summaryrefslogtreecommitdiffstats
path: root/src/demos/vertexArrayRange/VertexArrayRange.java
blob: 26d5512b9bf8a5894e8590d7e7a131984beb9693 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
/*
 * Portions Copyright (C) 2003 Sun Microsystems, Inc.
 * All rights reserved.
 */

/*
 *
 * COPYRIGHT NVIDIA CORPORATION 2003. ALL RIGHTS RESERVED.
 * BY ACCESSING OR USING THIS SOFTWARE, YOU AGREE TO:
 *
 *  1) ACKNOWLEDGE NVIDIA'S EXCLUSIVE OWNERSHIP OF ALL RIGHTS
 *     IN AND TO THE SOFTWARE;
 *
 *  2) NOT MAKE OR DISTRIBUTE COPIES OF THE SOFTWARE WITHOUT
 *     INCLUDING THIS NOTICE AND AGREEMENT;
 *
 *  3) ACKNOWLEDGE THAT TO THE MAXIMUM EXTENT PERMITTED BY
 *     APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND
 *     THAT NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
 *     EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
 *     TO, IMPLIED WARRANTIES OF MERCHANTABILITY  AND FITNESS
 *     FOR A PARTICULAR PURPOSE.
 *
 * IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY
 * SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
 * WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
 * OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
 * INFORMATION, OR ANY OTHER PECUNIARY LOSS), INCLUDING ATTORNEYS'
 * FEES, RELATING TO THE USE OF OR INABILITY TO USE THIS SOFTWARE,
 * EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 *
 */

package demos.vertexArrayRange;

import java.awt.*;
import java.awt.event.*;
import java.nio.*;
import java.util.*;
import javax.swing.*;

import javax.media.opengl.*;
import com.sun.opengl.utils.*;
import com.sun.opengl.utils.*;
import demos.util.*;

/** <P> A port of NVidia's [tm] Vertex Array Range demonstration to
    OpenGL[tm] for Java[tm] and the Java programming language. The
    current web site for the demo (which does not appear to contain
    the original C++ source code for this demo) is <a href =
    "http://developer.nvidia.com/view.asp?IO=Using_GL_NV_fence">here</a>. </P>

    <P> This demonstration requires the following:

    <ul>
    <li> A JDK 1.4 implementation
    <li> an NVidia GeForce-based card
    <li> a recent set of drivers
    </ul>

    </P>

    <P> This demonstration illustrates the effective use of the
    java.nio direct buffer classes in JDK 1.4 to access memory outside
    of the Java garbage-collected heap, in particular that returned
    from the NVidia-specific routine wglAllocateMemoryNV. This memory
    region is used in conjunction with glVertexArrayRangeNV. </P>

    <P> On a 750 MHz PIII with an SDRAM memory bus and a GeForce 256
    running the Java HotSpot[tm] Client VM and OpenGL for Java 2.8,
    this demonstration attains 90% of the speed of the compiled C++
    code, with a frame rate of 27 FPS, compared to 30 FPS for the C++
    version. On higher-end hardware (a dual 667 MHz PIII with RDRAM
    and a GeForce 2) the demo currently attains between 65% and 75% of
    C++ speed with the HotSpot Client and Server compilers,
    respectively. </P> */

public class VertexArrayRange implements GLEventListener {
  public static void main(String[] args) {
    boolean startSlow = false;

    if (args.length > 1) {
      usage();
    }

    if (args.length == 1) {
      if (args[0].equals("-slow")) {
        startSlow = true;
      } else {
        usage();
      }
    }

    GLCanvas canvas = GLDrawableFactory.getFactory().createGLCanvas(new GLCapabilities());
    VertexArrayRange demo = new VertexArrayRange();
    if (startSlow) {
      demo.setFlag('v', false);   // VAR off
    }
    canvas.addGLEventListener(demo);

    final Animator animator = new Animator(canvas);
    animator.setRunAsFastAsPossible(true);
    demo.setDemoListener(new DemoListener() {
        public void shutdownDemo() {
          runExit(animator);
        }
        public void repaint() {}
      });

    Frame frame = new Frame("Very Simple NV_vertex_array_range demo");
    frame.addWindowListener(new WindowAdapter() {
        public void windowClosing(WindowEvent e) {
          runExit(animator);
        }
      });
    frame.setLayout(new BorderLayout());
    canvas.setSize(800, 800);
    frame.add(canvas, BorderLayout.CENTER);
    frame.pack();
    frame.show();
    canvas.requestFocus();

    animator.start();
  }

  private static void usage() {
    System.out.println("usage: java VertexArrayRange [-slow]");
    System.out.println("-slow flag starts up using data in the Java heap");
    System.exit(0);
  }

  public VertexArrayRange() {
    setFlag(' ', true);   // animation on
    setFlag('i', true);   // infinite viewer and light
    setFlag('v', true);   // VAR on
  }

  public void setDemoListener(DemoListener listener) {
    demoListener = listener;
  }

  //----------------------------------------------------------------------
  // Internals only below this point
  //

  private DemoListener demoListener;
  private boolean[] b = new boolean[256];
  private static final int SIZEOF_FLOAT = 4;
  private static final int STRIP_SIZE  = 48;
  private int tileSize   = 9 * STRIP_SIZE;
  private int numBuffers = 4;
  private int bufferLength = 1000000;
  private int bufferSize   = bufferLength * SIZEOF_FLOAT;
  private static final int SIN_ARRAY_SIZE = 1024;

  private FloatBuffer bigArrayVar;
  private FloatBuffer bigArraySystem;
  private FloatBuffer bigArray;
  private IntBuffer[] elements;
  private float[]    xyArray;

  static class VarBuffer {
    public FloatBuffer vertices;
    public FloatBuffer normals;
    public int        fence;
  }
  private VarBuffer[] buffers;

  private float[] sinArray;
  private float[] cosArray;

  // Primitive: GL_QUAD_STRIP, GL_LINE_STRIP, or GL_POINTS
  private int primitive = GL.GL_QUAD_STRIP;

  // Animation parameters
  private float hicoef = .06f;
  private float locoef = .10f;
  private float hifreq = 6.1f;
  private float lofreq = 2.5f;
  private float phaseRate = .02f;
  private float phase2Rate = -0.12f;
  private float phase  = 0;
  private float phase2 = 0;

  // Temporaries for computation
  float[] ysinlo = new float[STRIP_SIZE];
  float[] ycoslo = new float[STRIP_SIZE];
  float[] ysinhi = new float[STRIP_SIZE];
  float[] ycoshi = new float[STRIP_SIZE];

  // For thread-safety when dealing with keypresses
  private volatile boolean toggleVAR           = false;
  private volatile boolean toggleLighting      = false;
  private volatile boolean toggleLightingModel = false;
  private volatile boolean recomputeElements   = false;

  // Frames-per-second computation
  private boolean firstProfiledFrame;
  private int     profiledFrameCount;
  private int     numDrawElementsCalls;
  private long startTimeMillis;

  static class PeriodicIterator {
    public PeriodicIterator(int arraySize,
                            float period,
                            float initialOffset,
                            float delta) {
      float arrayDelta =  arraySize * (delta / period); // floating-point steps-per-increment
      increment = (int)(arrayDelta * (1<<16));          // fixed-point steps-per-increment

      float offset = arraySize * (initialOffset / period); // floating-point initial index
      initOffset = (int)(offset * (1<<16));                // fixed-point initial index

        arraySizeMask = 0;
        int i = 20; // array should be reasonably sized...
        while((arraySize & (1<<i)) == 0) {
          i--;
        }
        arraySizeMask = (1<<i)-1;
        index = initOffset;
    }

    public PeriodicIterator(PeriodicIterator arg) {
      this.arraySizeMask = arg.arraySizeMask;
      this.increment = arg.increment;
      this.initOffset = arg.initOffset;
      this.index = arg.index;
    }

    public int getIndex() {
      return (index >> 16) & arraySizeMask;
    }

    public void incr() {
      index += increment;
    }

    public void decr() {
      index -= increment;
    }

    public void reset() {
      index = initOffset;
    }

    private int arraySizeMask;
    // fraction bits == 16
    private int increment;
    private int initOffset;
    private int index;
  }

  private void setFlag(char key, boolean val) {
    b[((int) key) & 0xFF] = val;
  }

  private boolean getFlag(char key) {
    return b[((int) key) & 0xFF];
  }

  private void ensurePresent(GL gl, String function) {
    if (!gl.isFunctionAvailable(function)) {
      final String message = "OpenGL routine \"" + function + "\" not available";
      new Thread(new Runnable() {
          public void run() {
            JOptionPane.showMessageDialog(null, message, "Unavailable extension", JOptionPane.ERROR_MESSAGE);
            demoListener.shutdownDemo();
          }
        }).start();
      throw new RuntimeException(message);
    }
  }

  public void init(GLAutoDrawable drawable) {
    //    drawable.setGL(new TraceGL(drawable.getGL(), System.err));
    //    drawable.setGL(new DebugGL(drawable.getGL()));

    GL  gl  = drawable.getGL();
    GLU glu = drawable.getGLU();

    // Try and disable synch-to-retrace for fastest framerate
    gl.setSwapInterval(0);

    try {
      ensurePresent(gl, "glVertexArrayRangeNV");
      ensurePresent(gl, "glGenFencesNV");
      ensurePresent(gl, "glSetFenceNV");
      ensurePresent(gl, "glTestFenceNV");
      ensurePresent(gl, "glFinishFenceNV");
      ensurePresent(gl, "glAllocateMemoryNV");
    } catch (RuntimeException e) {
      demoListener.shutdownDemo();
      throw (e);
    }      
      
    gl.glEnable(GL.GL_DEPTH_TEST);

    gl.glClearColor(0, 0, 0, 0);

    gl.glEnable(GL.GL_LIGHT0);
    gl.glEnable(GL.GL_LIGHTING);
    gl.glEnable(GL.GL_NORMALIZE);
    gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_AMBIENT, new float[]  {.1f, .1f,    0, 1}, 0);
    gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_DIFFUSE, new float[]  {.6f, .6f,  .1f, 1}, 0);
    gl.glMaterialfv(GL.GL_FRONT_AND_BACK, GL.GL_SPECULAR, new float[] { 1,    1, .75f, 1}, 0);
    gl.glMaterialf(GL.GL_FRONT_AND_BACK, GL.GL_SHININESS, 128.f);

    gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { .5f, 0, .5f, 0}, 0);
    gl.glLightModeli(GL.GL_LIGHT_MODEL_LOCAL_VIEWER, 0);

    // NOTE: it looks like GLUT (or something else) sets up the
    // projection matrix in the C version of this demo.
    gl.glMatrixMode(GL.GL_PROJECTION);
    gl.glLoadIdentity();
    glu.gluPerspective(60, 1.0, 0.1, 100);
    gl.glMatrixMode(GL.GL_MODELVIEW);

    allocateBigArray(gl, true);
    allocateBuffersAndFences(gl);

    sinArray = new float[SIN_ARRAY_SIZE];
    cosArray = new float[SIN_ARRAY_SIZE];

    for (int i = 0; i < SIN_ARRAY_SIZE; i++) {
      double step = i * 2 * Math.PI / SIN_ARRAY_SIZE;
      sinArray[i] = (float) Math.sin(step);
      cosArray[i] = (float) Math.cos(step);
    }

    if (getFlag('v')) {
      gl.glEnableClientState(GL.GL_VERTEX_ARRAY_RANGE_NV);
      gl.glVertexArrayRangeNV(bufferSize, bigArrayVar);
      bigArray = bigArrayVar;
    } else {
      bigArray = bigArraySystem;
    }
    setupBuffers();
    gl.glEnableClientState(GL.GL_VERTEX_ARRAY);
    gl.glEnableClientState(GL.GL_NORMAL_ARRAY);

    computeElements();

    drawable.addKeyListener(new KeyAdapter() {
        public void keyTyped(KeyEvent e) {
          dispatchKey(e.getKeyChar());
        }
      });
  }

  private void allocateBuffersAndFences(GL gl) {
    buffers = new VarBuffer[numBuffers];
    int[] fences = new int[1];
    for (int i = 0; i < numBuffers; i++) {
      buffers[i] = new VarBuffer();
      gl.glGenFencesNV(1, fences, 0);
      buffers[i].fence = fences[0];
    }
  }

  private void setupBuffers() {
    int sliceSize = bufferLength / numBuffers;
    for (int i = 0; i < numBuffers; i++) {
      int startIndex = i * sliceSize;
      buffers[i].vertices = sliceBuffer(bigArray, startIndex, sliceSize);
      buffers[i].normals  = sliceBuffer(buffers[i].vertices, 3,
                                        buffers[i].vertices.limit() - 3);
    }
  }

  private void dispatchKey(char k) {
    setFlag(k, !getFlag(k));
    // Quit on escape or 'q'
    if ((k == (char) 27) || (k == 'q')) {
      demoListener.shutdownDemo();
      return;
    }

    if (k == 'r') {
      if (getFlag(k)) {
        profiledFrameCount = 0;
        numDrawElementsCalls = 0;
        firstProfiledFrame = true;
      }
    }

    if (k == 'w') {
      if (getFlag(k)) {
        primitive = GL.GL_LINE_STRIP;
      } else {
        primitive = GL.GL_QUAD_STRIP;
      }
    }

    if (k == 'p') {
      if (getFlag(k)) {
        primitive = GL.GL_POINTS;
      } else {
        primitive = GL.GL_QUAD_STRIP;
      }
    }

    if (k == 'v') {
      toggleVAR = true;
    }

    if (k == 'd') {
      toggleLighting = true;
    }

    if (k == 'i') {
      toggleLightingModel = true;
    }

    if('h'==k)
      hicoef += .005;
    if('H'==k)
      hicoef -= .005;
    if('l'==k)
      locoef += .005;
    if('L'==k)
      locoef -= .005;
    if('1'==k)
      lofreq += .1f;
    if('2'==k)
      lofreq -= .1f;
    if('3'==k)
      hifreq += .1f;
    if('4'==k)
      hifreq -= .1f;
    if('5'==k)
      phaseRate += .01f;
    if('6'==k)
      phaseRate -= .01f;
    if('7'==k)
      phase2Rate += .01f;
    if('8'==k)
      phase2Rate -= .01f;

    if('t'==k) {
      if(tileSize < 864) {
        tileSize += STRIP_SIZE;
        recomputeElements = true;
        System.err.println("tileSize = " + tileSize);
      }
    }

    if('T'==k) {
      if(tileSize > STRIP_SIZE) {
        tileSize -= STRIP_SIZE;
        recomputeElements = true;
        System.err.println("tileSize = " + tileSize);
      }
    }
  }

  public void display(GLAutoDrawable drawable) {
    GL  gl  = drawable.getGL();
    GLU glu = drawable.getGLU();

    // Check to see whether to animate
    if (getFlag(' ')) {
      phase += phaseRate;
      phase2 += phase2Rate;

      if (phase > (float) (20 * Math.PI)) {
        phase = 0;
      }

      if (phase2 < (float) (-20 * Math.PI)) {
        phase2 = 0;
      }
    }

    PeriodicIterator loX =
      new PeriodicIterator(SIN_ARRAY_SIZE, (float) (2 * Math.PI), phase, (float) ((1.f/tileSize)*lofreq*Math.PI));
    PeriodicIterator loY = new PeriodicIterator(loX);
    PeriodicIterator hiX =
      new PeriodicIterator(SIN_ARRAY_SIZE, (float) (2 * Math.PI), phase2, (float) ((1.f/tileSize)*hifreq*Math.PI));
    PeriodicIterator hiY = new PeriodicIterator(hiX);

    if (toggleVAR) {
      if (getFlag('v')) {
        gl.glEnableClientState(GL.GL_VERTEX_ARRAY_RANGE_NV);
        gl.glVertexArrayRangeNV(bufferSize, bigArrayVar);
        bigArray = bigArrayVar;
      } else {
        gl.glDisableClientState(GL.GL_VERTEX_ARRAY_RANGE_NV);
        bigArray = bigArraySystem;
      }
      toggleVAR = false;
      setupBuffers();
    }

    if (toggleLighting) {
      if (getFlag('d')) {
        gl.glDisable(GL.GL_LIGHTING);
      } else {
        gl.glEnable(GL.GL_LIGHTING);
      }
      toggleLighting = false;
    }

    if (toggleLightingModel) {
      if(getFlag('i')) {
        // infinite light
        gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { .5f, 0, .5f, 0 }, 0);
        gl.glLightModeli(GL.GL_LIGHT_MODEL_LOCAL_VIEWER, 0);
      } else {
        gl.glLightfv(GL.GL_LIGHT0, GL.GL_POSITION, new float[] { .5f, 0, -.5f, 1 }, 0);
        gl.glLightModeli(GL.GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
      }
      toggleLightingModel = false;
    }

    if (recomputeElements) {
      computeElements();
      recomputeElements = false;
    }

    gl.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT);

    gl.glPushMatrix();

    final float[] modelViewMatrix = new float[] {
      1, 0, 0, 0,
      0, 1, 0, 0,
      0, 0, 1, 0,
      0, 0, -1, 1
    };
    gl.glLoadMatrixf(modelViewMatrix, 0);

    // FIXME: add mouse interaction
    // camera.apply_inverse_transform();
    // object.apply_transform();

    int cur = 0;
    int numSlabs = tileSize / STRIP_SIZE;

    for(int slab = numSlabs; --slab>=0; ) {
      cur = slab % numBuffers;
      if (slab >= numBuffers) {
        if (!gl.glTestFenceNV(buffers[cur].fence)) {
          gl.glFinishFenceNV(buffers[cur].fence);
        }
      }

      FloatBuffer v = buffers[cur].vertices;
      int vertexIndex = 0;

      gl.glVertexPointer(3, GL.GL_FLOAT, 6 * SIZEOF_FLOAT, v);
      gl.glNormalPointer(GL.GL_FLOAT, 6 * SIZEOF_FLOAT, buffers[cur].normals);

      for(int jj=STRIP_SIZE; --jj>=0; ) {
        ysinlo[jj] = sinArray[loY.getIndex()];
        ycoslo[jj] = cosArray[loY.getIndex()]; loY.incr();
        ysinhi[jj] = sinArray[hiY.getIndex()];
        ycoshi[jj] = cosArray[hiY.getIndex()]; hiY.incr();
      }
      loY.decr();
      hiY.decr();

      for(int i = tileSize; --i>=0; ) {
        float x = xyArray[i];
        int loXIndex = loX.getIndex();
        int hiXIndex = hiX.getIndex();

        int jOffset = (STRIP_SIZE-1)*slab;
        float nx = locoef * -cosArray[loXIndex] + hicoef * -cosArray[hiXIndex];

        // Help the HotSpot Client Compiler by hoisting loop
        // invariant variables into locals. Note that this may be
        // good practice for innermost loops anyway since under
        // the new memory model operations like accidental
        // synchronization may force any compiler to reload these
        // fields from memory, destroying their ability to
        // optimize.
        float locoef_tmp = locoef;
        float hicoef_tmp = hicoef;
        float[] ysinlo_tmp = ysinlo;
        float[] ysinhi_tmp = ysinhi;
        float[] ycoslo_tmp = ycoslo;
        float[] ycoshi_tmp = ycoshi;
        float[] sinArray_tmp = sinArray;
        float[] xyArray_tmp = xyArray;

        for(int j = STRIP_SIZE; --j>=0; ) {
          float y;

          y = xyArray_tmp[j + jOffset];

          float ny;

          v.put(vertexIndex, x);
          v.put(vertexIndex + 1, y);
          v.put(vertexIndex + 2, (locoef_tmp * (sinArray_tmp[loXIndex] + ysinlo_tmp[j]) +
                                  hicoef_tmp * (sinArray_tmp[hiXIndex] + ysinhi_tmp[j])));
          v.put(vertexIndex + 3, nx);
          ny = locoef_tmp * -ycoslo_tmp[j] + hicoef_tmp * -ycoshi_tmp[j];
          v.put(vertexIndex + 4, ny);
          v.put(vertexIndex + 5, .15f); //.15f * (1.f - sqrt(nx * nx + ny * ny));
          vertexIndex += 6;
        }
        loX.incr();
        hiX.incr();
      }
      loX.reset();
      hiX.reset();

      for (int i = 0; i < elements.length; i++) {
        ++numDrawElementsCalls;
        gl.glDrawElements(primitive, elements[i].capacity(), GL.GL_UNSIGNED_INT, elements[i]);
        if(getFlag('f')) {
          gl.glFlush();
        }
      }

      gl.glSetFenceNV(buffers[cur].fence, GL.GL_ALL_COMPLETED_NV);
    }

    gl.glPopMatrix();

    gl.glFinishFenceNV(buffers[cur].fence);

    if (getFlag('r')) {
      if (!firstProfiledFrame) {
        if (++profiledFrameCount == 30) {
          long endTimeMillis = System.currentTimeMillis();
          double secs = (endTimeMillis - startTimeMillis) / 1000.0;
          double fps  = 30.0 / secs;
          double ppf  = tileSize * tileSize * 2;
          double mpps = ppf * fps / 1000000.0;
          System.err.println("fps: " + fps + " polys/frame: " + ppf + " million polys/sec: " + mpps +
                             " DrawElements calls/frame: " + (numDrawElementsCalls / 30));
          profiledFrameCount = 0;
          numDrawElementsCalls = 0;
          startTimeMillis = System.currentTimeMillis();
        }
      } else {
        startTimeMillis = System.currentTimeMillis();
        firstProfiledFrame = false;

      }
    }
  }

  public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) {}

  // Unused routines
  public void displayChanged(GLAutoDrawable drawable, boolean modeChanged, boolean deviceChanged) {}

  private void allocateBigArray(GL gl, boolean tryAgain) {
    float priority = .5f;

    bigArraySystem = setupBuffer(ByteBuffer.allocateDirect(bufferSize));

    float megabytes = (bufferSize / 1000000.f);
    try {
      bigArrayVar = setupBuffer(gl.glAllocateMemoryNV(bufferSize, 0, 0, priority));
    }
    catch (OutOfMemoryError e1) {
      // Try a higher priority
      try {
        bigArrayVar = setupBuffer(gl.glAllocateMemoryNV(bufferSize, 0, 0, 1.f));
      }
      catch (OutOfMemoryError e2) {
        if (!tryAgain) {
          throw new RuntimeException("Unable to allocate " + megabytes +
                                     " megabytes of fast memory. Giving up.");
        }

        System.err.println("Unable to allocate " + megabytes +
                           " megabytes of fast memory. Trying less.");
        bufferSize /= 2;
        numBuffers /= 2;
        allocateBigArray(gl, false);
        return;
      }
    }

    System.err.println("Allocated " + megabytes + " megabytes of fast memory");
  }

  private FloatBuffer setupBuffer(ByteBuffer buf) {
    buf.order(ByteOrder.nativeOrder());
    return buf.asFloatBuffer();
  }

  private FloatBuffer sliceBuffer(FloatBuffer array,
                                  int sliceStartIndex, int sliceLength) {
    array.position(sliceStartIndex);
    FloatBuffer ret = array.slice();
    array.position(0);
    ret.limit(sliceLength);
    return ret;
  }

  private void computeElements() {
    xyArray = new float[tileSize];
    for (int i = 0; i < tileSize; i++) {
      xyArray[i] = i / (tileSize - 1.0f) - 0.5f;
    }

    elements = new IntBuffer[tileSize - 1];
    for (int i = 0; i < tileSize - 1; i++) {
      elements[i] = IntBuffer.allocate(2 * STRIP_SIZE);
      for (int j = 0; j < 2 * STRIP_SIZE; j += 2) {
        elements[i].put(j,    i      * STRIP_SIZE + (j / 2));
        elements[i].put(j+1, (i + 1) * STRIP_SIZE + (j / 2));
      }
    }
  }

  private static void runExit(final Animator animator) {
    // Note: calling System.exit() synchronously inside the draw,
    // reshape or init callbacks can lead to deadlocks on certain
    // platforms (in particular, X11) because the JAWT's locking
    // routines cause a global AWT lock to be grabbed. Run the
    // exit routine in another thread.
    new Thread(new Runnable() {
        public void run() {
          animator.stop();
          System.exit(0);
        }
      }).start();
  }
}