/* * gleem -- OpenGL Extremely Easy-To-Use Manipulators. * Copyright (C) 1998-2003 Kenneth B. Russell (kbrussel@alum.mit.edu) * * Copying, distribution and use of this software in source and binary * forms, with or without modification, is permitted provided that the * following conditions are met: * * Distributions of source code must reproduce the copyright notice, * this list of conditions and the following disclaimer in the source * code header files; and Distributions of binary code must reproduce * the copyright notice, this list of conditions and the following * disclaimer in the documentation, Read me file, license file and/or * other materials provided with the software distribution. * * The names of Sun Microsystems, Inc. ("Sun") and/or the copyright * holder may not be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS," WITHOUT A WARRANTY OF ANY * KIND. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, ACCURACY OF * INFORMATIONAL CONTENT OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE * COPYRIGHT HOLDER, SUN AND SUN'S LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE * COPYRIGHT HOLDER, SUN OR SUN'S LICENSORS BE LIABLE FOR ANY LOST * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR * INABILITY TO USE THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGES. YOU ACKNOWLEDGE THAT THIS SOFTWARE IS NOT * DESIGNED, LICENSED OR INTENDED FOR USE IN THE DESIGN, CONSTRUCTION, * OPERATION OR MAINTENANCE OF ANY NUCLEAR FACILITY. THE COPYRIGHT * HOLDER, SUN AND SUN'S LICENSORS DISCLAIM ANY EXPRESS OR IMPLIED * WARRANTY OF FITNESS FOR SUCH USES. */ package gleem.linalg; /** Represents a rotation with single-precision components */ public class Rotf { private static float EPSILON = 1.0e-7f; // Representation is a quaternion. Element 0 is the scalar part (= // cos(theta/2)), elements 1..3 the imaginary/"vector" part (= // sin(theta/2) * axis). private float q0; private float q1; private float q2; private float q3; /** Default constructor initializes to the identity quaternion */ public Rotf() { init(); } public Rotf(Rotf arg) { set(arg); } /** Axis does not need to be normalized but must not be the zero vector. Angle is in radians. */ public Rotf(Vec3f axis, float angle) { set(axis, angle); } /** Creates a rotation which will rotate vector "from" into vector "to". */ public Rotf(Vec3f from, Vec3f to) { set(from, to); } /** Re-initialize this quaternion to be the identity quaternion "e" (i.e., no rotation) */ public void init() { q0 = 1; q1 = q2 = q3 = 0; } /** Test for "approximate equality" -- performs componentwise test to see whether difference between all components is less than epsilon. */ public boolean withinEpsilon(Rotf arg, float epsilon) { return ((Math.abs(q0 - arg.q0) < epsilon) && (Math.abs(q1 - arg.q1) < epsilon) && (Math.abs(q2 - arg.q2) < epsilon) && (Math.abs(q3 - arg.q3) < epsilon)); } /** Axis does not need to be normalized but must not be the zero vector. Angle is in radians. */ public void set(Vec3f axis, float angle) { float halfTheta = angle / 2.0f; q0 = (float) Math.cos(halfTheta); float sinHalfTheta = (float) Math.sin(halfTheta); Vec3f realAxis = new Vec3f(axis); realAxis.normalize(); q1 = realAxis.x() * sinHalfTheta; q2 = realAxis.y() * sinHalfTheta; q3 = realAxis.z() * sinHalfTheta; } public void set(Rotf arg) { q0 = arg.q0; q1 = arg.q1; q2 = arg.q2; q3 = arg.q3; } /** Sets this rotation to that which will rotate vector "from" into vector "to". from and to do not have to be the same length. */ public void set(Vec3f from, Vec3f to) { Vec3f axis = from.cross(to); if (axis.lengthSquared() < EPSILON) { init(); return; } float dotp = from.dot(to); float denom = from.length() * to.length(); if (denom < EPSILON) { init(); return; } dotp /= denom; set(axis, (float) Math.acos(dotp)); } /** Returns angle (in radians) and mutates the given vector to be the axis. */ public float get(Vec3f axis) { // FIXME: Is this numerically stable? Is there a better way to // extract the angle from a quaternion? // NOTE: remove (float) to illustrate compiler bug float retval = (float) (2.0f * Math.acos(q0)); axis.set(q1, q2, q3); float len = axis.length(); if (len == 0.0f) { axis.set(0, 0, 1); } else { axis.scale(1.0f / len); } return retval; } /** Returns inverse of this rotation; creates new rotation */ public Rotf inverse() { Rotf tmp = new Rotf(this); tmp.invert(); return tmp; } /** Mutate this quaternion to be its inverse. This is equivalent to the conjugate of the quaternion. */ public void invert() { q1 = -q1; q2 = -q2; q3 = -q3; } /** Length of this quaternion in four-space */ public float length() { return (float) Math.sqrt(lengthSquared()); } /** This dotted with this */ public float lengthSquared() { return (q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); } /** Make this quaternion a unit quaternion again. If you are composing dozens of quaternions you probably should call this periodically to ensure that you have a valid rotation. */ public void normalize() { float len = length(); q0 /= len; q1 /= len; q2 /= len; q3 /= len; } /** Returns this * b, in that order; creates new rotation */ public Rotf times(Rotf b) { Rotf tmp = new Rotf(); tmp.mul(this, b); return tmp; } /** Compose two rotations: this = A * B in that order. NOTE that because we assume a column vector representation that this implies that a vector rotated by the cumulative rotation will be rotated first by B, then A. NOTE: "this" must be different than both a and b. */ public void mul(Rotf a, Rotf b) { q0 = (a.q0 * b.q0 - a.q1 * b.q1 - a.q2 * b.q2 - a.q3 * b.q3); q1 = (a.q0 * b.q1 + a.q1 * b.q0 + a.q2 * b.q3 - a.q3 * b.q2); q2 = (a.q0 * b.q2 + a.q2 * b.q0 - a.q1 * b.q3 + a.q3 * b.q1); q3 = (a.q0 * b.q3 + a.q3 * b.q0 + a.q1 * b.q2 - a.q2 * b.q1); } /** Turns this rotation into a 3x3 rotation matrix. NOTE: only mutates the upper-left 3x3 of the passed Mat4f. Implementation from B. K. P. Horn's Robot Vision textbook. */ public void toMatrix(Mat4f mat) { float q00 = q0 * q0; float q11 = q1 * q1; float q22 = q2 * q2; float q33 = q3 * q3; // Diagonal elements mat.set(0, 0, q00 + q11 - q22 - q33); mat.set(1, 1, q00 - q11 + q22 - q33); mat.set(2, 2, q00 - q11 - q22 + q33); // 0,1 and 1,0 elements float q03 = q0 * q3; float q12 = q1 * q2; mat.set(0, 1, 2.0f * (q12 - q03)); mat.set(1, 0, 2.0f * (q03 + q12)); // 0,2 and 2,0 elements float q02 = q0 * q2; float q13 = q1 * q3; mat.set(0, 2, 2.0f * (q02 + q13)); mat.set(2, 0, 2.0f * (q13 - q02)); // 1,2 and 2,1 elements float q01 = q0 * q1; float q23 = q2 * q3; mat.set(1, 2, 2.0f * (q23 - q01)); mat.set(2, 1, 2.0f * (q01 + q23)); } /** Turns the upper left 3x3 of the passed matrix into a rotation. Implementation from Watt and Watt, Advanced Animation and Rendering Techniques. @see gleem.linalg.Mat4f#getRotation */ public void fromMatrix(Mat4f mat) { // FIXME: Should reimplement to follow Horn's advice of using // eigenvector decomposition to handle roundoff error in given // matrix. float tr, s; int i, j, k; tr = mat.get(0, 0) + mat.get(1, 1) + mat.get(2, 2); if (tr > 0.0) { s = (float) Math.sqrt(tr + 1.0f); q0 = s * 0.5f; s = 0.5f / s; q1 = (mat.get(2, 1) - mat.get(1, 2)) * s; q2 = (mat.get(0, 2) - mat.get(2, 0)) * s; q3 = (mat.get(1, 0) - mat.get(0, 1)) * s; } else { i = 0; if (mat.get(1, 1) > mat.get(0, 0)) i = 1; if (mat.get(2, 2) > mat.get(i, i)) i = 2; j = (i+1)%3; k = (j+1)%3; s = (float) Math.sqrt( (mat.get(i, i) - (mat.get(j, j) + mat.get(k, k))) + 1.0f); setQ(i+1, s * 0.5f); s = 0.5f / s; q0 = (mat.get(k, j) - mat.get(j, k)) * s; setQ(j+1, (mat.get(j, i) + mat.get(i, j)) * s); setQ(k+1, (mat.get(k, i) + mat.get(i, k)) * s); } } /** Rotate a vector by this quaternion. Implementation is from Horn's Robot Vision. NOTE: src and dest must be different vectors. */ public void rotateVector(Vec3f src, Vec3f dest) { Vec3f qVec = new Vec3f(q1, q2, q3); Vec3f qCrossX = qVec.cross(src); Vec3f qCrossXCrossQ = qCrossX.cross(qVec); qCrossX.scale(2.0f * q0); qCrossXCrossQ.scale(-2.0f); dest.add(src, qCrossX); dest.add(dest, qCrossXCrossQ); } /** Rotate a vector by this quaternion, returning newly-allocated result. */ public Vec3f rotateVector(Vec3f src) { Vec3f tmp = new Vec3f(); rotateVector(src, tmp); return tmp; } public String toString() { return "(" + q0 + ", " + q1 + ", " + q2 + ", " + q3 + ")"; } private void setQ(int i, float val) { switch (i) { case 0: q0 = val; break; case 1: q1 = val; break; case 2: q2 = val; break; case 3: q3 = val; break; default: throw new IndexOutOfBoundsException(); } } }