/* * gleem -- OpenGL Extremely Easy-To-Use Manipulators. * Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu) * * Copying, distribution and use of this software in source and binary * forms, with or without modification, is permitted provided that the * following conditions are met: * * Distributions of source code must reproduce the copyright notice, * this list of conditions and the following disclaimer in the source * code header files; and Distributions of binary code must reproduce * the copyright notice, this list of conditions and the following * disclaimer in the documentation, Read me file, license file and/or * other materials provided with the software distribution. * * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright * holder may not be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION, * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED * WARRANTY OF FITNESS FOR SUCH USES. */ package gleem.linalg; /** A (very incomplete) 4x4 matrix class. Representation assumes multiplication by column vectors on the right. */ public class Mat4f { private float[] data; /** Creates new matrix initialized to the zero matrix */ public Mat4f() { data = new float[16]; } /** Creates new matrix initialized to argument's contents */ public Mat4f(Mat4f arg) { this(); set(arg); } /** Sets this matrix to the identity matrix */ public void makeIdent() { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (i == j) { set(i, j, 1.0f); } else { set(i, j, 0.0f); } } } } /** Sets this matrix to be equivalent to the given one */ public void set(Mat4f arg) { float[] mine = data; float[] yours = arg.data; for (int i = 0; i < mine.length; i++) { mine[i] = yours[i]; } } /** Gets the (i,j)th element of this matrix, where i is the row index and j is the column index */ public float get(int i, int j) { return data[4 * i + j]; } /** Sets the (i,j)th element of this matrix, where i is the row index and j is the column index */ public void set(int i, int j, float val) { data[4 * i + j] = val; } /** Sets the translation component of this matrix (i.e., the three top elements of the third column) without touching any of the other parts of the matrix */ public void setTranslation(Vec3f trans) { set(0, 3, trans.x()); set(1, 3, trans.y()); set(2, 3, trans.z()); } /** Sets the rotation component of this matrix (i.e., the upper left 3x3) without touching any of the other parts of the matrix */ public void setRotation(Rotf rot) { rot.toMatrix(this); } /** Sets the upper-left 3x3 of this matrix assuming that the given x, y, and z vectors form an orthonormal basis */ public void setRotation(Vec3f x, Vec3f y, Vec3f z) { set(0, 0, x.x()); set(1, 0, x.y()); set(2, 0, x.z()); set(0, 1, y.x()); set(1, 1, y.y()); set(2, 1, y.z()); set(0, 2, z.x()); set(1, 2, z.y()); set(2, 2, z.z()); } /** Gets the upper left 3x3 of this matrix as a rotation. Currently does not work if there are scales. Ignores translation component. */ public void getRotation(Rotf rot) { rot.fromMatrix(this); } /** Sets the elements (0, 0), (1, 1), and (2, 2) with the appropriate elements of the given three-dimensional scale vector. Does not perform a full multiplication of the upper-left 3x3; use this with an identity matrix in conjunction with mul for that. */ public void setScale(Vec3f scale) { set(0, 0, scale.x()); set(1, 1, scale.y()); set(2, 2, scale.z()); } /** Inverts this matrix assuming that it represents a rigid transform (i.e., some combination of rotations and translations). Assumes column vectors. Algorithm: transposes upper left 3x3; negates translation in rightmost column and transforms by inverted rotation. */ public void invertRigid() { float t; // Transpose upper left 3x3 t = get(0, 1); set(0, 1, get(1, 0)); set(1, 0, t); t = get(0, 2); set(0, 2, get(2, 0)); set(2, 0, t); t = get(1, 2); set(1, 2, get(2, 1)); set(2, 1, t); // Transform negative translation by this Vec3f negTrans = new Vec3f(-get(0, 3), -get(1, 3), -get(2, 3)); Vec3f trans = new Vec3f(); xformDir(negTrans, trans); set(0, 3, trans.x()); set(1, 3, trans.y()); set(2, 3, trans.z()); } /** Returns this * b; creates new matrix */ public Mat4f mul(Mat4f b) { Mat4f tmp = new Mat4f(); tmp.mul(this, b); return tmp; } /** this = a * b */ public void mul(Mat4f a, Mat4f b) { for (int rc = 0; rc < 4; rc++) for (int cc = 0; cc < 4; cc++) { float tmp = 0.0f; for (int i = 0; i < 4; i++) tmp += a.get(rc, i) * b.get(i, cc); set(rc, cc, tmp); } } /** Transpose this matrix in place. */ public void transpose() { float t; for (int i = 0; i < 4; i++) { for (int j = 0; j < i; j++) { t = get(i, j); set(i, j, get(j, i)); set(j, i, t); } } } /** Multiply a 4D vector by this matrix. NOTE: src and dest must be different vectors. */ public void xformVec(Vec4f src, Vec4f dest) { for (int rc = 0; rc < 4; rc++) { float tmp = 0.0f; for (int cc = 0; cc < 4; cc++) { tmp += get(rc, cc) * src.get(cc); } dest.set(rc, tmp); } } /** Transforms a 3D vector as though it had a homogeneous coordinate and assuming that this matrix represents only rigid transformations; i.e., is not a full transformation. NOTE: src and dest must be different vectors. */ public void xformPt(Vec3f src, Vec3f dest) { for (int rc = 0; rc < 3; rc++) { float tmp = 0.0f; for (int cc = 0; cc < 3; cc++) { tmp += get(rc, cc) * src.get(cc); } tmp += get(rc, 3); dest.set(rc, tmp); } } /** Transforms src using only the upper left 3x3. NOTE: src and dest must be different vectors. */ public void xformDir(Vec3f src, Vec3f dest) { for (int rc = 0; rc < 3; rc++) { float tmp = 0.0f; for (int cc = 0; cc < 3; cc++) { tmp += get(rc, cc) * src.get(cc); } dest.set(rc, tmp); } } /** Copies data in column-major (OpenGL format) order into passed float array, which must have length 16 or greater. */ public void getColumnMajorData(float[] out) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { out[4 * j + i] = get(i, j); } } } public Matf toMatf() { Matf out = new Matf(4, 4); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { out.set(i, j, get(i, j)); } } return out; } public String toString() { String endl = System.getProperty("line.separator"); return "(" + get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + ", " + get(0, 3) + endl + get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + ", " + get(1, 3) + endl + get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ", " + get(2, 3) + endl + get(3, 0) + ", " + get(3, 1) + ", " + get(3, 2) + ", " + get(3, 3) + ")"; } }