/* * gleem -- OpenGL Extremely Easy-To-Use Manipulators. * Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu) * * Copying, distribution and use of this software in source and binary * forms, with or without modification, is permitted provided that the * following conditions are met: * * Distributions of source code must reproduce the copyright notice, * this list of conditions and the following disclaimer in the source * code header files; and Distributions of binary code must reproduce * the copyright notice, this list of conditions and the following * disclaimer in the documentation, Read me file, license file and/or * other materials provided with the software distribution. * * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright * holder may not be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION, * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED * WARRANTY OF FITNESS FOR SUCH USES. */ package gleem; import java.util.*; import gleem.linalg.*; import net.java.games.jogl.*; /** A Translate2Manip is a Manip which translates in two dimensions and whose default representation is two arrows. */ public class Translate2Manip extends Manip { private ManipPart parts; private Vec3f translation; /** Normalized */ private Vec3f normal; private Vec3f scale; /** Local-to-world transform for geometry */ private Mat4f xform; /** Dragging state */ private Plane dragPlane; /** Dragging state */ private Vec3f dragOffset; public Translate2Manip() { parts = createGeometry(); translation = new Vec3f(0, 0, 0); normal = new Vec3f(0, 1, 0); scale = new Vec3f(1, 1, 1); xform = new Mat4f(); dragPlane = new Plane(); dragOffset = new Vec3f(); recalc(); } /** Set the translation of this Translate2Manip. This moves its on-screen representation. Manipulations cause the translation to be modified, not overwritten, so if you want the default Translate2Manip to go through the point (0, 1, 0) but still translate in the X-Z plane, then setTranslation(0, 1, 0). */ public void setTranslation(Vec3f translation) { this.translation.set(translation); recalc(); } /** Get the translation of this Translate2Manip. This corresponds to the center of its body. */ public Vec3f getTranslation() { return new Vec3f(translation); } /** Set the normal of this Translate2Manip. The manip moves in the plane containing its current position and perpendicular to this normal. Does not need to be normalized, but must not be the zero vector. */ public void setNormal(Vec3f normal) { this.normal.set(normal); this.normal.normalize(); recalc(); } /** Get the normal of this Translate2Manip. */ public Vec3f getNormal() { return new Vec3f(normal); } /** Set the scale of the Translate2Manip. This only affects the size of the on-screen geometry. */ public void setScale(Vec3f scale) { this.scale.set(scale); recalc(); } public Vec3f getScale() { return new Vec3f(scale); } /** Change the geometry of this manipulator to be the user-defined piece. */ public void replaceGeometry(ManipPart geom) { parts = geom; } public void intersectRay(Vec3f rayStart, Vec3f rayDirection, List results) { parts.intersectRay(rayStart, rayDirection, results, this); } public void highlight(HitPoint hit) { if (hit.manipPart != parts) { throw new RuntimeException("My old geometry disappeared; how did this happen?"); } parts.highlight(); } public void clearHighlight() { parts.clearHighlight(); } public void makeActive(HitPoint hit) { parts.highlight(); dragPlane.setNormal(normal); dragPlane.setPoint(hit.intPt.getIntersectionPoint()); dragOffset.sub(translation, hit.intPt.getIntersectionPoint()); } public void drag(Vec3f rayStart, Vec3f rayDirection) { // Algorithm: Find intersection of ray with dragPlane. Add // dragOffset to this point to get new translation. IntersectionPoint intPt = new IntersectionPoint(); if (dragPlane.intersectRay(rayStart, rayDirection, intPt) == false) { // Ray is parallel to plane. Punt. return; } translation.set(intPt.getIntersectionPoint()); translation.add(dragOffset); recalc(); super.drag(rayStart, rayDirection); } public void makeInactive() { parts.clearHighlight(); } public void render(GL gl) { parts.render(gl); } private ManipPart createGeometry() { ManipPartGroup group = new ManipPartGroup(); ManipPartTwoWayArrow arrow1 = new ManipPartTwoWayArrow(); group.addChild(arrow1); ManipPartTransform xform = new ManipPartTransform(); Mat4f rotMat = new Mat4f(); rotMat.makeIdent(); rotMat.set(0, 0, 0); rotMat.set(1, 0, 0); rotMat.set(2, 0, -1); rotMat.set(0, 2, 1); rotMat.set(1, 2, 0); rotMat.set(2, 2, 0); xform.setOffsetTransform(rotMat); ManipPartTwoWayArrow arrow2 = new ManipPartTwoWayArrow(); xform.addChild(arrow2); group.addChild(xform); return group; } private void recalc() { // Construct local to world transform for geometry. // Scale, Rotation, Translation. Since we're right multiplying // column vectors, the actual matrix composed is TRS. Mat4f scaleMat = new Mat4f(); Mat4f rotMat = new Mat4f(); Mat4f xlateMat = new Mat4f(); Mat4f tmpMat = new Mat4f(); scaleMat.makeIdent(); scaleMat.set(0, 0, scale.x()); scaleMat.set(1, 1, scale.y()); scaleMat.set(2, 2, scale.z()); // Perpendiculars Vec3f p0 = new Vec3f(); Vec3f p1 = new Vec3f(); MathUtil.makePerpendicular(normal, p0); p1.cross(normal, p0); // p1, normal, p0 correspond to x, y, z p0.normalize(); p1.normalize(); rotMat.makeIdent(); rotMat.set(0, 0, p1.x()); rotMat.set(1, 0, p1.y()); rotMat.set(2, 0, p1.z()); rotMat.set(0, 1, normal.x()); rotMat.set(1, 1, normal.y()); rotMat.set(2, 1, normal.z()); rotMat.set(0, 2, p0.x()); rotMat.set(1, 2, p0.y()); rotMat.set(2, 2, p0.z()); xlateMat.makeIdent(); xlateMat.set(0, 3, translation.x()); xlateMat.set(1, 3, translation.y()); xlateMat.set(2, 3, translation.z()); tmpMat.mul(xlateMat, rotMat); xform.mul(tmpMat, scaleMat); parts.setTransform(xform); } }