| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
when reconfigured.
JOGL AWT Components, e.g. GLCanvas or NewtCanvasAWT,
may be reconfigured by moving them to another display/monitor
or by other means.
Since AWT has no means to notify the user code via an event,
JOGL components usually determine the reconfiguration via
the override 'GraphicsConfiguration getGraphicsConfiguration()'.
GLCanvas is sensible to this reconfiguration,
however its AWTGraphicsConfiguration (owned via JAWTWindow)
is not changed.
Implement reconfiguration detection for all JOGL AWT Components
and update the AWTGraphicsConfiguration if required.
For now, constraint reconfiguration on GraphicsDevice change
as currently implemented in GLCanvas.
The updated AWTGraphicsConfiguration allows using the updated
GraphicsDevice as it might be required for further information,
e.g. pixel-scale on OSX.
|
|
|
|
|
|
|
| |
Fixes libnewt.so: undefined symbol: bcm_host_init"
when the NEWT Screen is initialized before OpenGL ES.
Signed-off-by: Xerxes Rånby <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
creation
- Refines commit a566a1b5a2828b38f1a5c4dfb215ab9b03e7acaa
- Issue clamping at 'canCreateNativeImpl()' instead of 'createNativeImpl()',
allowing to define clamped position and size before utilizing these values
at caller 'createNative()'.
Otherwise a clamped position would cause to wait for the original position
after 'createNativeImpl()'.
This also allows to remove the positionChanged(..) / sizeChanged(..) calls in
the native CreateWindow0() implementation.
|
|
|
|
| |
in DisplayDriver.moveActivePointerIcon(..) call
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
out-of screen window positions on BCM VC IV hardware
Out of screen window positions on BCM VC IV hardware cause:
- Misalignment of self-rendered mouse-pointer / window
due to window-offset.
- Artifacts when moving the mouse pointer partially
out of screen.
We still need to add the window position to rel. mouse-pointer position.
|
|
|
|
| |
commit c156343fec33ceea7f238b9766a9f4985fb92687)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adopt to bug 1147, commit 2c88b6dfd4eb7e2cd9a50fa48e08ecafc980931a.
Using the native unique deviceID makes monitor identification more robust.
This also allows us simplify
displayID -> NSScreen-idx -> MonitorDevice
into
displayID -> MonitorDevice
and to survive a primary monitor change.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ids, ..
RandR 1.3 XRRSetCrtcConfig related:
- X11RandR13 now sets the new screen size via XRRSetScreenSize(..)
- X11RandR13 now propagates RRScreenChangeNotify events
via XRRUpdateConfiguration(event).
Hence reporting virtual desktop size now.
- X11RandR13 now disables the CRTC before XRRSetCrtcConfig(..)
to avoid invalid configuration (see spec)!
RandR 1.3 General:
- Uses unique id named instead of unstable index
for modes and CRTC.
This allows proper identification even for 'swizzled' devices.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Support added for
- Windows
- X11 XRandR 1.3
- OSX
Note: Our whole MonitorMode association handling is currently _not_ dynamic.
- only on Windows we actually use native unique ID,
which might not change (adapter and monitor idx)
- On OSX and X11 we simply use indices,
but if monitor setup changes - they refer to different instances.
In case it is desired to cover dynamic monitor setup change,
we need to address this issue in a new bug entry.
|
|
|
|
| |
IDX_MONITOR_DEVICE_VIEWPORT needed to be updated!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The mapping AWT Component -> NEWT [Screen, MonitorDevice]
shall allow generic AWT applications to utilize NEWT's MonitorDevice
information like physical monitor-size and DPI.
- AWT-Component -> NEWT-Display:
- NewtFactoryAWT.createDisplay
- AWT-Component -> NEWT-Screen:
- NewtFactoryAWT.createScreen
- AWT-Component -> NEWT-MonitorMode:
- NewtFactoryAWT.getMonitorDevice
- NewtFactoryAWT.getMonitorDevice
- If OSX, utilizing OSX's AWT Component -> MonitorDevice-Index mapping
- Otherwise using the coverage to identify MonitorDevice
See TestGearsES2GLJPanelAWT 'GetPixelScale',
demonstrating the mapping while pressing 'p' (cached MonitorMode)
and pressing SHIFT-'p' (non-cached MonitorMode).
|
|
|
|
| |
[query|set]CurrentMode(..) if !screen.isNativeValid()
|
|
|
|
|
|
|
| |
(ArrayHashSet<MonitorDevice> instance erroneously added)
Revert useless ArrayHashSet<MonitorDevice> instance erroneously
added in commit 559ecad2a2387ba0aa34ce9e35ca8a2c5a31e655.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Iterate-over and identify all adapter:monitor. (Bug 1129)
- Identify cloned devices (fully covered)
- MonitorDevice gets 'isCloned()' to identify whether
it is a cloned device, i.e. fully covered by another monitor.
This detection may happen natively but will always performed
platform agnostic.
- getMainMonitor(..) now exclude 'cloned' devices
- Windows: Iterate-over and identify all adapter:monitor
- Since we also list cloned monitor,
we need to iterate over all adapter and all it's monitor-devices.
- The native monitor-id is now defined as: ( adapter-idx << 8 ) | monitor-idx.
- Bug 1129 <- listed under this bug entry for convenience
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On Windows, one must read the monitor's EDID data as stored in the registry,
no 'simple' API works otherwise.
The proper way requires utilizing the Windows Setup-API.
This code is inspired by Ofek Shilon's code and blog post:
<http://ofekshilon.com/2014/06/19/reading-specific-monitor-dimensions/>
See: function 'NewtEDID_GetMonitorSizeFromEDIDByModelName'
In contrast to Ofek's code, function 'NewtEDID_GetMonitorSizeFromEDIDByDevice'
uses the proper link from
DISPLAY_DEVICE.DeviceID -> SP_DEVICE_INTERFACE_DETAIL_DATA.DevicePath,
where DISPLAY_DEVICE.DeviceID is the monitor's enumeration via:
EnumDisplayDevices(adapterName, monitor_idx, &ddMon, EDD_GET_DEVICE_INTERFACE_NAME);
Hence the path to the registry-entry is well determined instead of just comparing
the monitor's model name.
|
|
|
|
|
|
|
|
|
| |
sed -i 's/javax\.media\.opengl/com\.jogamp\.opengl/g' `grep -Rl "javax\.media\.opengl" src`
sed -i 's/javax\.media\.nativewindow/com\.jogamp\.nativewindow/g' `grep -Rl "javax\.media\.nativewindow" src`
sed -i 's/javax\/media\//com\/jogamp\//g' `grep -Rl "javax/media/" src`
sed -i 's/javax\/media\//com\/jogamp\//g' `grep -Rl "javax/media/" doc`
Manually edited all occurences within make/**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Use float[2] for pixel-scale.
Utilize simple integer rounding:
int-pixel-units = (int) ( int-window-units * pixel-scale + 0.5f )
- Provide minimum and maximum allowed pixel-scale values
to be set by platform, supporting generic pixel-scale validation.
- Remove 'OSXUtil.GetPixelScale(final RectangleImmutable r, final int[] screenIndexOut)',
implementation for all platforms would cause huge redundancy of
Screen and MonitorDevice code (duplication of NEWT).
- instead, add 'float[2] pixelScale' to NEWT's MonitorDevice
- Detect change of pixel-scale and propagate accordingly.
This allows GLCanvas, GLJPanel and NewtCanvasAWT instances
to be dragged between monitor devices w/ different pixel-scale.
- OSX: Handle native triggered reshape events off-thread to avoid EDT congestion
due to locked window when consuming deferred events on EDT.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
EGLDrawableFactory: Validate static EGL func-ptr, probe EGL/ES2 first
- Move EGL to public package
jogamp.opengl.egl.EGL -> com.jogamp.opengl.egl.EGL
- EGLDrawableFactory
- Validate static EGL func-ptr against EGL/ES2,
ignoring EGL/[ES|GL] collisions w/ diff. native EGL implementations
due to static EGL usage.
- Probe EGL/ES2 first
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'Surfaceless Upstream Surface'
Preparation for Bug 1068: GLContext creation and makeCurrent without default framebuffer
- Unify EGL surface related code in EGLSurface
- EGLWrappedSurface -> EGLSurface,
which utilizes a more straight forward
foreign upstream surface (X11, GDI, ..) to EGL mapping.
This also addresses Bug 1096, i.e. EGL Cleanup.
- Add notion of 'Surfaceless Upstream Surface'
- Add surfaceless 'fake' upstream surface hooks:
- EGLUpstreamSurfacelessHook
- X11UpstreamSurfacelessHook
Utilizing the ProxySurface option bit 'OPT_UPSTREAM_SURFACELESS'
signaling usage of 'no surface'.
- Add GLDrawableFactoryImpl.createSurfacelessImpl(..)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DirectDataBufferInt/BufferedImageInt
- PixelFormat
Refine definition allowing complete format conversion by its attributes
instead of static 'knowledge'.
- PixelFormat has_a *new* PixelFormat.Composition
- PixelFormat.Composition contains all pixel component layout
information as required for inspection and conversion.
Component names are enumerated via PixelFormat.CType.
- PixelFormatUtil.convert(..) utilizes generic conversion
based on PixelFormat.Composition rather static type mapping.
However, a int32 RGBA static conversion is still supported for performance.
Utilizes Bitstream for varying pixel component bit-width.
- Complete w/ hashCode() and equals(..)
- GLPixelBuffer
- Take 'pack' mode into account when determine GLPixelAttributes,
i.e. on GLES pack=true (e.g. glReadPixel) only RGBA is guaranteed to work.
Hence querying GLPixelAttributes requires the GLProfile, PixelFormat and pack mode.
- Complete GLPixelAttributes conversions from PixelFormat or GL format/data-type,
while taking GL data-type into account, as well as pack-mode.
- Complete w/ hashCode() and equals(..)
- SingletonGLPixelBufferProvider queries singleton GLPixelBuffer via
- PixelFormat.Composition hostPixelComp,
- GLPixelAttributes pixelAttributes,
- boolean pack
which comprise a unique key, allowing the implementation to utilize
a hash map. This is implemented in AWTSingletonGLPixelBufferProvider.
This allows distinct singleton GLPixelBuffer for different
host PixelFormat (conversion) and GLPixelAttributes (depending on GLProfile).
- Removes field 'componentCount' which was 'hacked in' to pass
information about an optional host memory layout.
Implementations utilizing conversion, e.g. AWTGLPixelBuffer,
can implement GLPixelBufferProvider's
'PixelFormat.Composition getHostPixelComp(final GLProfile glp, final int componentCount)'
and manage such implementation details, see use-case GLJPanel.
- DirectDataBufferInt/BufferedImageInt: Expose underlying NIO ByteBuffer
- AWTMisc.createCursor(..) uses DirectDataBufferInt.BufferedImageInt exposed
NIO ByteBuffer, allowing to use generic PixelFormatUtil.convert(..).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OSX ([R] -> [B])
Following mistakes were made in native PixelFormat
for PointerIcon and WindowIcon:
PointerIcon:
X11: RGBA8888 -> BGRA8888
OSX: BGRA8888 -> RGBA8888
WindowIcon:
OSX: BGRA8888 -> RGBA8888
Test case: TestWindowAndPointerIconNEWT
(requires visual validation)
+++
Summary:
PointerIcon:
BGRA8888: X11, Win32
RGBA8888: OSX
WindowIcon:
BGRA8888: X11, Win32
RGBA8888: OSX
+++
Reported by 'LT'
<http://forum.jogamp.org/Mac-OSX-newt-pointer-and-window-icon-displays-incorrectly-tp4033294.html>
|
|
|
|
| |
calcVirtualScreenOriginAndSize(..) method (duplicate pixel unit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GLAutoDrawable processing [part-3]
Add GLAnimatorControl.UncaughtGLAnimatorExceptionHandler interface to optionally handle
uncaught exception within an animator thread by the user.
Implementation also requires to flush all enqueued GLRunnable instances
via GLAutoDrawable.invoked(..) in case such exception occurs.
Hence 'GLAutoDrawable.flushGLRunnables()' has been added.
Only subsequent exceptions, which cannot be thrown are dumped to System.stderr.
+++
Handling of exceptions during dispose()
Exception in NEWT's disposeGL*() are also caught and re-thrown after
the NEWT window has been destroyed in WindowImpl.destroyAction:
- GLEventListener.dispose(..)
- GLDrawableHelper.disposeAllGLEventListener(..)
- GLDrawableHelper.disposeGL(..)
- GLAutoDrawableBase.destroyImplInLock(..)
- GLWindow.GLLifecycleHook.destroyActionInLock(..)
- WindowImpl.destroyAction on NEWT-EDT
- WindowImpl.destroy
Further more, exceptions occuring in native windowing toolkit triggered destroy()
are ignored:
- GLAutoDrawableBase.defaultWindowDestroyNotifyOp(..)
It has to be seen whether such exception handling for
dispose() shall be added to AWT/SWT.
+++
TestGLException01NEWT covers all GLEventListener exception cases
on-thread and off-thread (via animator).
+++
|
| |
|
|
|
|
| |
Adapt to GlueGen commit f5c48efcf546ba4e08e197ccced6df83b57e1755
|
| |
|
|
|
|
|
|
|
| |
- remove duplicate code in branch
- Use Type.valueOf(primitive)
- Don't use array.toString() directly
- remove dead code
|
| |
|
| |
|
| |
|
|
|
|
| |
assignment-or, replace by plain or
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
or due branching)
- AWT TextRenderer: Add throw new InternalError("fontRenderContext never initialized!"); FIXME!
- GLContextImpl.hasFBOImpl(): Fix serious NPE issue if extCache is null
- GLDrawableFactoryImpl.createOffscreenDrawableImpl(..):
- Fix NPE issue w/ null drawable
- Fix resetting GammaRamp by ensuring originalGammaRamp will be set at 1st setGammaRamp(..)
- AndroidGLMediaPlayerAPI14: Fix NPE: Use already resolved local referenced
- EGLDrawableFactory: Fix NPE: Only operate on non null surface!
- ALAudioSink.dequeueBuffer(..): Only resolve releasedBuffer elements if not null
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
c47bc86ae2ee268a1f38c5580d11f93d7f8d6e74)
- Change non static accesses to static members using declaring type
- Change indirect accesses to static members to direct accesses (accesses through subtypes)
- Add final modifier to private fields
- Add final modifier to method parameters
- Add final modifier to local variables
- Remove unnecessary casts
- Remove unnecessary '$NON-NLS$' tags
- Remove trailing white spaces on all lines
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
DisplayImpl.runOnEDTIfAvail(..) issues EDTUtil.start()
while holding it's object-lock - if the EDT is not running,
then invokes the given task.
EDTUtil.start() impl. holds it's own edt-lock
while starting, then releases it's edt-lock while issuing a null-task.
If another thread injects a blocking task right in-between
which also acquires the display's object-lock it deadlocks.
Simply remove issuing the null-task, so EDTUtil.start()
can return immediatly (releasing edt-lock)
and allowing DisplayImpl.runOnEDTIfAvail(..)
also to release it's object-lock.
The other threads task then can be executed,
where the 'starting task' would come second - which is OK,
even though a rare occasion.
Above situation was triggered via AWT/NEWT reparenting w/ forced recreation
via TestParenting01dAWT.
+++
The null-task at EDTUtil.start() was remaining code to ensure
that the EDT completed starting, which is redundant.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
crashes the app
The 'magic' MyNSOpenGLContext::dealloc (MacOSXWindowSystemInterface-calayer.m)
of force destroying the underlying CGLContextObj of it's associated
NSOpenGLContext as introduced as a remedy of Bug 691 is plain wrong.
It was added in commit f6e6fab2a7ddfb5c9b614cb072c27ff697629161
to mitigate the experience behavior of delayed GL context
destruction when creating/destroying them multiple times
as exposed in unit test TestGLCanvasAddRemove01SwingAWT.
While this 'hack' worked for some reason on some OSX versions,
it caused a 'access/modify after free' issue exposed under some circumstances
and crashes the application.
The actual culprit of the delayed GL context destruction is different.
The offthread CALayer detachment and hence final destruction
issued on the main-thread is _not_ issued immediately
due to some referencing holding by NSApp.
Issuing an empty event on the NSApp (thread) will wake up the thread
and release claimed resources.
This has been found while realizing that the GL context
are released if the mouse is being moved (duh!).
This issue is also known when triggering stop on the NSApp (NEWT MainThread),
same remedy has been implemented here for a long time.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
surface DPI ; Add NEWT Window.getPixelsPerMM(..) to query surface DPI
With HiDPI and surface scale, we need knowledge of the native surface's pixel-scale
matching the monitor's pixel-per-millimeter value.
Preserving the queried native pixel-scale and exposing it via
ScalableSurface.getNativeSurfaceScale(..) to compute surface DPI.
Add NEWT Window.getPixelsPerMM(..) to query surface DPI.
Surface DPI is demonstrated in GraphUI's GPUUISceneGLListener0A .. and TestRulerNEWT01, etc ..
|
|
|
|
|
|
|
|
| |
Remove HiDPI pixel- from/to window-unit conversion and getter methods:
Rectangle HiDPI pixel- from/to window-units are erroneous in case of multiple monitor setup where a mixed pixel-scale exist,
since the methods didn't take the monitor viewport and each of it's pixel-scale into account (expensive).
Remove deprecated reparentWindow(..) methods.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
entry, fixed NewtCanvasAWT use-case
We require the requested pixelScale in NewtCanvasAWT if the NEWT window (child)
is not yet realized, so the JAWTWindow can receive the request,
since realized/current pixelScale is still 1.
Remove return value (requested pixel scale):
- public int[] setSurfaceScale(final int[] result, final int[] pixelScale);
+ public void setSurfaceScale(final int[] pixelScale);
Add API hook to query requested pixel scale:
+ int[] getRequestedSurfaceScale(final int[] result);
Unique name for get[Current]*:
- public int[] getSurfaceScale(final int[] result);
+ public int[] getCurrentSurfaceScale(final int[] result);
|
|
|
|
|
|
|
|
|
|
|
|
| |
which also fixed JAWTWindow getSurfaceScale() issue on Windows
Let setSurfaceScale(..) return the validated requested values
and getSurfaceScale(..) always the current values.
This removes complication and solves a bug w/ JAWTWindow on Windows,
where we used 'drawable' as an indicator for 'previous locked' state.
The latter is not true since on Windows 'drawable' is set to null in unlock,
getWindowHandle() should be taken instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OSX impl.
Add ScalableSurface interface
- To set pixelScale before and after realization
- To get pixelScale
- Implemented on:
- NEWT Window
- Generic impl. in WindowImpl
- OSX WindowDriver impl.
- Also propagetes pixelScale to parent JAWTWindow if offscreen (NewtCanvasAWT)
- AWT WindowDriver impl.
- JAWTWindow / OSXCalayer
- AWT GLCanvas
- AWT GLJPanel
- NEWTCanvasAWT:
- Propagates NEWT Window's pixelScale to underlying JAWTWindow
- WrappedSurface for pixelScale propagation
using offscreen drawables, i.e. GLJPanel
- Generic helper in SurfaceScaleUtils (nativewindow package)
- Fully implemented on OSX
- Capable to switch pixelScale before realization,
i.e. native-creation, as well as on-the-fly.
- Impl. uses int[2] for pixelScale to support
non-uniform scale.
Test cases:
- com.jogamp.opengl.test.junit.jogl.demos.es2.newt.TestGearsES2NEWT
- com.jogamp.opengl.test.junit.jogl.demos.es2.awt.TestGearsES2AWT
- com.jogamp.opengl.test.junit.jogl.demos.es2.awt.TestGearsES2GLJPanelAWT
- com.jogamp.opengl.test.junit.jogl.demos.es2.newt.TestGearsES2NewtCanvasAWT
- Press 'x' to toggle HiDPI
- Commandline '-pixelScale <value>'
- Added basic auto unit test (setting pre-realization)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NativeWindow; [AWT|SWT]NewtEventFactory use NativeSurfaceHolder as source, fixes pixel unit conversion
- Add new NativeSurfaceHolder interface to GLDrawable and NativeWindow, allowing NativeSurface access (pixel unit conversion)
A NativeSurfaceHolder is e.g.:
- NativeWindow (is-a)
- NEWT [GL]Window
- GLDrawable (has-a)
- [AWT|SWT]GLCanvas
- [AWT|SWT]NewtEventFactory use NativeSurfaceHolder as source, fixes pixel unit conversion
|
|
|
|
| |
AWTNewtEventFactory of commit 8b255eb303bba045b4eb087da1d1cb33b2e89e96
|
|
|
|
| |
AWTNewtEventFactory (e.g. for NewtCanvasAWT)
|
|
|
|
|
|
|
|
|
|
| |
56d60b36798fa8dae48bf2aa5e2de6f3178ab0d1
Fix regression of commit 56d60b36798fa8dae48bf2aa5e2de6f3178ab0d1:
createWindow(..) was issuing sizeChanged(..) to ensure size notification,
however - the offscreen case used the dummy size 64x64.
Fix issues the notifications in caller w/ true size.
|
|
|
|
|
|
| |
'Rotated Viewport window-units' / Refine API doc in MonitorModeProps
Regression of commit 56d60b36798fa8dae48bf2aa5e2de6f3178ab0d1
|
|
|
|
|
|
|
|
|
|
|
| |
NativeWindow, i.e. getWindow[Width|Height]() -> get[Width|Height]()
We have distinguished pixel- and window units in commit f9a00b91dcd146c72a50237b62270f33bd0da98e
and introduced NativeWindow.getWindow[Width|Height]() and NativeSurface.getSurface[Width|Height]().
To have a unique naming scheme, we could rename all method using 'Window',
but for simplicity and since there will be no 'semantic override'
just use the simple version.
|
|
|
|
|
|
|
|
|
|
|
|
| |
after) / Bug 741 HiDPI: Update pixelScale after monitor mode change
This seems to be a bug within QUARTZ .. hence this is a workaround
Monitor-Mode-Changed Notification:
- In case the window is not in fullscreen,
render it temporary invisible until the mode change is completed.
- Also update the HiDPI pixel-scale when the mode change is completed.
|
|
|
|
|
|
|
|
|
|
|
| |
NEWT
To properly convert Top-Left (TL) from/to Bottom-Left (BL) coordinates
we need to utilize the given CGDisplay viewport (TL)
and NSScreen (BL) to perform the y-flip.
This is especially true for the case of having multiple monitors
covering different viewports (mixed resolution).
|