| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The mapping AWT Component -> NEWT [Screen, MonitorDevice]
shall allow generic AWT applications to utilize NEWT's MonitorDevice
information like physical monitor-size and DPI.
- AWT-Component -> NEWT-Display:
- NewtFactoryAWT.createDisplay
- AWT-Component -> NEWT-Screen:
- NewtFactoryAWT.createScreen
- AWT-Component -> NEWT-MonitorMode:
- NewtFactoryAWT.getMonitorDevice
- NewtFactoryAWT.getMonitorDevice
- If OSX, utilizing OSX's AWT Component -> MonitorDevice-Index mapping
- Otherwise using the coverage to identify MonitorDevice
See TestGearsES2GLJPanelAWT 'GetPixelScale',
demonstrating the mapping while pressing 'p' (cached MonitorMode)
and pressing SHIFT-'p' (non-cached MonitorMode).
|
|
|
|
|
|
|
|
|
| |
sed -i 's/javax\.media\.opengl/com\.jogamp\.opengl/g' `grep -Rl "javax\.media\.opengl" src`
sed -i 's/javax\.media\.nativewindow/com\.jogamp\.nativewindow/g' `grep -Rl "javax\.media\.nativewindow" src`
sed -i 's/javax\/media\//com\/jogamp\//g' `grep -Rl "javax/media/" src`
sed -i 's/javax\/media\//com\/jogamp\//g' `grep -Rl "javax/media/" doc`
Manually edited all occurences within make/**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Use float[2] for pixel-scale.
Utilize simple integer rounding:
int-pixel-units = (int) ( int-window-units * pixel-scale + 0.5f )
- Provide minimum and maximum allowed pixel-scale values
to be set by platform, supporting generic pixel-scale validation.
- Remove 'OSXUtil.GetPixelScale(final RectangleImmutable r, final int[] screenIndexOut)',
implementation for all platforms would cause huge redundancy of
Screen and MonitorDevice code (duplication of NEWT).
- instead, add 'float[2] pixelScale' to NEWT's MonitorDevice
- Detect change of pixel-scale and propagate accordingly.
This allows GLCanvas, GLJPanel and NewtCanvasAWT instances
to be dragged between monitor devices w/ different pixel-scale.
- OSX: Handle native triggered reshape events off-thread to avoid EDT congestion
due to locked window when consuming deferred events on EDT.
|
|
|
|
| |
screenIndexOut) ( Part-1 )
|
|
|
|
| |
NSView realization for DummyDrawable
|
|
|
|
| |
jlong in JNI func spec
|
|
|
|
| |
affinity mask setting on all threads of process - Didn't work (disabled)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
crashes the app
The 'magic' MyNSOpenGLContext::dealloc (MacOSXWindowSystemInterface-calayer.m)
of force destroying the underlying CGLContextObj of it's associated
NSOpenGLContext as introduced as a remedy of Bug 691 is plain wrong.
It was added in commit f6e6fab2a7ddfb5c9b614cb072c27ff697629161
to mitigate the experience behavior of delayed GL context
destruction when creating/destroying them multiple times
as exposed in unit test TestGLCanvasAddRemove01SwingAWT.
While this 'hack' worked for some reason on some OSX versions,
it caused a 'access/modify after free' issue exposed under some circumstances
and crashes the application.
The actual culprit of the delayed GL context destruction is different.
The offthread CALayer detachment and hence final destruction
issued on the main-thread is _not_ issued immediately
due to some referencing holding by NSApp.
Issuing an empty event on the NSApp (thread) will wake up the thread
and release claimed resources.
This has been found while realizing that the GL context
are released if the mouse is being moved (duh!).
This issue is also known when triggering stop on the NSApp (NEWT MainThread),
same remedy has been implemented here for a long time.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OSX impl.
Add ScalableSurface interface
- To set pixelScale before and after realization
- To get pixelScale
- Implemented on:
- NEWT Window
- Generic impl. in WindowImpl
- OSX WindowDriver impl.
- Also propagetes pixelScale to parent JAWTWindow if offscreen (NewtCanvasAWT)
- AWT WindowDriver impl.
- JAWTWindow / OSXCalayer
- AWT GLCanvas
- AWT GLJPanel
- NEWTCanvasAWT:
- Propagates NEWT Window's pixelScale to underlying JAWTWindow
- WrappedSurface for pixelScale propagation
using offscreen drawables, i.e. GLJPanel
- Generic helper in SurfaceScaleUtils (nativewindow package)
- Fully implemented on OSX
- Capable to switch pixelScale before realization,
i.e. native-creation, as well as on-the-fly.
- Impl. uses int[2] for pixelScale to support
non-uniform scale.
Test cases:
- com.jogamp.opengl.test.junit.jogl.demos.es2.newt.TestGearsES2NEWT
- com.jogamp.opengl.test.junit.jogl.demos.es2.awt.TestGearsES2AWT
- com.jogamp.opengl.test.junit.jogl.demos.es2.awt.TestGearsES2GLJPanelAWT
- com.jogamp.opengl.test.junit.jogl.demos.es2.newt.TestGearsES2NewtCanvasAWT
- Press 'x' to toggle HiDPI
- Commandline '-pixelScale <value>'
- Added basic auto unit test (setting pre-realization)
|
|
|
|
|
|
|
|
|
|
|
| |
NEWT
To properly convert Top-Left (TL) from/to Bottom-Left (BL) coordinates
we need to utilize the given CGDisplay viewport (TL)
and NSScreen (BL) to perform the y-flip.
This is especially true for the case of having multiple monitors
covering different viewports (mixed resolution).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NEWT Support / Fix JAWT getPixelScale deadlock
- NativeWindow/Surface/NEWT API DOC: Define Coordinate System of Window and Screen
- OSXUtil: Add getPixelScale(..) via Screen index and 'windowOrView'
- JAWTWindow/JAWTUtil.getPixelScale(..): Use pre-fetched AWT GraphicsConfiguration to solve AWT-TreeLock (deadlock)
- [Virtual] Viewport of MonitorDevice and Screen:
- Properly calculate and expose [virtual] viewport in window and pixel units
- OSX Monitor viewports in pixel units are 'reconstructed'
- Window/Viewport to Monitor selection shall be perfomed via window units (unique)
- OSX NEWT Window create/init (native): Use given size and coordinates even in fullscreen mode
Don't override by quering NSScreen coordinates, trust given values.
- Fix test cases, i.e. usage of pixel- and window-units
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refine commit fb57c652fee6be133990cd7afbbd2fdfc084afaa
- NEWT Screen, Monitor, MonitorMode, ..
- All Units are in pixel units, not window units!
- On OSX HiDPI, we report the current scaled monitor resolution,
instead of the native pixel sized.
Need to filter out those, i.e. report only native unscaled resolutions,
since out MonitorMode analogy is per MonitorDevice and not per window!
- Fix usage (one by one) of
- Screen and Monitor viewport usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add HiDPI for AWT GLCanvas w/ OSX CALayer
Core API Change:
To support HiDPI thoroughly in JOGL (NativeWindow, JOGL, NEWT)
we need to separate window- and pixel units.
NativeWindow and NativeSurface now have distinguished
access methods for window units and pixel units.
NativeWindow: Using window units
- getWindowWidth() * NEW Method *
- getWindowHeight() * NEW Method *
- getX(), getY(), ...
NativeSurface: Using pixel units
- getWidth() -> getSurfaceWidth() * RENAMED *
- getHeight() -> getSurfaceHeight() * RENAMED *
GLDrawable: Using pixel units
- getWidth() -> getSurfaceWidth() * RENAMED, aligned w/ NativeSurface *
- getHeight() -> getSurfaceHeight() * RENAMED, aligned w/ NativeSurface *
Above changes also removes API collision w/ other windowing TK,
e.g. AWT's getWidth()/getHeight() in GLCanvas
and the same method names in GLDrawable before this change.
+++
Now preliminary 'working':
- AWT GLCanvas
- AWT GLJPanel
Tested manually on OSX w/ and w/o HiDPI Retina:
java com.jogamp.opengl.test.junit.jogl.demos.es2.awt.TestGearsES2AWT -manual -noanim -time 1000000
java com.jogamp.opengl.test.junit.jogl.demos.es2.awt.TestGearsES2GLJPanelAWT -manual -noanim -time 1000000
+++
TODO:
- NEWT
- Change Window.setSize(..) to use pixel units ?
- OSX HiDPI support
- Testing ..
- API refinement
|
|
|
|
| |
override cached visibleOpacity w/ forced zero when called twice
|
|
|
|
|
|
|
|
|
|
|
| |
*Common_GetJNIEnv()/_ReleaseJNIEnv() Methods and Usage / Check arguments ..
Since we still don't use inter-module native code sharing, align the JNIEnv get/release methods and usage.
Most beneficary here is OSX and the GLDebugMessageHandle,
both managed the JVM handle on their own - removed now.
Also ensuring that *Common_init(..) is called for all modules on all platforms.
|
|
|
|
| |
missing XFree(..) calls and argument checks.
|
|
|
|
| |
redirect stderr to file jogamp_stderr.log (Useful for Applets)
|
|
|
|
|
|
|
|
| |
(NativeWindow GDI / NEWT )
.. this allows using the icon definition of WNDCLASSEX instead of setting them at CreateWindow0(..).
- NativeWindow GDIUtil/RegisteredFactory uses WNDCLASSEX and Small/Big Defailt Icons
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pointer Icons
- Utilizing JOGL's PNG decoder for all icons, if available.
- Application/window icons:
- Providing default application/window icons in 16x16 and 32x32 size
- NewtFactory.setWindowIcons(..) or property 'newt.window.icons' maybe used to override default icons.
- Using icons at application/window instantiation
- Display.PointerIcons:
- NativeWindow Win32 WindowClass no more references a default cursor
in favor of fine grained cursor control [in NEWT]
- Display provides create/destroy methods,
where display destruction also releases open PointerIcon references.
- Window.setPointerIcon(..) sets custom PointerIcon
- Implemented Platforms
- X11
- Windows
- OSX
- Manual Test: TestGearsES2NEWT (Press 'c')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in RegisteredClass; Safe DDT Post/WaitForReady handling and error cases ; ...
Proper OO integration of DDT in RegisteredClass
- DDT is optional to RegisteredClass[Factory],
i.e. NEWT without DDT and DummyWindow with DDT.
- Using native type DummyThreadContext per DDT
passed as DDT handle to java referenced in RegisteredClass
- Passing DDT handle to related native methods,
if not null use DDT - otherwise work on current thread.
The latter impacts CreateDummyWindow0 and DestroyWindow0.
Safe DDT Post/WaitForReady handling and error cases ; ...
- Wait until command it complete using a 3s timeout
- Terminate thread if errors occur and throw an exception
+++
Discussion: DDT Native Implementation
Due to original code, the DDT is implemented in native code.
Usually we should favor running the DDT from a java thread.
However, since it's main purpose is _not_ to interact w/ java
and the native implementation has less footprint (performance and memory)
we shall be OK w/ it for now - as long the implementation IS SAFE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Cleanup Commit e9c711a86aa05f4f24c69972532833f5a98911a3:
- Fix while loop in SendCloseMessage (native)
- static 'threadid' must be volatile
- Whitespace
- Redundancy
- CreateDummyWindow
- Scope (java, move JNI funcs back to private)
- Remove [invalid] pointer usage (native)
- ThreadParam's threadReady and hWndPtr shall not be pointers - invalid
- No need to use a threadReady pointer.
- Validate threadid (native)
TODO:
- Make 'native dispatch thread' optional
- Store 'native dispatch thread' in window class
|
|
|
|
| |
try to retrieve window names
|
| |
|
|
|
|
|
|
|
| |
613e33ee8ffc1f2b9c5db1e1b5bb5253a159ed6d
Commit 613e33ee8ffc1f2b9c5db1e1b5bb5253a159ed6d introduced 'memcpy' usage in Xmisc.c which could create a GLIBC > 2.4 dependency.
Include GlueGen's glibc-compat-symbols.h to remove such dependency.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
X11GLXGraphicsConfiguration.GLXFBConfig2GLCapabilities(..)
X11GLXGraphicsConfiguration.GLXFBConfig2GLCapabilities(..) ran over all FB configs and for each it grabbed
native config values separately. Fetching them in bulk mode saves around 7% of this function's cost.
Also reuse XRenderPictFormat instance for 'XRenderDirectFormat XRenderFindVisualFormat(..)' call,
saving a few NIO creation cycles w/ StructAccessor.
Biggest savior is X11GLXGraphicsConfigurationFactory.chooseGraphicsConfigurationFBConfig()'s
fast path w/o chooser and usable 1st FBConfig. Here we only issue 'GLXFBConfig2GLCapabilities(..)'
on the first valid entry.
Test w/ 50 X11GLXGraphicsConfigurationFactory.chooseGraphicsConfigurationFBConfig() invocations:
- pre change: 1.708 ms
- post change: 650 ms
Time is no spent almost solely on native glXChooseFBConfig (546ms).
|
|
|
|
| |
via onMain && ( isOnMain || 0 < delay )
|
|
|
|
|
|
|
|
| |
component.
Completes commit 3b02a219b1b9e446e87df1beb7da4266f74824fa
See unit test: TestBug816OSXCALayerPos03AWT
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A once visible CALayer (GLCanvas) must be able to become invisible w/o destruction,
e.g. as required by CardLayout's switching cards.
See unit test for Bug 532: 'TestAWTCardLayoutAnimatorStartStopBug532'
Out native 'fixCALayerLayout(..)' takes the visible state as tracked by JAWTWindow's ComponentListener
and sets our CALayer (root and sub) hidden state accordingly.
Now MacOSXJAWTWindow's layoutSurfaceLayerImpl(..) always calls down to 'fixCALayerLayout(..)'
due to update the visibility state.
|
|
|
|
| |
JAWT_OSX_CALAYER_QUIRK_LAYOUT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
position from AWT component's location on screen. Track fixedFrame size of root CALayer; Add Split layout to unit test, add [manual] Applet tests.
- Fix JAWTWindow's getLocationOnScreenNonBlocking()
Skip JRootPane while traversing up to root Container.
JRootPane would duplicate the top-level container's offset (Window insets).
- Derive CALayer position from AWT component's location on screen. Add Split layout to unit test, add [manual] Applet tests.
AWT >= 7u40:
- AWT position is top-left w/ insets, where CALayer position is bottom/left from root CALayer w/o insets.
- Use getLocationOnScreenNonBlocking() to get location-on-screen w/o insets.
- Native code: flip origin
AWT < 7u40 still uses fixed position 0/0 for root and sub layer.
- Track fixedFrame size of root CALayer - MyCALayer:
- Override layoutSublayers to validate root and sub-layer pos/size
- Override setFrame to use fixedFrame, if set (similar to MyNSOpenGLLayer)
- Add Split layout to unit test, add [manual] Applet tests.
- Thx to 'jimthev' and 'Manu' for providing Applet unit tests
|
|
|
|
|
|
| |
as well)
Regression of commit 4b5435c68c3f12d62dadb395957362eceacfb25c
|
|
|
|
|
|
|
|
|
| |
JAWT_OSX_CALAYER_QUIRK_SIZE and JAWT_OSX_CALAYER_QUIRK_POSITION.
- Provide quirk bits for OSX CALayer depending on used JVM/AWT
and act accordingly.
- TestBug816OSXCALayerPosAWT: Add resize by frame
|
| |
|
|
|
|
|
|
|
| |
(dummy) and NEWT
Free the colormap at WindowDestroy, which we have created at WindowCreate w/ AllocNone.
Due to the fact we used 'AllocNone' the leak is minimal though ..
|
|
|
|
|
|
|
|
| |
when calling wglCreateContextAttribsARB (Windows)
See discussion at
https://jogamp.org/bugzilla/show_bug.cgi?id=520
https://jogamp.org/bugzilla/show_bug.cgi?id=706
|
|
|
|
| |
through errorHandlerQuiet state.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Main-Thread
Previous code created, set and unset the root CALayer on the current thread,
which lead to a very delayed destruction of the root CALayer w/.
With Java7 this lead to a possible resource starvation in certain situations,
since Java7 uses an CAOpenGLLayer.
Similar w/ f354fb204d8973453c538dda78a2c82c87be61dc,
creation, set and unset is operated on main-thread.
|
| |
|
|
|
|
| |
detach; Add RunLater0(..)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
896e8b021b39e9415040a57a1d540d7d24b02db1): Run on main-thread w/o blocking ; Misc Changes
Commit 896e8b021b39e9415040a57a1d540d7d24b02db1 moved all native CALayer calls to the current thread
to avoid deadlocks.
Even though this seemed to be fine at least resource GC (release/dealloc calls) were issued
very late in time, probably due to multithreading synchronization of JAWT and/or OSX API.
Example: Our 'TestAddRemove01GLCanvasSwingAWT' test didn't freed CALayer resources incl. GL ctx
when destroying the objects (AWT Frame, GLCanvas, ..), leading to resource starvation .. eventually.
Remedy is a compromise of behavior before commit 896e8b021b39e9415040a57a1d540d7d24b02db1
and that commit, i.e. to run CALayer lifecycle methods on main-thread, but do not block!
The careful part within MacOSXCGLContext.associateDrawable(..) performs the following block on main-thread:
- lock the context
- create NSOpenGLLayer (incl. it's own shared GL context and the DisplayLink)
- attach NSOpenGLLayer to root CALayer
- unlock the context
Due to the GL ctx locking, this async offthread operation is safe within our course of operations.
Details:
- NSOpenGLContext
- Context and CVDisplayLink creation at init
- Call [ctx update] if texture/frame size changed
- 'waitUntilRenderSignal' uses default TO value if given TO is 0 to avoid deadlocks
+++
Misc Changes:
- Fix object type detection: isMemberOfClass -> isKindOfClass
- OSXUtil_isNSView0
OSXUtil_isNSWindow0,
CGL_isNSOpenGLPixelBuffer
- MacOSXCGLDrawable/MacOSXPbufferCGLDrawable: remove getNSViewHandle() method.
MacOSXCGLContext uses common code to detect nature of the drawable handle.
- MacOSXCGLContext/CALayer: Use safe screenVSyncTimeout values, never 0 to avoid deadlock!
- JAWTWindow.invalidate: Call detachSurfaceLayer() if not done yet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RunOnMainThread(waitUntilDone:=true,..) can deadlock the main-thread if called from AWT-EDT,
since the main-thread may call back to AWT-EDT while injecting a new main-thread task.
This patch revises all RunOnMainThread CALayer usage, resulting in only one required left:
- OSXUtil.AddCASublayer() w/ waitUntilDone:=false
Hence the CALayer code has no more potential to deadlock main-thread/AWT-EDT.
OSXUtil.AddCASublayer() must be performed on main-thread, otherwise the
CALayer attachment will fail - no visible rendering result.
+++
Note: A good trigger to test this deadlock is to magnify/zoom
the OSX desktop (click background + ctrl-mouse_wheel)
before running some unit tests.
TestGLCanvasAWTActionDeadlock01AWT and TestAddRemove02GLWindowNewtCanvasAWT
also have the potential to trigger the mentioned deadlock.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Fix CALayer animation:
- All CALayer animations are set to nil via overriding 'actionForKey'
- Fix CALayer pos/size bug:
- Fix root and sub CALayer position to 0/0 and size on the main-thread w/o blocking.
- If the sub CALayer implements the Objective-C NativeWindow protocol NWDedicatedSize (e.g. JOGL's MyNSOpenGLLayer),
the dedicated size is passed to the layer, which propagates it appropriately.
- On OSX/Java7 our root CALayer's frame position and size gets corrupted by its NSView,
hence we have created the NWDedicatedSize protocol.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
where our CALayer is moved out of the visible area
- same erroneous behavior for GLCanvas and NewtCanvasAWT
- sized-frame: Set framesize and validate() it
- sized-component: Set component preferred size and call frame.pack()
- added workaround 'OffscreenLayerSurface.layoutSurfaceLayer()' to fix CALayer size, which snaps for:
- OK initial size before setVisible: sized-frame and sized-component
- OK resize w/ sized-frame
- OK manual frame resize
- Invisible: w/ sized-component after setVisible()
++
- CALayer-Sublayer (GL) has additional retain/release when added/removed
to be on safe side.
|
|
|
|
| |
NativeWindow-JAWT: Remove c.fixup.jawt.version.macosx (redundant, libjawt.dylib is rpath'ed always)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
main-thread deadlock'ed due to locked shared context
NSOpenGLLayer::openGLContextForPixelFormat(..) is performed on main-thread at 1st NSOpenGLLayer display method.
This happened irregulary, i.e. sometimes (T0) right after NSOpenGLLayer creation and attachSurfaceLayer()/AddCASublayer(..),
sometimes later (T1).
NSOpenGLLayer::openGLContextForPixelFormat(..) uses the passed shared user context.
The shared user context is locked at NSOpenGLLayer's creation (T0) and if performed at this early time
the call deadlocks due to pthread_mutex wait for the shared user context.
This fix performs NSOpenGLLayer creation and layer attachment while the shared user context
is kept unlocked and enforces NSOpenGLLayer display and hence NSOpenGLLayer::openGLContextForPixelFormat(..).
Added CGL.setNSOpenGLLayerEnabled(..) to enable/disable NSOpenGLLayer - currently not used.
- Passed AddRemove tests for GLCanvas/Swing and GLWindow/NewtCanvasAWT w/ 100 loops on Java6 and Java7 on OSX.
- Passed Instruments Leaks test w/ 10 loops on Java6 and Java7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'CGL.releaseNSOpenGLLayer' triggers release - but very late w/ AWT usage.
OSXUtil_RemoveCASublayer0's added '[subLayer release]' in commit f6e6fab2a7ddfb5c9b614cb072c27ff697629161
is wrong, since 'CGL.releaseNSOpenGLLayer' actually does trigger it's release.
This was not seen w/ AWT tests, since it happens very later.
A NewtCanvasAWT test disclosed this error -> removed that extra release call.
The culprit for the late release w/ AWT usage was CGL.createNSOpenGLLayer's call in the current thread.
Moving it to the Main-Thread fixed the problem.
All CALayer lifecycle calls are issued on the Main-Thread now.
NSOpenGLLayer's CVDisplayLink OpenGL fitting via 'CVDisplayLinkSetCurrentCGDisplayFromOpenGLContext'
is now performed at it's context creation in 'NSOpenGLLayer::openGLContextForPixelFormat'.
The 'extra' release of the NSOpenGLLayer's NSOpenGLContext as introduced in commit f6e6fab2a7ddfb5c9b614cb072c27ff697629161
is still valid.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Layers and native GL-Context are _not_ Released ; Java Side wait for Main-Thread
- Fix Bug 690: Occasional Freeze on CVDisplayLinkStop
- NSOpenGLLayer.disableAnimation() shall not claim the renderLock mutex,
since the CVDisplayLink callback could be waiting for the lock.
This waiting callback could freeze the call to CVDisplayLinkStop.
- Fix Bug 691: Layers and native GL-Context are _not_ Released
- Following proper release cycle:
Context unrealized:
- JAWTWindow.detachSurfaceLayer() -> OSXUtil.RemoveCASublayer(..)
- CGL.releaseNSOpenGLLayer(..)
JAWTWindow.destroy()
- MacOSXJAWTWindow.UnsetJAWTRootSurfaceLayer(..)
- OSXUtil.DestroyCALayer(..)
- 'Magic' CALayer release calls (w/o manual retain beforehand) at:
- OSXUtil.RemoveCASublayer(..): [subLayer release]
- MacOSXJAWTWindow.UnsetJAWTRootSurfaceLayer(..): [rootLayer release]
- OSXUtil.DestroyCALayer(..): [rootLayer release]
- 'Magic' NSOpenGLLayer's NSOpenGLContext dealloc:
- [NSOpenGLContext clearDrawable]
- CGLDestroyContext( [NSOpenGLContext CGLContextObj] )
- Java Side wait for Main-Thread
- Waiting for the delegated Main-Thread on the Java side eases debugging
and won't block the Main-Thread in native code.
- Utilizing this for all CALayer calls
Test case: TestGLCanvasAddRemove01SwingAWT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Changes allowing re-association (incl. null) of GLContext/GLDrawable:
- GLAutoDrawable: Refine API doc 'setContext(..)'
- GLContext: Refine API doc: 'setGLDrawable(..)' 'getGLDrawable()'
- GLContextImpl.setGLDrawable(): Handle null drawable
- GLAutoDrawableDelegate/GLAutoDrawableBase: Allow null GLContext
- GLDrawableHelper.switchContext(..)/recreateGLDrawable(): Balance GLContext.setGLDrawable(..) calls
- New GLEventListenerState, holding state vector [GLEventListener, GLContext, .. ]
impl. relocation of all components from/to GLAutoDrawable.
- GLDrawableUtil
- Using GLEventListenerState for swapGLContextAndAllGLEventListener(..)
+++
NEWT Window*:
- getDisplayHandle() is 'final', no more 'shortcut' code allowed
due to re-association incl. display handle.
- close*:
- close config's device (was missing)
- null config
+++
Changes allowing reconfig of Display handle as required
to re-associate pre-existing GLContext to a 'window':
- AbstractGraphicsDevice: Add isHandleOwner() / clearHandleOwner()
- Impl. in X11GraphicsDevice and EGLGraphicsDevice, NOP in DefaultGraphicsDevice
- DefaultGraphicsConfiguration add 'setScreen(..)'
- MutableGraphicsConfiguration
- Make DefaultGraphicsConfiguration.setScreen(..) public
- NativeWindowFactory add 'createScreen(String type, AbstractGraphicsDevice device, int screen)'
- Refactored from SWTAccessor
- NativeWindow x11ErrorHandler: Dump Stack Trace in DEBUG mode, always.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Windows: Child window is not translucent at all
- X11: Child window is translucent to parent's background,
however - parents content is _not_ 'composed in'.
- TODO: Find whether there is a solution or not.
- Note: The child window does not change it's rel. position
if parent moves! This is a feature, since we don't
have impl. a layout.
|