diff options
Diffstat (limited to 'src/gleem/linalg/Mat3f.java')
-rw-r--r-- | src/gleem/linalg/Mat3f.java | 194 |
1 files changed, 0 insertions, 194 deletions
diff --git a/src/gleem/linalg/Mat3f.java b/src/gleem/linalg/Mat3f.java deleted file mode 100644 index 024df82..0000000 --- a/src/gleem/linalg/Mat3f.java +++ /dev/null @@ -1,194 +0,0 @@ -/* - * gleem -- OpenGL Extremely Easy-To-Use Manipulators. - * Copyright (C) 1998-2003 Kenneth B. Russell ([email protected]) - * - * Copying, distribution and use of this software in source and binary - * forms, with or without modification, is permitted provided that the - * following conditions are met: - * - * Distributions of source code must reproduce the copyright notice, - * this list of conditions and the following disclaimer in the source - * code header files; and Distributions of binary code must reproduce - * the copyright notice, this list of conditions and the following - * disclaimer in the documentation, Read me file, license file and/or - * other materials provided with the software distribution. - * - * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright - * holder may not be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY - * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND - * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF - * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE - * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR - * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR - * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE - * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST - * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, - * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND - * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR - * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY - * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT - * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION, - * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT - * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED - * WARRANTY OF FITNESS FOR SUCH USES. - */ - -package gleem.linalg; - -/** 3x3 matrix class useful for simple linear algebra. Representation - is (as Mat4f) in row major order and assumes multiplication by - column vectors on the right. */ - -public class Mat3f { - private float[] data; - - /** Creates new matrix initialized to the zero matrix */ - public Mat3f() { - data = new float[9]; - } - - /** Initialize to the identity matrix. */ - public void makeIdent() { - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - if (i == j) { - set(i, j, 1.0f); - } else { - set(i, j, 0.0f); - } - } - } - } - - /** Gets the (i,j)th element of this matrix, where i is the row - index and j is the column index */ - public float get(int i, int j) { - return data[3 * i + j]; - } - - /** Sets the (i,j)th element of this matrix, where i is the row - index and j is the column index */ - public void set(int i, int j, float val) { - data[3 * i + j] = val; - } - - /** Set column i (i=[0..2]) to vector v. */ - public void setCol(int i, Vec3f v) { - set(0, i, v.x()); - set(1, i, v.y()); - set(2, i, v.z()); - } - - /** Set row i (i=[0..2]) to vector v. */ - public void setRow(int i, Vec3f v) { - set(i, 0, v.x()); - set(i, 1, v.y()); - set(i, 2, v.z()); - } - - /** Transpose this matrix in place. */ - public void transpose() { - float t; - t = get(0, 1); - set(0, 1, get(1, 0)); - set(1, 0, t); - - t = get(0, 2); - set(0, 2, get(2, 0)); - set(2, 0, t); - - t = get(1, 2); - set(1, 2, get(2, 1)); - set(2, 1, t); - } - - /** Return the determinant. Computed across the zeroth row. */ - public float determinant() { - return (get(0, 0) * (get(1, 1) * get(2, 2) - get(2, 1) * get(1, 2)) + - get(0, 1) * (get(2, 0) * get(1, 2) - get(1, 0) * get(2, 2)) + - get(0, 2) * (get(1, 0) * get(2, 1) - get(2, 0) * get(1, 1))); - } - - /** Full matrix inversion in place. If matrix is singular, returns - false and matrix contents are untouched. If you know the matrix - is orthonormal, you can call transpose() instead. */ - public boolean invert() { - float det = determinant(); - if (det == 0.0f) - return false; - - // Form cofactor matrix - Mat3f cf = new Mat3f(); - cf.set(0, 0, get(1, 1) * get(2, 2) - get(2, 1) * get(1, 2)); - cf.set(0, 1, get(2, 0) * get(1, 2) - get(1, 0) * get(2, 2)); - cf.set(0, 2, get(1, 0) * get(2, 1) - get(2, 0) * get(1, 1)); - cf.set(1, 0, get(2, 1) * get(0, 2) - get(0, 1) * get(2, 2)); - cf.set(1, 1, get(0, 0) * get(2, 2) - get(2, 0) * get(0, 2)); - cf.set(1, 2, get(2, 0) * get(0, 1) - get(0, 0) * get(2, 1)); - cf.set(2, 0, get(0, 1) * get(1, 2) - get(1, 1) * get(0, 2)); - cf.set(2, 1, get(1, 0) * get(0, 2) - get(0, 0) * get(1, 2)); - cf.set(2, 2, get(0, 0) * get(1, 1) - get(1, 0) * get(0, 1)); - - // Now copy back transposed - for (int i = 0; i < 3; i++) - for (int j = 0; j < 3; j++) - set(i, j, cf.get(j, i) / det); - return true; - } - - /** Multiply a 3D vector by this matrix. NOTE: src and dest must be - different vectors. */ - public void xformVec(Vec3f src, Vec3f dest) { - dest.set(get(0, 0) * src.x() + - get(0, 1) * src.y() + - get(0, 2) * src.z(), - - get(1, 0) * src.x() + - get(1, 1) * src.y() + - get(1, 2) * src.z(), - - get(2, 0) * src.x() + - get(2, 1) * src.y() + - get(2, 2) * src.z()); - } - - /** Returns this * b; creates new matrix */ - public Mat3f mul(Mat3f b) { - Mat3f tmp = new Mat3f(); - tmp.mul(this, b); - return tmp; - } - - /** this = a * b */ - public void mul(Mat3f a, Mat3f b) { - for (int rc = 0; rc < 3; rc++) - for (int cc = 0; cc < 3; cc++) { - float tmp = 0.0f; - for (int i = 0; i < 3; i++) - tmp += a.get(rc, i) * b.get(i, cc); - set(rc, cc, tmp); - } - } - - public Matf toMatf() { - Matf out = new Matf(3, 3); - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - out.set(i, j, get(i, j)); - } - } - return out; - } - - public String toString() { - String endl = System.getProperty("line.separator"); - return "(" + - get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + endl + - get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + endl + - get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ")"; - } -} |