL2.GL_FRAGMENT_PROGRAM_ARB) { + int[] isNative = new int[1]; + gl.glGetProgramivARB(GL2.GL_FRAGMENT_PROGRAM_ARB, + GL2.GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB, + isNative, 0); + if (isNative[0] != 1) { + System.out.println("WARNING: fragment program is over native resource limits"); + Thread.dumpStack(); + } + } + } + } +} |