/* San Angeles Observation OpenGL ES version example * Copyright 2004-2005 Jetro Lauha * All rights reserved. * Web: http://iki.fi/jetro/ * * This source is free software; you can redistribute it and/or * modify it under the terms of EITHER: * (1) The GNU Lesser General Public License as published by the Free * Software Foundation; either version 2.1 of the License, or (at * your option) any later version. The text of the GNU Lesser * General Public License is included with this source in the * file LICENSE-LGPL.txt. * (2) The BSD-style license that is included with this source in * the file LICENSE-BSD.txt. * * This source is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * LICENSE-LGPL.txt and LICENSE-BSD.txt for more details. * * $Id$ * $Revision$ */ package demos.es1.angeles; import javax.media.opengl.*; import com.sun.opengl.util.*; import java.nio.*; public class Angeles /* implements GLEventListener */ { public Angeles() { quadVertices = BufferUtil.newIntBuffer(12); quadVertices.put(new int[]{ -0x10000, -0x10000, 0x10000, -0x10000, -0x10000, 0x10000, 0x10000, -0x10000, 0x10000, 0x10000, -0x10000, 0x10000 }); quadVertices.rewind(); light0Position=BufferUtil.newIntBuffer(4); light0Diffuse=BufferUtil.newIntBuffer(4); light1Position=BufferUtil.newIntBuffer(4); light1Diffuse=BufferUtil.newIntBuffer(4); light2Position=BufferUtil.newIntBuffer(4); light2Diffuse=BufferUtil.newIntBuffer(4); materialSpecular=BufferUtil.newIntBuffer(4); light0Position.put(new int[] { -0x40000, 0x10000, 0x10000, 0 }); light0Diffuse.put(new int[] { 0x10000, 0x6666, 0, 0x10000 }); light1Position.put(new int[] { 0x10000, -0x20000, -0x10000, 0 }); light1Diffuse.put(new int[] { 0x11eb, 0x23d7, 0x5999, 0x10000 }); light2Position.put(new int[] { -0x10000, 0, -0x40000, 0 }); light2Diffuse.put(new int[] { 0x11eb, 0x2b85, 0x23d7, 0x10000 }); materialSpecular.put(new int[] { 0x10000, 0x10000, 0x10000, 0x10000 }); light0Position.rewind(); light0Diffuse.rewind(); light1Position.rewind(); light1Diffuse.rewind(); light2Position.rewind(); light2Diffuse.rewind(); materialSpecular.rewind(); seedRandom(15); width=0; height=0; x=0; y=0; } public void init(GL gl) { // FIXME: gl.setSwapInterval(1); this.gl = gl; gl.glEnable(gl.GL_NORMALIZE); gl.glEnable(gl.GL_DEPTH_TEST); gl.glDisable(gl.GL_CULL_FACE); gl.glShadeModel(gl.GL_FLAT); gl.glEnable(gl.GL_LIGHTING); gl.glEnable(gl.GL_LIGHT0); gl.glEnable(gl.GL_LIGHT1); gl.glEnable(gl.GL_LIGHT2); gl.glEnableClientState(gl.GL_VERTEX_ARRAY); gl.glEnableClientState(gl.GL_COLOR_ARRAY); for (int a = 0; a < SuperShape.COUNT; ++a) { sSuperShapeObjects[a] = createSuperShape(SuperShape.sParams[a]); } sGroundPlane = createGroundPlane(); gAppAlive = 1; sStartTick = System.currentTimeMillis(); frames=0; } public void reshape(GL gl, int x, int y, int width, int height) { this.width = width; this.height=height; this.x = x; this.y = y; this.gl = gl; gl.glClearColorx((int)(0.1f * 65536), (int)(0.2f * 65536), (int)(0.3f * 65536), 0x10000); gl.glClear(gl.GL_DEPTH_BUFFER_BIT | gl.GL_COLOR_BUFFER_BIT); gl.glMatrixMode(gl.GL_PROJECTION); gl.glLoadIdentity(); gluPerspective(45.0f, (float)width / (float)height, 0.5f, 150.0f); gl.glMatrixMode(gl.GL_MODELVIEW); gl.glLoadIdentity(); } public void display(GL gl) { long tick = System.currentTimeMillis(); if (gAppAlive==0) return; this.gl = gl; // Actual tick value is "blurred" a little bit. sTick = (sTick + tick - sStartTick) >> 1; // Terminate application after running through the demonstration once. if (sTick >= RUN_LENGTH) { gAppAlive = 0; return; } reshape(gl, 0, 0, width, height); // Update the camera position and set the lookat. camTrack(); // Configure environment. configureLightAndMaterial(); // Draw the reflection by drawing models with negated Z-axis. gl.glPushMatrix(); drawModels(-1); gl.glPopMatrix(); // Blend the ground plane to the window. drawGroundPlane(); // Draw all the models normally. drawModels(1); // Draw fade quad over whole window (when changing cameras). drawFadeQuad(); frames++; tick = System.currentTimeMillis(); long dT = tick - sStartTick; // System.out.println(frames+"f, "+dT+"ms "+ (frames*1000)/dT +"fps"); } public void displayChanged(GL gl, boolean modeChanged, boolean deviceChanged) { } private GL gl; // Total run length is 20 * camera track base unit length (see cams.h). private int RUN_LENGTH = (20 * CamTrack.CAMTRACK_LEN) ; private int RANDOM_UINT_MAX = 65535 ; private long sRandomSeed = 0; void seedRandom(long seed) { sRandomSeed = seed; } int randomUInt() { sRandomSeed = sRandomSeed * 0x343fd + 0x269ec3; return Math.abs((int) (sRandomSeed >> 16)); } // Capped conversion from float to fixed. int FIXED(float value) { if (value < -32768) value = -32768; if (value > 32767) value = 32767; return (int)(value * 65536); } // Definition of one GL object in this demo. public class GLObject { /* Vertex array and color array are enabled for all objects, so their * pointers must always be valid and non-null. Normal array is not * used by the ground plane, so when its pointer is null then normal * array usage is disabled. * * Vertex array is supposed to use gl.GL_FIXED datatype and stride 0 * (i.e. tightly packed array). Color array is supposed to have 4 * components per color with gl.GL_UNSIGNED_BYTE datatype and stride 0. * Normal array is supposed to use gl.GL_FIXED datatype and stride 0. */ IntBuffer vertexArray; ByteBuffer colorArray; IntBuffer normalArray; int vertexComponents; int count; int vbo[]; public GLObject(int vertices, int vertexComponents, boolean useNormalArray) { this.count = vertices; this.vertexComponents = vertexComponents; this.vertexArray = BufferUtil.newIntBuffer( vertices * vertexComponents ); this.colorArray = BufferUtil.newByteBuffer (vertices * 4 ); if (useNormalArray) { this.normalArray = BufferUtil.newIntBuffer (vertices * 3 ); } else { this.normalArray = null; } } void seal() { rewind(); vbo = new int[3]; gl.glGenBuffers(3, vbo, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vbo[0]); gl.glBufferData(GL.GL_ARRAY_BUFFER, vertexArray.capacity() * BufferUtil.SIZEOF_INT, vertexArray, GL.GL_STATIC_DRAW); gl.glVertexPointer(vertexComponents, gl.GL_FLOAT, 0, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vbo[1]); gl.glBufferData(GL.GL_ARRAY_BUFFER, colorArray.capacity() * BufferUtil.SIZEOF_BYTE, colorArray, GL.GL_STATIC_DRAW); gl.glColorPointer(4, gl.GL_UNSIGNED_BYTE, 0, 0); if (null!=normalArray) { gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vbo[2]); gl.glBufferData(GL.GL_ARRAY_BUFFER, normalArray.capacity() * BufferUtil.SIZEOF_INT, normalArray, GL.GL_STATIC_DRAW); gl.glNormalPointer(gl.GL_FLOAT, 0, 0); gl.glEnableClientState(gl.GL_NORMAL_ARRAY); } else { gl.glDisableClientState(gl.GL_NORMAL_ARRAY); } } void draw() { gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vbo[0]); gl.glVertexPointer(vertexComponents, gl.GL_FIXED, 0, 0); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vbo[1]); gl.glColorPointer(4, gl.GL_UNSIGNED_BYTE, 0, 0); if (null!=normalArray) { gl.glBindBuffer(GL.GL_ARRAY_BUFFER, vbo[2]); gl.glNormalPointer(gl.GL_FIXED, 0, 0); gl.glEnableClientState(gl.GL_NORMAL_ARRAY); } else gl.glDisableClientState(gl.GL_NORMAL_ARRAY); gl.glDrawArrays(gl.GL_TRIANGLES, 0, count); } void rewind() { vertexArray.rewind(); colorArray.rewind(); if (normalArray != null) { normalArray.rewind(); } } } long sStartTick = 0; long sTick = 0; int sCurrentCamTrack = 0; long sCurrentCamTrackStartTick = 0; long sNextCamTrackStartTick = 0x7fffffff; GLObject sSuperShapeObjects[] = new GLObject[SuperShape.COUNT]; GLObject sGroundPlane; public class VECTOR3 { float x, y, z; public VECTOR3() { x=0f; y=0f; z=0f; } public VECTOR3(float x, float y, float z) { this.x=x; this.y=y; this.z=z; } } static void vector3Sub(VECTOR3 dest, VECTOR3 v1, VECTOR3 v2) { dest.x = v1.x - v2.x; dest.y = v1.y - v2.y; dest.z = v1.z - v2.z; } static void superShapeMap(VECTOR3 point, float r1, float r2, float t, float p) { // sphere-mapping of supershape parameters point.x = (float)(Math.cos(t) * Math.cos(p) / r1 / r2); point.y = (float)(Math.sin(t) * Math.cos(p) / r1 / r2); point.z = (float)(Math.sin(p) / r2); } float ssFunc(final float t, final float p[]) { return ssFunc(t, p, 0); } float ssFunc(final float t, final float p[], int pOff) { return (float)(Math.pow(Math.pow(Math.abs(Math.cos(p[0+pOff] * t / 4)) / p[1+pOff], p[4+pOff]) + Math.pow(Math.abs(Math.sin(p[0+pOff] * t / 4)) / p[2+pOff], p[5+pOff]), 1 / p[3+pOff])); } // Creates and returns a supershape object. // Based on Paul Bourke's POV-Ray implementation. // http://astronomy.swin.edu.au/~pbourke/povray/supershape/ GLObject createSuperShape(final float params[]) { final int resol1 = (int)params[SuperShape.PARAMS - 3]; final int resol2 = (int)params[SuperShape.PARAMS - 2]; // latitude 0 to pi/2 for no mirrored bottom // (latitudeBegin==0 for -pi/2 to pi/2 originally) final int latitudeBegin = resol2 / 4; final int latitudeEnd = resol2 / 2; // non-inclusive final int longitudeCount = resol1; final int latitudeCount = latitudeEnd - latitudeBegin; final int triangleCount = longitudeCount * latitudeCount * 2; final int vertices = triangleCount * 3; GLObject result; float baseColor[] = new float[3]; int a, longitude, latitude; int currentVertex, currentQuad; result = new GLObject(vertices, 3, true); if (result == null) return null; for (a = 0; a < 3; ++a) baseColor[a] = ((randomUInt() % 155) + 100) / 255.f; currentQuad = 0; currentVertex = 0; // longitude -pi to pi for (longitude = 0; longitude < longitudeCount; ++longitude) { // latitude 0 to pi/2 for (latitude = latitudeBegin; latitude < latitudeEnd; ++latitude) { float t1 = (float) ( -Math.PI + longitude * 2 * Math.PI / resol1 ); float t2 = (float) ( -Math.PI + (longitude + 1) * 2 * Math.PI / resol1 ); float p1 = (float) ( -Math.PI / 2 + latitude * 2 * Math.PI / resol2 ); float p2 = (float) ( -Math.PI / 2 + (latitude + 1) * 2 * Math.PI / resol2 ); float r0, r1, r2, r3; r0 = ssFunc(t1, params); r1 = ssFunc(p1, params, 6); r2 = ssFunc(t2, params); r3 = ssFunc(p2, params, 6); if (r0 != 0 && r1 != 0 && r2 != 0 && r3 != 0) { VECTOR3 pa=new VECTOR3(), pb=new VECTOR3(), pc=new VECTOR3(), pd=new VECTOR3(); VECTOR3 v1=new VECTOR3(), v2=new VECTOR3(), n=new VECTOR3(); float ca; int i; //float lenSq, invLenSq; superShapeMap(pa, r0, r1, t1, p1); superShapeMap(pb, r2, r1, t2, p1); superShapeMap(pc, r2, r3, t2, p2); superShapeMap(pd, r0, r3, t1, p2); // kludge to set lower edge of the object to fixed level if (latitude == latitudeBegin + 1) pa.z = pb.z = 0; vector3Sub(v1, pb, pa); vector3Sub(v2, pd, pa); // Calculate normal with cross product. /* i j k i j * v1.x v1.y v1.z | v1.x v1.y * v2.x v2.y v2.z | v2.x v2.y */ n.x = v1.y * v2.z - v1.z * v2.y; n.y = v1.z * v2.x - v1.x * v2.z; n.z = v1.x * v2.y - v1.y * v2.x; /* Pre-normalization of the normals is disabled here because * they will be normalized anyway later due to automatic * normalization (gl.GL_NORMALIZE). It is enabled because the * objects are scaled with glScale. */ /* lenSq = n.x * n.x + n.y * n.y + n.z * n.z; invLenSq = (float)(1 / sqrt(lenSq)); n.x *= invLenSq; n.y *= invLenSq; n.z *= invLenSq; */ ca = pa.z + 0.5f; for (i = currentVertex * 3; i < (currentVertex + 6) * 3; i += 3) { result.normalArray.put(i , FIXED(n.x)); result.normalArray.put(i + 1, FIXED(n.y)); result.normalArray.put(i + 2, FIXED(n.z)); } for (i = currentVertex * 4; i < (currentVertex + 6) * 4; i += 4) { int j, color[] = new int[3]; for (j = 0; j < 3; ++j) { color[j] = (int)(ca * baseColor[j] * 255); if (color[j] > 255) color[j] = 255; } result.colorArray.put(i , (byte)color[0]); result.colorArray.put(i + 1, (byte)color[1]); result.colorArray.put(i + 2, (byte)color[2]); result.colorArray.put(i + 3, (byte)0); } result.vertexArray.put(currentVertex * 3, FIXED(pa.x)); result.vertexArray.put(currentVertex * 3 + 1, FIXED(pa.y)); result.vertexArray.put(currentVertex * 3 + 2, FIXED(pa.z)); ++currentVertex; result.vertexArray.put(currentVertex * 3, FIXED(pb.x)); result.vertexArray.put(currentVertex * 3 + 1, FIXED(pb.y)); result.vertexArray.put(currentVertex * 3 + 2, FIXED(pb.z)); ++currentVertex; result.vertexArray.put(currentVertex * 3, FIXED(pd.x)); result.vertexArray.put(currentVertex * 3 + 1, FIXED(pd.y)); result.vertexArray.put(currentVertex * 3 + 2, FIXED(pd.z)); ++currentVertex; result.vertexArray.put(currentVertex * 3, FIXED(pb.x)); result.vertexArray.put(currentVertex * 3 + 1, FIXED(pb.y)); result.vertexArray.put(currentVertex * 3 + 2, FIXED(pb.z)); ++currentVertex; result.vertexArray.put(currentVertex * 3, FIXED(pc.x)); result.vertexArray.put(currentVertex * 3 + 1, FIXED(pc.y)); result.vertexArray.put(currentVertex * 3 + 2, FIXED(pc.z)); ++currentVertex; result.vertexArray.put(currentVertex * 3, FIXED(pd.x)); result.vertexArray.put(currentVertex * 3 + 1, FIXED(pd.y)); result.vertexArray.put(currentVertex * 3 + 2, FIXED(pd.z)); ++currentVertex; } // r0 && r1 && r2 && r3 ++currentQuad; } // latitude } // longitude // Set number of vertices in object to the actual amount created. result.count = currentVertex; result.seal(); return result; } GLObject createGroundPlane() { final int scale = 4; final int yBegin = -15, yEnd = 15; // ends are non-inclusive final int xBegin = -15, xEnd = 15; final int triangleCount = (yEnd - yBegin) * (xEnd - xBegin) * 2; final int vertices = triangleCount * 3; GLObject result; int x, y; int currentVertex, currentQuad; result = new GLObject(vertices, 2, false); if (result == null) return null; currentQuad = 0; currentVertex = 0; for (y = yBegin; y < yEnd; ++y) { for (x = xBegin; x < xEnd; ++x) { byte color; int i, a; color = (byte)((randomUInt() & 0x5f) + 81); // 101 1111 for (i = currentVertex * 4; i < (currentVertex + 6) * 4; i += 4) { result.colorArray.put(i, color); result.colorArray.put(i + 1, color); result.colorArray.put(i + 2, color); result.colorArray.put(i + 3, (byte)0); } // Axis bits for quad triangles: // x: 011100 (0x1c), y: 110001 (0x31) (clockwise) // x: 001110 (0x0e), y: 100011 (0x23) (counter-clockwise) for (a = 0; a < 6; ++a) { final int xm = x + ((0x1c >> a) & 1); final int ym = y + ((0x31 >> a) & 1); final float m = (float)(Math.cos(xm * 2) * Math.sin(ym * 4) * 0.75f); result.vertexArray.put(currentVertex * 2, FIXED(xm * scale + m)); result.vertexArray.put(currentVertex * 2 + 1, FIXED(ym * scale + m)); ++currentVertex; } ++currentQuad; } } result.seal(); return result; } void drawGroundPlane() { gl.glDisable(gl.GL_CULL_FACE); gl.glDisable(gl.GL_DEPTH_TEST); gl.glEnable(gl.GL_BLEND); gl.glBlendFunc(gl.GL_ZERO, gl.GL_SRC_COLOR); gl.glDisable(gl.GL_LIGHTING); sGroundPlane.draw(); gl.glEnable(gl.GL_LIGHTING); gl.glDisable(gl.GL_BLEND); gl.glEnable(gl.GL_DEPTH_TEST); } void drawFadeQuad() { final int beginFade = (int) (sTick - sCurrentCamTrackStartTick); final int endFade = (int) (sNextCamTrackStartTick - sTick); final int minFade = beginFade < endFade ? beginFade : endFade; if (minFade < 1024) { final int fadeColor = minFade << 7; gl.glColor4x(fadeColor, fadeColor, fadeColor, 0); gl.glDisable(gl.GL_DEPTH_TEST); gl.glEnable(gl.GL_BLEND); gl.glBlendFunc(gl.GL_ZERO, gl.GL_SRC_COLOR); gl.glDisable(gl.GL_LIGHTING); gl.glMatrixMode(gl.GL_MODELVIEW); gl.glLoadIdentity(); gl.glMatrixMode(gl.GL_PROJECTION); gl.glLoadIdentity(); gl.glBindBuffer(GL.GL_ARRAY_BUFFER, 0); gl.glDisableClientState(gl.GL_COLOR_ARRAY); gl.glDisableClientState(gl.GL_NORMAL_ARRAY); gl.glVertexPointer(2, gl.GL_FIXED, 0, quadVertices); gl.glDrawArrays(gl.GL_TRIANGLES, 0, 6); gl.glEnableClientState(gl.GL_COLOR_ARRAY); gl.glMatrixMode(gl.GL_MODELVIEW); gl.glEnable(gl.GL_LIGHTING); gl.glDisable(gl.GL_BLEND); gl.glEnable(gl.GL_DEPTH_TEST); } } IntBuffer quadVertices; IntBuffer light0Position; IntBuffer light0Diffuse; IntBuffer light1Position; IntBuffer light1Diffuse; IntBuffer light2Position; IntBuffer light2Diffuse; IntBuffer materialSpecular; void configureLightAndMaterial() { gl.glLightxv(gl.GL_LIGHT0, gl.GL_POSITION, light0Position); gl.glLightxv(gl.GL_LIGHT0, gl.GL_DIFFUSE, light0Diffuse); gl.glLightxv(gl.GL_LIGHT1, gl.GL_POSITION, light1Position); gl.glLightxv(gl.GL_LIGHT1, gl.GL_DIFFUSE, light1Diffuse); gl.glLightxv(gl.GL_LIGHT2, gl.GL_POSITION, light2Position); gl.glLightxv(gl.GL_LIGHT2, gl.GL_DIFFUSE, light2Diffuse); gl.glMaterialxv(gl.GL_FRONT_AND_BACK, gl.GL_SPECULAR, materialSpecular); gl.glMaterialx(gl.GL_FRONT_AND_BACK, gl.GL_SHININESS, 60 << 16); gl.glEnable(gl.GL_COLOR_MATERIAL); } void drawModels(float zScale) { final int translationScale = 9; int x, y; seedRandom(9); gl.glScalex(1 << 16, 1 << 16, (int)(zScale * 65536)); for (y = -5; y <= 5; ++y) { for (x = -5; x <= 5; ++x) { float buildingScale; int fixedScale; int curShape = randomUInt() % SuperShape.COUNT; buildingScale = SuperShape.sParams[curShape][SuperShape.PARAMS - 1]; fixedScale = (int)(buildingScale * 65536); gl.glPushMatrix(); gl.glTranslatex((x * translationScale) * 65536, (y * translationScale) * 65536, 0); gl.glRotatex((int)((randomUInt() % 360) << 16), 0, 0, 1 << 16); gl.glScalex(fixedScale, fixedScale, fixedScale); sSuperShapeObjects[curShape].draw(); gl.glPopMatrix(); } } for (x = -2; x <= 2; ++x) { final int shipScale100 = translationScale * 500; final int offs100 = x * shipScale100 + (int)(sTick % shipScale100); float offs = offs100 * 0.01f; int fixedOffs = (int)(offs * 65536); gl.glPushMatrix(); gl.glTranslatex(fixedOffs, -4 * 65536, 2 << 16); sSuperShapeObjects[SuperShape.COUNT - 1].draw(); gl.glPopMatrix(); gl.glPushMatrix(); gl.glTranslatex(-4 * 65536, fixedOffs, 4 << 16); gl.glRotatex(90 << 16, 0, 0, 1 << 16); sSuperShapeObjects[SuperShape.COUNT - 1].draw(); gl.glPopMatrix(); } } void camTrack() { float lerp[]= new float[5]; float eX, eY, eZ, cX, cY, cZ; float trackPos; CamTrack cam; long currentCamTick; int a; if (sNextCamTrackStartTick <= sTick) { ++sCurrentCamTrack; sCurrentCamTrackStartTick = sNextCamTrackStartTick; } sNextCamTrackStartTick = sCurrentCamTrackStartTick + CamTrack.sCamTracks[sCurrentCamTrack].len * CamTrack.CAMTRACK_LEN; cam = CamTrack.sCamTracks[sCurrentCamTrack]; currentCamTick = sTick - sCurrentCamTrackStartTick; trackPos = (float)currentCamTick / (CamTrack.CAMTRACK_LEN * cam.len); for (a = 0; a < 5; ++a) lerp[a] = (cam.src[a] + cam.dest[a] * trackPos) * 0.01f; if (cam.dist>0) { float dist = cam.dist * 0.1f; cX = lerp[0]; cY = lerp[1]; cZ = lerp[2]; eX = cX - (float)Math.cos(lerp[3]) * dist; eY = cY - (float)Math.sin(lerp[3]) * dist; eZ = cZ - lerp[4]; } else { eX = lerp[0]; eY = lerp[1]; eZ = lerp[2]; cX = eX + (float)Math.cos(lerp[3]); cY = eY + (float)Math.sin(lerp[3]); cZ = eZ + lerp[4]; } gluLookAt(eX, eY, eZ, cX, cY, cZ, 0, 0, 1); } private int gAppAlive = 0; private int width, height, x, y, frames; /* Following gluLookAt implementation is adapted from the * Mesa 3D Graphics library. http://www.mesa3d.org */ void gluLookAt(float eyex, float eyey, float eyez, float centerx, float centery, float centerz, float upx, float upy, float upz) { float m[] = new float[16]; float x[] = new float[3], y[] = new float[3], z[] = new float[3]; float mag; /* Make rotation matrix */ /* Z vector */ z[0] = eyex - centerx; z[1] = eyey - centery; z[2] = eyez - centerz; mag = (float)Math.sqrt(z[0] * z[0] + z[1] * z[1] + z[2] * z[2]); if (mag!=0.0) { /* mpichler, 19950515 */ z[0] /= mag; z[1] /= mag; z[2] /= mag; } /* Y vector */ y[0] = upx; y[1] = upy; y[2] = upz; /* X vector = Y cross Z */ x[0] = y[1] * z[2] - y[2] * z[1]; x[1] = -y[0] * z[2] + y[2] * z[0]; x[2] = y[0] * z[1] - y[1] * z[0]; /* Recompute Y = Z cross X */ y[0] = z[1] * x[2] - z[2] * x[1]; y[1] = -z[0] * x[2] + z[2] * x[0]; y[2] = z[0] * x[1] - z[1] * x[0]; /* mpichler, 19950515 */ /* cross product gives area of parallelogram, which is < 1.0 for * non-perpendicular unit-length vectors; so normalize x, y here */ mag = (float)Math.sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]); if (mag!=0.0) { x[0] /= mag; x[1] /= mag; x[2] /= mag; } mag = (float)Math.sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]); if (mag!=0.0) { y[0] /= mag; y[1] /= mag; y[2] /= mag; } m[0 + 0*4] = x[0]; m[0 + 1*4] = x[1]; m[0 + 2*4] = x[2]; m[0 + 3*4] = 0.0f; m[1 + 0*4] = y[0]; m[1 + 1*4] = y[1]; m[1 + 2*4] = y[2]; m[1 + 3*4] = 0.0f; m[2 + 0*4] = z[0]; m[2 + 1*4] = z[1]; m[2 + 2*4] = z[2]; m[2 + 3*4] = 0.0f; m[3 + 0*4] = 0.0f; m[3 + 1*4] = 0.0f; m[3 + 2*4] = 0.0f; m[3 + 3*4] = 1.0f; { int a; int fixedM[] = new int[16]; for (a = 0; a < 16; ++a) fixedM[a] = (int)(m[a] * 65536); IntBuffer nioM = BufferUtil.newIntBuffer(16); nioM.put(fixedM); nioM.rewind(); gl.glMultMatrixx(nioM); } /* Translate Eye to Origin */ gl.glTranslatex((int)(-eyex * 65536), (int)(-eyey * 65536), (int)(-eyez * 65536)); } void gluPerspective(float fovy, float aspect, float zNear, float zFar) { float xmin, xmax, ymin, ymax; ymax = zNear * (float)Math.tan(fovy * Math.PI / 360.0); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; gl.glFrustumx((int)(xmin * 65536), (int)(xmax * 65536), (int)(ymin * 65536), (int)(ymax * 65536), (int)(zNear * 65536), (int)(zFar * 65536)); } }