1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
package demos.dualDepthPeeling;
// Translated from C++ Version:
// nvModel.h - Model support class
//
// The nvModel class implements an interface for a multipurpose model
// object. This class is useful for loading and formatting meshes
// for use by OpenGL. It can compute face normals, tangents, and
// adjacency information. The class supports the obj file format.
//
// Author: Evan Hart
// Email: sdkfeedback@nvidia.com
//
// Copyright (c) NVIDIA Corporation. All rights reserved.
////////////////////////////////////////////////////////////////////////////////
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URLConnection;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.util.HashMap;
import java.util.Vector;
import com.jogamp.common.util.IOUtil;
public class Model {
//
// Enumeration of primitive types
//
//////////////////////////////////////////////////////////////
public enum PrimType {
eptNone(0x0),
eptPoints(0x1),
eptEdges(0x2),
eptTriangles(0x4),
eptTrianglesWithAdjacency(0x8),
eptAll(0xf);
PrimType( int val )
{
m_iVal = val;
}
int m_iVal = 0;
};
public static final int NumPrimTypes = 4;
public Model CreateModel()
{
return new Model();
}
public Model()
{
posSize_ = 0;
pOffset_ = -1;
nOffset_ = -1;
vtxSize_ = 0;
openEdges_ = 0;
}
public class IdxSet {
Integer pIndex = 0;
Integer nIndex = 0;
boolean lessThan ( IdxSet rhs )
{
if (pIndex < rhs.pIndex)
return true;
else if (pIndex == rhs.pIndex) {
if (nIndex < rhs.nIndex)
return true;
}
return false;
}
};
//
// loadModelFromFile
//
// This function attempts to determine the type of
// the filename passed as a parameter. If it understands
// that file type, it attempts to parse and load the file
// into its raw data structures. If the file type is
// recognized and successfully parsed, the function returns
// true, otherwise it returns false.
//
//////////////////////////////////////////////////////////////
public boolean loadModelFromFile( Class<?> context, String file ) {
URLConnection conn = IOUtil.getResource(context, file);
if ( conn != null )
{
BufferedReader input = null;
try {
input = new BufferedReader(new InputStreamReader(conn.getInputStream()));
String line = null;
float[] val = new float[4];
int[][] idx = new int[3][3];
boolean hasNormals = false;
while ( (line = input.readLine()) != null) {
switch (line.charAt(0)) {
case '#':
break;
case 'v':
switch (line.charAt(1)) {
case ' ':
line = line.substring( line.indexOf( " " ) + 1 );
//vertex, 3 or 4 components
val[0] = Float.valueOf( line.substring( 0, line.indexOf( " " ) ) );
line = line.substring( line.indexOf( " " ) + 1 );
val[1] = Float.valueOf( line.substring( 0, line.indexOf( " " ) ) );
line = line.substring( line.indexOf( " " ) + 1 );
val[2] = Float.valueOf( line );
positions_.add( val[0]);
positions_.add( val[1]);
positions_.add( val[2]);
break;
case 'n':
//normal, 3 components
line = line.substring( line.indexOf( " " ) + 1 );
val[0] = Float.valueOf( line.substring( 0, line.indexOf( " " ) ) );
line = line.substring( line.indexOf( " " ) + 1 );
val[1] = Float.valueOf( line.substring( 0, line.indexOf( " " ) ) );
line = line.substring( line.indexOf( " " ) + 1 );
val[2] = Float.valueOf( line );
normals_.add( val[0]);
normals_.add( val[1]);
normals_.add( val[2]);
break;
}
break;
case 'f':
//face
line = line.substring( line.indexOf( " " ) + 2 );
idx[0][0] = Integer.valueOf( line.substring( 0, line.indexOf("//") ) ).intValue();
line = line.substring( line.indexOf( "//" ) + 2 );
idx[0][1] = Integer.valueOf( line.substring( 0, line.indexOf(" ") ) ).intValue();
{
//This face has vertex and normal indices
// in .obj, f v1 .... the vertex index used start from 1, so -1 here
//remap them to the right spot
idx[0][0] = (idx[0][0] > 0) ? (idx[0][0] - 1) : ((int)positions_.size() - idx[0][0]);
idx[0][1] = (idx[0][1] > 0) ? (idx[0][1] - 1) : ((int)normals_.size() - idx[0][1]);
//grab the second vertex to prime
line = line.substring( line.indexOf( " " ) + 1 );
idx[1][0] = Integer.valueOf( line.substring( 0, line.indexOf("//") ) );
line = line.substring( line.indexOf( "//" ) + 2 );
idx[1][1] = Integer.valueOf( line.substring( 0, line.indexOf(" ") ) );
//remap them to the right spot
idx[1][0] = (idx[1][0] > 0) ? (idx[1][0] - 1) : ((int)positions_.size() - idx[1][0]);
idx[1][1] = (idx[1][1] > 0) ? (idx[1][1] - 1) : ((int)normals_.size() - idx[1][1]);
//grab the third vertex to prime
line = line.substring( line.indexOf( " " ) + 1 );
idx[2][0] = Integer.valueOf( line.substring( 0, line.indexOf("//") ) );
line = line.substring( line.indexOf( "//" ) + 2 );
idx[2][1] = Integer.valueOf( line );
{
//remap them to the right spot
idx[2][0] = (idx[2][0] > 0) ? (idx[2][0] - 1) : ((int)positions_.size() - idx[2][0]);
idx[2][1] = (idx[2][1] > 0) ? (idx[2][1] - 1) : ((int)normals_.size() - idx[2][1]);
//add the indices
for (int ii = 0; ii < 3; ii++) {
pIndex_.add( idx[ii][0]);
nIndex_.add( idx[ii][1]);
}
//prepare for the next iteration, the num 0 does not change.
idx[1][0] = idx[2][0];
idx[1][1] = idx[2][1];
}
hasNormals = true;
}
break;
default:
break;
};
}
//post-process data
//free anything that ended up being unused
if (!hasNormals) {
normals_.clear();
nIndex_.clear();
}
posSize_ = 3;
return true;
} catch (FileNotFoundException kFNF) {
System.err.println("Unable to find the shader file " + file);
} catch (IOException kIO) {
System.err.println("Problem reading the shader file " + file);
} catch (NumberFormatException kIO) {
System.err.println("Problem reading the shader file " + file);
} finally {
IOUtil.close(input, false);
}
}
return false;
}
//
// compileModel
//
// This function takes the raw model data in the internal
// structures, and attempts to bring it to a format directly
// accepted for vertex array style rendering. This means that
// a unique compiled vertex will exist for each unique
// combination of position, normal, tex coords, etc that are
// used in the model. The prim parameter, tells the model
// what type of index list to compile. By default it compiles
// a simple triangle mesh with no connectivity.
//
public void compileModel( )
{
boolean needsTriangles = true;
HashMap<IdxSet, Integer> pts = new HashMap<IdxSet, Integer>();
vertices_ = FloatBuffer.allocate( (pIndex_.size() + nIndex_.size()) * 3 );
indices_ = IntBuffer.allocate( pIndex_.size() );
for ( int i = 0; i < pIndex_.size(); i++ ) {
IdxSet idx = new IdxSet();
idx.pIndex = pIndex_.elementAt(i);
if ( normals_.size() > 0)
idx.nIndex = nIndex_.elementAt(i);
else
idx.nIndex = 0;
if ( !pts.containsKey(idx) ) {
if (needsTriangles)
indices_.put( pts.size());
pts.put( idx, pts.size() );
//position,
vertices_.put( positions_.elementAt(idx.pIndex*posSize_));
vertices_.put( positions_.elementAt(idx.pIndex*posSize_ + 1));
vertices_.put( positions_.elementAt(idx.pIndex*posSize_ + 2));
//normal
if (normals_.size() > 0) {
vertices_.put( normals_.elementAt(idx.nIndex*3));
vertices_.put( normals_.elementAt(idx.nIndex*3 + 1));
vertices_.put( normals_.elementAt(idx.nIndex*3 + 2));
}
}
else {
if (needsTriangles)
indices_.put( pts.get(idx) );
}
}
//create selected prim
//set the offsets and vertex size
pOffset_ = 0; //always first
vtxSize_ = posSize_;
if ( hasNormals()) {
nOffset_ = vtxSize_;
vtxSize_ += 3;
}
else {
nOffset_ = -1;
}
vertices_.rewind();
indices_.rewind();
}
//
// computeBoundingBox
//
// This function returns the points defining the axis-
// aligned bounding box containing the model.
//
//////////////////////////////////////////////////////////////
public void computeBoundingBox( float[] minVal, float[] maxVal)
{
if ( positions_.isEmpty())
return;
for ( int i = 0; i < 3; i++ )
{
minVal[i] = 1e10f;
maxVal[i] = -1e10f;
}
for ( int i = 0; i < positions_.size(); i+= 3 ) {
float x = positions_.elementAt(i);
float y = positions_.elementAt(i+1);
float z = positions_.elementAt(i+2);
minVal[0] = Math.min( minVal[0], x );
minVal[1] = Math.min( minVal[1], y );
minVal[2] = Math.min( minVal[2], z );
maxVal[0] = Math.max( maxVal[0], x );
maxVal[1] = Math.max( maxVal[1], y );
maxVal[2] = Math.max( maxVal[2], z );
}
}
public void clearNormals()
{
normals_.clear();
nIndex_.clear();
}
public boolean hasNormals() {
return normals_.size() > 0;
}
public int getPositionSize() {
return posSize_;
}
public int getNormalSize() {
return 3;
}
public Vector<Float> getPositions() {
return ( positions_.size() > 0) ? positions_ : null;
}
public Vector<Float> getNormals() {
return ( normals_.size() > 0) ? normals_ : null;
}
public Vector<Integer> getPositionIndices() {
return ( pIndex_.size() > 0) ? pIndex_: null;
}
public Vector<Integer> getNormalIndices() {
return ( nIndex_.size() > 0) ? nIndex_ : null;
}
public int getPositionCount() {
return (posSize_ > 0) ? (int)positions_.size() / posSize_ : 0;
}
public int getNormalCount() {
return (int)normals_.size() / 3;
}
public int getIndexCount() {
return (int)pIndex_.size();
}
public FloatBuffer getCompiledVertices() {
return vertices_;
}
public IntBuffer getCompiledIndices( ) {
return indices_;
}
public int getCompiledPositionOffset() {
return pOffset_;
}
public int getCompiledNormalOffset() {
return nOffset_;
}
public int getCompiledVertexSize() {
return vtxSize_;
}
public int getCompiledVertexCount() {
return ((pIndex_.size() + nIndex_.size()) * 3);
}
public int getCompiledIndexCount( ) {
return pIndex_.size();
}
public int getOpenEdgeCount() {
return openEdges_;
}
Vector<Float> positions_ = new Vector<Float>();
Vector<Float> normals_ = new Vector<Float>();
int posSize_;
Vector<Integer> pIndex_ = new Vector<Integer>();
Vector<Integer> nIndex_ = new Vector<Integer>();
//data structures optimized for rendering, compiled model
IntBuffer indices_ = null;
FloatBuffer vertices_ = null;
int pOffset_;
int nOffset_;
int vtxSize_ = 0;
int openEdges_;
};
|