/* * gleem -- OpenGL Extremely Easy-To-Use Manipulators. * Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu) * * Copying, distribution and use of this software in source and binary * forms, with or without modification, is permitted provided that the * following conditions are met: * * Distributions of source code must reproduce the copyright notice, * this list of conditions and the following disclaimer in the source * code header files; and Distributions of binary code must reproduce * the copyright notice, this list of conditions and the following * disclaimer in the documentation, Read me file, license file and/or * other materials provided with the software distribution. * * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright * holder may not be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION, * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED * WARRANTY OF FITNESS FOR SUCH USES. */ package gleem.linalg; /** 3x3 matrix class useful for simple linear algebra. Representation is (as Mat4f) in row major order and assumes multiplication by column vectors on the right. */ public class Mat3f { private float[] data; /** Creates new matrix initialized to the zero matrix */ public Mat3f() { data = new float[9]; } /** Initialize to the identity matrix. */ public void makeIdent() { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (i == j) { set(i, j, 1.0f); } else { set(i, j, 0.0f); } } } } /** Gets the (i,j)th element of this matrix, where i is the row index and j is the column index */ public float get(int i, int j) { return data[3 * i + j]; } /** Sets the (i,j)th element of this matrix, where i is the row index and j is the column index */ public void set(int i, int j, float val) { data[3 * i + j] = val; } /** Set column i (i=[0..2]) to vector v. */ public void setCol(int i, Vec3f v) { set(0, i, v.x()); set(1, i, v.y()); set(2, i, v.z()); } /** Set row i (i=[0..2]) to vector v. */ public void setRow(int i, Vec3f v) { set(i, 0, v.x()); set(i, 1, v.y()); set(i, 2, v.z()); } /** Transpose this matrix in place. */ public void transpose() { float t; t = get(0, 1); set(0, 1, get(1, 0)); set(1, 0, t); t = get(0, 2); set(0, 2, get(2, 0)); set(2, 0, t); t = get(1, 2); set(1, 2, get(2, 1)); set(2, 1, t); } /** Return the determinant. Computed across the zeroth row. */ public float determinant() { return (get(0, 0) * (get(1, 1) * get(2, 2) - get(2, 1) * get(1, 2)) + get(0, 1) * (get(2, 0) * get(1, 2) - get(1, 0) * get(2, 2)) + get(0, 2) * (get(1, 0) * get(2, 1) - get(2, 0) * get(1, 1))); } /** Full matrix inversion in place. If matrix is singular, returns false and matrix contents are untouched. If you know the matrix is orthonormal, you can call transpose() instead. */ public boolean invert() { float det = determinant(); if (det == 0.0f) return false; // Form cofactor matrix Mat3f cf = new Mat3f(); cf.set(0, 0, get(1, 1) * get(2, 2) - get(2, 1) * get(1, 2)); cf.set(0, 1, get(2, 0) * get(1, 2) - get(1, 0) * get(2, 2)); cf.set(0, 2, get(1, 0) * get(2, 1) - get(2, 0) * get(1, 1)); cf.set(1, 0, get(2, 1) * get(0, 2) - get(0, 1) * get(2, 2)); cf.set(1, 1, get(0, 0) * get(2, 2) - get(2, 0) * get(0, 2)); cf.set(1, 2, get(2, 0) * get(0, 1) - get(0, 0) * get(2, 1)); cf.set(2, 0, get(0, 1) * get(1, 2) - get(1, 1) * get(0, 2)); cf.set(2, 1, get(1, 0) * get(0, 2) - get(0, 0) * get(1, 2)); cf.set(2, 2, get(0, 0) * get(1, 1) - get(1, 0) * get(0, 1)); // Now copy back transposed for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) set(i, j, cf.get(j, i) / det); return true; } /** Multiply a 3D vector by this matrix. NOTE: src and dest must be different vectors. */ public void xformVec(Vec3f src, Vec3f dest) { dest.set(get(0, 0) * src.x() + get(0, 1) * src.y() + get(0, 2) * src.z(), get(1, 0) * src.x() + get(1, 1) * src.y() + get(1, 2) * src.z(), get(2, 0) * src.x() + get(2, 1) * src.y() + get(2, 2) * src.z()); } /** Returns this * b; creates new matrix */ public Mat3f mul(Mat3f b) { Mat3f tmp = new Mat3f(); tmp.mul(this, b); return tmp; } /** this = a * b */ public void mul(Mat3f a, Mat3f b) { for (int rc = 0; rc < 3; rc++) for (int cc = 0; cc < 3; cc++) { float tmp = 0.0f; for (int i = 0; i < 3; i++) tmp += a.get(rc, i) * b.get(i, cc); set(rc, cc, tmp); } } public Matf toMatf() { Matf out = new Matf(3, 3); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { out.set(i, j, get(i, j)); } } return out; } public String toString() { String endl = System.getProperty("line.separator"); return "(" + get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + endl + get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + endl + get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ")"; } }