/* * Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN * MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR * ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR * DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, * ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF * SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * You acknowledge that this software is not designed or intended for use * in the design, construction, operation or maintenance of any nuclear * facility. * */ package net.java.joglutils.msg.math; import java.nio.*; /** A (very incomplete) 4x4 matrix class. Representation assumes row-major order and multiplication by column vectors on the right. */ public class Mat4f { private float[] data; /** Creates new matrix initialized to the zero matrix */ public Mat4f() { data = new float[16]; } /** Creates new matrix initialized to argument's contents */ public Mat4f(Mat4f arg) { this(); set(arg); } /** Sets this matrix to the identity matrix */ public void makeIdent() { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (i == j) { set(i, j, 1.0f); } else { set(i, j, 0.0f); } } } } /** Sets this matrix to be equivalent to the given one */ public void set(Mat4f arg) { float[] mine = data; float[] yours = arg.data; for (int i = 0; i < mine.length; i++) { mine[i] = yours[i]; } } /** Gets the (i,j)th element of this matrix, where i is the row index and j is the column index */ public float get(int i, int j) { return data[4 * i + j]; } /** Sets the (i,j)th element of this matrix, where i is the row index and j is the column index */ public void set(int i, int j, float val) { data[4 * i + j] = val; } /** Sets the translation component of this matrix (i.e., the three top elements of the third column) without touching any of the other parts of the matrix */ public void setTranslation(Vec3f trans) { set(0, 3, trans.x()); set(1, 3, trans.y()); set(2, 3, trans.z()); } /** Sets the rotation component of this matrix (i.e., the upper left 3x3) without touching any of the other parts of the matrix */ public void setRotation(Rotf rot) { rot.toMatrix(this); } /** Sets the upper-left 3x3 of this matrix assuming that the given x, y, and z vectors form an orthonormal basis */ public void setRotation(Vec3f x, Vec3f y, Vec3f z) { set(0, 0, x.x()); set(1, 0, x.y()); set(2, 0, x.z()); set(0, 1, y.x()); set(1, 1, y.y()); set(2, 1, y.z()); set(0, 2, z.x()); set(1, 2, z.y()); set(2, 2, z.z()); } /** Gets the upper left 3x3 of this matrix as a rotation. Currently does not work if there are scales. Ignores translation component. */ public void getRotation(Rotf rot) { rot.fromMatrix(this); } /** Sets the elements (0, 0), (1, 1), and (2, 2) with the appropriate elements of the given three-dimensional scale vector. Does not perform a full multiplication of the upper-left 3x3; use this with an identity matrix in conjunction with mul for that. */ public void setScale(Vec3f scale) { set(0, 0, scale.x()); set(1, 1, scale.y()); set(2, 2, scale.z()); } /** Inverts this matrix assuming that it represents a rigid transform (i.e., some combination of rotations and translations). Assumes column vectors. Algorithm: transposes upper left 3x3; negates translation in rightmost column and transforms by inverted rotation. */ public void invertRigid() { float t; // Transpose upper left 3x3 t = get(0, 1); set(0, 1, get(1, 0)); set(1, 0, t); t = get(0, 2); set(0, 2, get(2, 0)); set(2, 0, t); t = get(1, 2); set(1, 2, get(2, 1)); set(2, 1, t); // Transform negative translation by this Vec3f negTrans = new Vec3f(-get(0, 3), -get(1, 3), -get(2, 3)); Vec3f trans = new Vec3f(); xformDir(negTrans, trans); set(0, 3, trans.x()); set(1, 3, trans.y()); set(2, 3, trans.z()); } /** Performs general 4x4 matrix inversion. @throws SingularMatrixException if this matrix is singular (i.e., non-invertible) */ public void invert() throws SingularMatrixException { invertGeneral(this); } /** Returns this * b; creates new matrix */ public Mat4f mul(Mat4f b) { Mat4f tmp = new Mat4f(); tmp.mul(this, b); return tmp; } /** this = a * b */ public void mul(Mat4f a, Mat4f b) { for (int rc = 0; rc < 4; rc++) for (int cc = 0; cc < 4; cc++) { float tmp = 0.0f; for (int i = 0; i < 4; i++) tmp += a.get(rc, i) * b.get(i, cc); set(rc, cc, tmp); } } /** Transpose this matrix in place. */ public void transpose() { float t; for (int i = 0; i < 4; i++) { for (int j = 0; j < i; j++) { t = get(i, j); set(i, j, get(j, i)); set(j, i, t); } } } /** Multiply a 4D vector by this matrix. NOTE: src and dest must be different vectors. */ public void xformVec(Vec4f src, Vec4f dest) { for (int rc = 0; rc < 4; rc++) { float tmp = 0.0f; for (int cc = 0; cc < 4; cc++) { tmp += get(rc, cc) * src.get(cc); } dest.set(rc, tmp); } } /** Transforms a 3D vector as though it had a homogeneous coordinate and assuming that this matrix represents only rigid transformations; i.e., is not a full transformation. NOTE: src and dest must be different vectors. */ public void xformPt(Vec3f src, Vec3f dest) { for (int rc = 0; rc < 3; rc++) { float tmp = 0.0f; for (int cc = 0; cc < 3; cc++) { tmp += get(rc, cc) * src.get(cc); } tmp += get(rc, 3); dest.set(rc, tmp); } } /** Transforms src using only the upper left 3x3. NOTE: src and dest must be different vectors. */ public void xformDir(Vec3f src, Vec3f dest) { for (int rc = 0; rc < 3; rc++) { float tmp = 0.0f; for (int cc = 0; cc < 3; cc++) { tmp += get(rc, cc) * src.get(cc); } dest.set(rc, tmp); } } /** Transforms the given line (origin plus direction) by this matrix. */ public Line xformLine(Line line) { Vec3f pt = new Vec3f(); Vec3f dir = new Vec3f(); xformPt(line.getPoint(), pt); xformDir(line.getDirection(), dir); return new Line(dir, pt); } /** Copies data in column-major (OpenGL format) order into passed float array, which must have length 16 or greater. */ public void getColumnMajorData(float[] out) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { out[4 * j + i] = get(i, j); } } } /** Copies data in column-major (OpenGL format) order into passed float buffer, which must have 16 or more remaining elements. */ public void getColumnMajorData(FloatBuffer out) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { out.put(4 * j + i, get(i, j)); } } } /** Returns the matrix data in row-major format, which is the opposite of OpenGL's convention. */ public float[] getRowMajorData() { return data; } /** Stores the matrix data into the passed FloatBuffer in row-major format, which is the opposite of OpenGL's convention. */ public void getRowMajorData(FloatBuffer out) { for (int i = 0; i < 16; i++) { out.put(i, data[i]); } } public Matf toMatf() { Matf out = new Matf(4, 4); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { out.set(i, j, get(i, j)); } } return out; } public String toString() { String endl = System.getProperty("line.separator"); return "(" + get(0, 0) + ", " + get(0, 1) + ", " + get(0, 2) + ", " + get(0, 3) + endl + get(1, 0) + ", " + get(1, 1) + ", " + get(1, 2) + ", " + get(1, 3) + endl + get(2, 0) + ", " + get(2, 1) + ", " + get(2, 2) + ", " + get(2, 3) + endl + get(3, 0) + ", " + get(3, 1) + ", " + get(3, 2) + ", " + get(3, 3) + ")"; } //---------------------------------------------------------------------- // Internals only below this point // // The following code was borrowed from Java 3D's vecmath implementation private void invertGeneral(Mat4f m1) { double temp[] = new double[16]; double result[] = new double[16]; int row_perm[] = new int[4]; int i, r, c; // Use LU decomposition and backsubstitution code specifically // for floating-point 4x4 matrices. // Copy source matrix to t1tmp temp[0] = m1.get(0, 0); temp[1] = m1.get(0, 1); temp[2] = m1.get(0, 2); temp[3] = m1.get(0, 3); temp[4] = m1.get(1, 0); temp[5] = m1.get(1, 1); temp[6] = m1.get(1, 2); temp[7] = m1.get(1, 3); temp[8] = m1.get(2, 0); temp[9] = m1.get(2, 1); temp[10] = m1.get(2, 2); temp[11] = m1.get(2, 3); temp[12] = m1.get(3, 0); temp[13] = m1.get(3, 1); temp[14] = m1.get(3, 2); temp[15] = m1.get(3, 3); // Calculate LU decomposition: Is the matrix singular? if (!luDecomposition(temp, row_perm)) { // Matrix has no inverse throw new SingularMatrixException(); } // Perform back substitution on the identity matrix for(i=0;i<16;i++) result[i] = 0.0; result[0] = 1.0; result[5] = 1.0; result[10] = 1.0; result[15] = 1.0; luBacksubstitution(temp, row_perm, result); set(0, 0, (float)result[0]); set(0, 1, (float)result[1]); set(0, 2, (float)result[2]); set(0, 3, (float)result[3]); set(1, 0, (float)result[4]); set(1, 1, (float)result[5]); set(1, 2, (float)result[6]); set(1, 3, (float)result[7]); set(2, 0, (float)result[8]); set(2, 1, (float)result[9]); set(2, 2, (float)result[10]); set(2, 3, (float)result[11]); set(3, 0, (float)result[12]); set(3, 1, (float)result[13]); set(3, 2, (float)result[14]); set(3, 3, (float)result[15]); } /** * Given a 4x4 array "matrix0", this function replaces it with the * LU decomposition of a row-wise permutation of itself. The input * parameters are "matrix0" and "dimen". The array "matrix0" is also * an output parameter. The vector "row_perm[4]" is an output * parameter that contains the row permutations resulting from partial * pivoting. The output parameter "even_row_xchg" is 1 when the * number of row exchanges is even, or -1 otherwise. Assumes data * type is always double. * * This function is similar to luDecomposition, except that it * is tuned specifically for 4x4 matrices. * * @return true if the matrix is nonsingular, or false otherwise. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 40-45. // static boolean luDecomposition(double[] matrix0, int[] row_perm) { double row_scale[] = new double[4]; // Determine implicit scaling information by looping over rows { int i, j; int ptr, rs; double big, temp; ptr = 0; rs = 0; // For each row ... i = 4; while (i-- != 0) { big = 0.0; // For each column, find the largest element in the row j = 4; while (j-- != 0) { temp = matrix0[ptr++]; temp = Math.abs(temp); if (temp > big) { big = temp; } } // Is the matrix singular? if (big == 0.0) { return false; } row_scale[rs++] = 1.0 / big; } } { int j; int mtx; mtx = 0; // For all columns, execute Crout's method for (j = 0; j < 4; j++) { int i, imax, k; int target, p1, p2; double sum, big, temp; // Determine elements of upper diagonal matrix U for (i = 0; i < j; i++) { target = mtx + (4*i) + j; sum = matrix0[target]; k = i; p1 = mtx + (4*i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += 4; } matrix0[target] = sum; } // Search for largest pivot element and calculate // intermediate elements of lower diagonal matrix L. big = 0.0; imax = -1; for (i = j; i < 4; i++) { target = mtx + (4*i) + j; sum = matrix0[target]; k = j; p1 = mtx + (4*i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += 4; } matrix0[target] = sum; // Is this the best pivot so far? if ((temp = row_scale[i] * Math.abs(sum)) >= big) { big = temp; imax = i; } } if (imax < 0) { throw new RuntimeException("Logic error: imax < 0"); } // Is a row exchange necessary? if (j != imax) { // Yes: exchange rows k = 4; p1 = mtx + (4*imax); p2 = mtx + (4*j); while (k-- != 0) { temp = matrix0[p1]; matrix0[p1++] = matrix0[p2]; matrix0[p2++] = temp; } // Record change in scale factor row_scale[imax] = row_scale[j]; } // Record row permutation row_perm[j] = imax; // Is the matrix singular if (matrix0[(mtx + (4*j) + j)] == 0.0) { return false; } // Divide elements of lower diagonal matrix L by pivot if (j != (4-1)) { temp = 1.0 / (matrix0[(mtx + (4*j) + j)]); target = mtx + (4*(j+1)) + j; i = 3 - j; while (i-- != 0) { matrix0[target] *= temp; target += 4; } } } } return true; } /** * Solves a set of linear equations. The input parameters "matrix1", * and "row_perm" come from luDecompostionD4x4 and do not change * here. The parameter "matrix2" is a set of column vectors assembled * into a 4x4 matrix of floating-point values. The procedure takes each * column of "matrix2" in turn and treats it as the right-hand side of the * matrix equation Ax = LUx = b. The solution vector replaces the * original column of the matrix. * * If "matrix2" is the identity matrix, the procedure replaces its contents * with the inverse of the matrix from which "matrix1" was originally * derived. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 44-45. // static void luBacksubstitution(double[] matrix1, int[] row_perm, double[] matrix2) { int i, ii, ip, j, k; int rp; int cv, rv; // rp = row_perm; rp = 0; // For each column vector of matrix2 ... for (k = 0; k < 4; k++) { // cv = &(matrix2[0][k]); cv = k; ii = -1; // Forward substitution for (i = 0; i < 4; i++) { double sum; ip = row_perm[rp+i]; sum = matrix2[cv+4*ip]; matrix2[cv+4*ip] = matrix2[cv+4*i]; if (ii >= 0) { // rv = &(matrix1[i][0]); rv = i*4; for (j = ii; j <= i-1; j++) { sum -= matrix1[rv+j] * matrix2[cv+4*j]; } } else if (sum != 0.0) { ii = i; } matrix2[cv+4*i] = sum; } // Backsubstitution // rv = &(matrix1[3][0]); rv = 3*4; matrix2[cv+4*3] /= matrix1[rv+3]; rv -= 4; matrix2[cv+4*2] = (matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+2]; rv -= 4; matrix2[cv+4*1] = (matrix2[cv+4*1] - matrix1[rv+2] * matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+1]; rv -= 4; matrix2[cv+4*0] = (matrix2[cv+4*0] - matrix1[rv+1] * matrix2[cv+4*1] - matrix1[rv+2] * matrix2[cv+4*2] - matrix1[rv+3] * matrix2[cv+4*3]) / matrix1[rv+0]; } } }