| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
TestNewtCanvasSWTBug628ResizeDeadlock
- Fix deadlock situation in waitUntilStopped/Idle(), skip if on AWT/SWT EDT
- Use RunnableTask for sync task invocation, don't block AWT/SWT EDT.
- Cleanup TestNewtCanvasSWTBug628ResizeDeadlock (works on OSX as well)
|
|
|
|
|
|
| |
wrap task execution (or enqueing) into status-sync 'edtLock'
This fixes the disparity w/ DefaultEDTUtil, i.e. aligns it's implementation/semantics.
|
|
|
|
|
|
| |
possible triggered locking action, i.e. display(). Do the same for AWTEDTUtil.
This fix actually clarifies the annotated FIXME :)
|
| |
|
|
|
|
|
|
| |
keyChar from pressed/released may be wrong (Uppercase: SHIFT-1, etc ..)
Partially reverts commit: b62e1d027c289877686d6008ea8dd40e4e1541ec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
modified flags and modifier-key events; Simplify Windows key handling
Preface: Modifier-keys are SHIFT, CTRL, ALT and META and they have a matching modifier-bit.
- Simplify Windows key handling
- Employ MapVirtualKey(..) for virtual-key to character and scancode to virtual-key mappings,
allowing to drop tracking of keyCode to keyChar in java code.
This also removes the platform restriction of delivering keyChar at TYPED only.
- Deliver keyChar w/ pressed and released
- Due to the lift restriction on the Windows platform (see above),
we can deliver keyChar w/ all key events on all platforms.
- Deliver proper modified flags and modifier-key events
All modifier-keys deliver pressed, released and typed events
with their modifier-bit set.
The above is covered by unit tests, which passed on X11, Windows and OSX (manual test run).
|
|
|
|
| |
OSXUtil.GetLocationOnScreen(..) if onscreen and surface available.
|
|
|
|
|
|
|
| |
- X11: Add VK_QUOTE mapping
- OSX: Add single shift, ctrl alt key press;
Fix mapping: Command -> Windows, Option -> ALT, add BACK_QUOTE and QUOTE.
|
|
|
|
| |
bitfield, use more IntBitfield.put(..) return value for efficiency.
|
|
|
|
|
|
|
|
|
|
| |
incl. auto-repeat)
- Using keyCode (bit) maps to isPressed and isAutoRepeat, allowing use of multiple keys
- Enhance unit test TestKeyEventOrderNEWT w/ injecting variations of 2 diff. keys
- Manual tested on X11, Windows and OSX w/ and w/o auto-repeat
|
|
|
|
|
|
|
|
|
| |
and w/o auto repeat. Incl. fix for Windows.
Auto-Repeat tests recognizes whether auto-repeat could be triggered by AWT Robot.
The latter is not possible on Windows, hence manual testing was required on this platform.
Impact: X11, Windows and OSX produce proper key sequence incl. auto-repeat modifier mask.
|
|
|
|
|
|
|
|
|
|
|
| |
ScreenMode rotated resolution.
ScreenMode Change Failover
- In case a timeout appears (buggy XRandR),
double check current ScreenMode in case it has been set.
Window.setFullscreen() shall use current ScreenMode rotated resolution.
- The Screen's virtual size in not correct!
|
|
|
|
| |
Tested manual w/ TestGearsES2NEWT on Raspberry Pi
|
|
|
|
|
|
|
|
| |
- Button 9 has been reported to be sent by Olamedia
- Rearrange the input bit mask in InputEvent (API Change)
- Raise the max. button number to 16
|
|
|
|
| |
helper.isAnimatorAnimating() for decision whether to display() now; Minor API comments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
reshape() ; GLCanvas.reshape() only if drawble valid ; GLCanvas.validateGLDrawable() also test isDisplayable() ; Fix size validation ; resizeOffscreenDrawable(..) don't validate 'safe' size 1x1
- GLCanvas.validateGLDrawable() @ display() and reshape()
To help users using GLCanvas w/ having a realized GLCanvas/Drawable,
validateGLDrawable() is also called at reshape().
This shall ensure a valid drawable after even a non AWT-EDT issued first setVisible().
- GLCanvas.reshape() only if drawble valid
Otherwise offscreen reshape attempts would happen even on unrealized drawable,
which is not necessary.
- GLCanvas.validateGLDrawable() also test isDisplayable()
To make sure the native peer is valid, also test isDisplayable()
- Fix size validation
Since we have experienced odd size like 0 x -41
test each component, i.e. 0 < width && 0 < height.
This is done through all JOGL/NEWT components.
- resizeOffscreenDrawable(..) don't validate 'safe' size 1x1
In case method is called w/ odd size, i.e. 0 x -41,
the safe size 1x1 is used. However, we cannot validate this size.
Dump WARNING if odd size is detected.
|
|
|
|
|
|
| |
DisplayDriver dispatchMessagesNative() aDevice NPE at finally
The aDevice could be pulled via destroy message, hence add check if null.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Utilizing a GlobalToolkitLock in general to lock the display connection results in deadlock
situations where locked surfaces signal other [offscreen] surfaces to render.
We have to see whether we find a better solution, for now sporadic XCB assertion still happen.
But it is preferrable to point to the root cause, then to jumping through hoops to complicate locking
or even to deadlock.
Locking:
- X11GLXGraphicsConfigurationFactory add missing device locking in:
- getAvailableCapabilities
- chooseGraphicsConfigurationStatic
- Newt/X11Window: Discard display events after window close.
Relax ATI XCB/threading bug workaround:
- ToolkitProperties: requiresGlobalToolkitLock() -> hasThreadingIssues()
- NativeWindowFactory: Don't use GlobalToolkitLock in case of 'threadingIssues' the impact is too severe (see above)
- NativeWindowFactory: Add getGlobalToolkitLockIfRequired(): To be used for small code blocks.
If having 'threadingIssues' a GlobalToolkitLock is returned, otherwise NullToolkitLock.
- X11GLXContext: [create/destroy]ContextARBImpl: Use 'NativeWindowFactory.getGlobalToolkitLockIfRequired()' for extra locking
Misc Cleanup:
- *DrawableFactory createMutableSurface: Also create new device if type is not suitable
- *DrawableFactory createDummySurfaceImpl: Pass chosenCaps and use it (preserves orig. requested user caps)
|
|
|
|
| |
server roundtrips.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
locking, resulting in a native-lock-free impl.
The X11 implementation details of NativeWindow and NEWT used the X11 implicit locking facility
XLockDisplay/XUnlockDisplay, enabled via XInitThreads().
The latter useage is complicated within an unsure environment where the initialization point of JOGL
is unknown, but XInitThreads() requires to be called once and before any other X11 calls.
The solution is simple and thorough, replace native X11 locking w/ 'application level' locking.
Following this pattern actually cleans up a pretty messy part of X11 NativeWindow and NEWT,
since the generalization of platform independent locking simplifies code.
Simply using our RecursiveLock also speeds up locking, since it doesn't require JNI calls down to X11 anymore.
It allows us to get rid of X11ToolkitLock and X11JAWTToolkitLock.
Using the RecursiveLock also allows us to remove the shortcut of explicitly createing
a NullToolkitLocked device for 'private' display connections.
All devices use proper locking as claimed in their toolkit util 'requiresToolkitLock()' in X11Util, OSXUtil, ..
Further more a bug has been fixed of X11ErrorHandler usage, i.e. we need to keep our handler alive at all times
due to async X11 messaging behavior. This allows to remove the redundant code in X11/NEWT.
The AbstractGraphicsDevice lifecycle has been fixed as well, i.e. called when closing NEWT's Display
for all driver implementations.
On the NEWT side the Display's AbstractGraphicsDevice semantics has been clarified,
i.e. it's usage for EDT and lifecycle operations.
Hence the X11 Display 2nd device for rendering operations has been moved to X11 Window
where it belongs - and the X11 Display's default device used for EDT/lifecycle-ops as it should be.
This allows running X11/NEWT properly with the default usage, where the Display instance
and hence the EDT thread is shared with many Screen and Window.
Rendering using NEWT Window is decoupled from it's shared Display lock
via it's own native X11 display.
Lock free AbstractGraphicsDevice impl. (Windows, OSX, ..) don't require any attention in this regard
since they use NullToolkitLock.
Tests:
======
This implementation has been tested manually with Mesa3d (soft, Intel), ATI and Nvidia
on X11, Windows and OSX w/o any regressions found in any unit test.
Issues on ATI:
==============
Only on ATI w/o a composite renderer the unit tests expose a driver or WM bug where XCB
claims a lack of locking. Setting env. var 'LIBXCB_ALLOW_SLOPPY_LOCK=true' is one workaround
if users refuse to enable compositing. We may investigate this issue in more detail later on.
|
|
|
|
| |
enqueueKeyEvent(..) in WindowsDriver; Fix API doc typo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AUTOREPEAT_MASK modifier bit. Refine InputEvent toString(..) and list modifiers by name.
As now described in NEWT's KeyEvent:
+/**
+ * Key events are delivered in the following order:
+ * <ol>
+ * <li>{@link #EVENT_KEY_PRESSED}</li>
+ * <li>{@link #EVENT_KEY_RELEASED}</li>
+ * <li>{@link #EVENT_KEY_TYPED}</li>
+ * </ol>
+ * In case the native platform does not
+ * deliver keyboard events in the above order or skip events,
+ * the NEWT driver will reorder and inject synthetic events if required.
+ * <p>
+ * Besides regular modifiers like {@link InputEvent##SHIFT_MASK} etc.,
+ * the {@link InputEvent#AUTOREPEAT_MASK} bit is added if repetition is detected.
+ * </p>
+ */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GLOffscreenAutoDrawable.FBO and as an OffscreenLayerSurface's drawable (OSX) - Fix Bugs 569 and 599
Summary:
=========
The new FBObject based GLFBODrawable implementation allows the seamless utilization of
FBO offscreen rendering in single buffer, double buffer and MSAA mode.
The GLFBODrawable uses a parent drawable based on a
dummy surface to allow a GLOffscreenAutoDrawable.FBO creation
or a mutable surface supporting an existing offscreen layer surface (OSX CALayer).
Offscreen GLDrawable's and GLOffscreenAutoDrawable's can be selected via the
GLCapabilities. If simply !onscreen is selected in the caps instance w/o enabling FBO, PBuffer or Bitmap,
the factory will automatically choose regarding availability:
FBO > PBuffer > Bitmap
Double buffering is supported in MSAA more (intrinsic) and explicit in non MSAA.
It is preferred when delivering resources (texture id's or framebuffer names)
to a shared GLContext.
This is demonstrated in (emulates our OSX CALayer implementation):
TestFBOOffThreadSharedContextMix2DemosES2NEWT,
TestFBOOnThreadSharedContext1DemoES2NEWT
and with the OSX JAWT OffscreenLayerSurface itself. FBO is the preferred choice.
+++
Offscreen drawables can be resized while maintaining a bound GLContext (e.g. w/ GLAutoDrawable).
Previously both, drawable and context, needed to be destroyed and recreated at offscreen resize.
Common implementation in GLDrawableHelper is used in the implementations
(NEWT's GLWindow, AWT GLCanvas, SWT GLCanvas).
+++
Tested:
=======
Manually run all unit tests on:
- Linux x86_64 NVidia/AMD/Mesa3d(ES)
- OSX x86_64 NVidia
- Windows x86_64 NVidia
- Android arm Mali-400/Tegra-2
No regressions.
Disclaimer:
===========
This feature is committed almost in one patch.
Both previous commits were introducing / fixing the capabilities behavior:
90d45928186f2be99999461cfe45f76a783cc961
9036376b7806a5fc61590bf49404eb71830de92f
I have to appologize for the huge size and impact (files and platforms) of this commit
however, I could not find a better way to inject this feature in one sane piece.
NativeWindow Details:
=====================
Complete decoupling of platform impl. detail of surfaces
implementing ProxySurface. Used to generalize dummy surfaces and EGL surfaces
on top of a native platform surface.
- ProxySurface.UpstreamSurfaceHook -> UpstreamSurfaceHook
- abstract class ProxySurface -> interface ProxySurface + ProxySurfaceImpl
- Misc. implementations
JOGL Details:
=====================
FBOObject: API Change / Simplification & Usability
- Removed reference counter to remove complexity, allow user to choose.
- Add 'dispose' flag for detachColorbuffer(..), allowing to keep attachment alive
- Fix equals operation of Attachment
- Check pre-exising GL errors
- Interface Colobuffer gets lifecycle methods
- Add static factory methods to create Attachments w/o FBObject instance
- Reset:
- Clip min size to 1
- Keep alive samplingSink, i.e. don't issue resetMSAATexture2DSink(..).
It gets called at syncFramebuffer()/use(..) later on before actual usage.
This allows the consumer to utilize the GL_FRONT buffer until (e.g.) swap.
- misc bugfixes
GLOffscreenAutoDrawable: API Change
- Reloc and interfacing
- class com.jogamp.opengl.OffscreenAutoDrawable -> javax.media.opengl.*
interfaces GLOffscreenAutoDrawable extends GLAutoDrawable
GLOffscreenAutoDrawable.FBO extends GLOffscreenAutoDrawable, GLFBODrawable
- Added general implementation and FBO specialization
- Replacing GLPBuffer (deprecated) .. usable for any offscreen GLDrawable via factory
GLAutoDrawable:
- Add 'GLDrawable getDelegatedDrawable()'
- Refine documentation of setContext(..), remove disclaimer and fixme tags
GLDrawableFactory:
- Refine API doc and it's selection mechanism for offscreen.
- Add createOffscreenDrawable(..)
- Add createOffscreenAutoDrawable(..)
- Add canCreateFBO(..)
- Mark createGLPbuffer(..) deprectated
Mark GLPBuffer deprecated
New: GLFBODrawable extends GLDrawable
GLCanvas (AWT and SWT): Add offscreen resize support w/o GLContext recreation
GLAutoDrawableBase .. GLWindow:
- Add offscreen resize support w/o GLContext recreation
- Remove double swapBuffer call
-
GLBase/GLContext:
- Add:
- boolean hasBasicFBOSupport()
- boolean hasFullFBOSupport()
- int getMaxRenderbufferSamples()
- boolean isTextureFormatBGRA8888Available()
GLContext: Fix version detection and hasGLSL()
- Version detection in setGLFunctionAvailability(..)
- Query GL_VERSION ASAP and parse it and compare w/ given major/minor
- Use parsed version if valid and lower than given _or_ given is invalid.
- Use validated version for caching (procaddr, ..), version number, etc.
- Fix hasGLSL()
Since 'isGL2ES2()' is true if 'isGL2()'
and the latter simply alows GL 1.*, we confine the result to a GL >= 2.0
on desktops. FIXME: May consider GL 1.5 w/ extensions.
- return isGL2ES2();
+ return isGLES2() ||
+ isGL3() ||
+ isGL2() && ctxMajorVersion>1 ;
GLDrawableImpl:
- Add 'associateContext(GLContext, boolean)' allowing impl.
to have a (weak) reference list of bound context.
This is was pulled up from the OSX specific drawable impl.
- swapBuffersImpl() -> swapBuffersImpl(boolean doubleBuffered)
and call it regardless of single buffering.
This is required to propagate this event to impl. properly,
i.e. FBODrawable requires a swap notification.
- Clarify 'contextMadeCurrent(..)' protocol
GLDrawableHelper:
- Add resize and recreate offscreen drawable util method
- Simplify required init/reshape calls for GLEventListener
-
GLGraphicsConfigurationUtil:
- fixWinAttribBitsAndHwAccel: Reflect sharede context hw-accel bits
- OSX has no offscreen bitmap, use pbuffer
- use proper offscreen auto selection if offscreen and no modes are set
EGL Context/Drawable/DrawableFactory: Abstract native platform code out of base classes
- Use EGLWrappedSurface w/ UpstreamSurfaceHook to handle upstream (X11, WGL, ..)
lifecycle - in case the EGL resource is hooked up on it.
Invisible dummy surfaces: All platforms
- size is now reduced to 64x64 and decoupled of actual generic mutable size
- fix device lifecycle, no more leaks
+++
OSX
====
Enable support for GLFBODrawableImpl in offscreen CALayer mode
- NSOpenGLImpl: hooks to calayer native code
- calayer code:
- allows pbuffer and texures (FBO)
- decouple size and draw calls avoiding flickering
- enable auto resize of calayer tree
MacOSXCGLContext:
- NSOpenGLImpl:
- Fix false pbuffer 'usage', validate the pointer
- If !pbuffer, copy other window mode bits of caps
-
MacOSXCGLGraphicsConfiguration:
- Only assume pbuffer if !onscreen
- Remove reference of native pixelformat pointer
Native code:
- use 'respondsToSelector:' query before calling 'new' methods
avoiding an error message where unsuported (prev. OSX versions)
- if monitor refresh-rate is queried 0, set to default 60hz
- add missing NSAutoreleasePool decoration
+++
Android / NEWT:
===============
Issue setVisible(..) w/o wait, i.e. queue on EDT,
@Android surfaceChanged() callback. Otherwise we could deadlock:
setVisible(..) -> EDT -> setVisibleImpl(..) -> 'GL-display'.
the latter may may cause havoc while Android-EDT is blocked [until it's return].
|
|
|
|
| |
Proper canvas size and direct events.
|
|
|
|
|
|
|
|
| |
AWT and SWT impl. use the toolkit thread to deliver toolkit events and to
execute task. However, NEWT dispatches event using its own queue for NEWT events.
Adding a simple thread to dequeue those.
Remove 'EDTUtil.start()', since this is implicit @ invoke().
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NewtBaseActivity onPause()/onResume(): add setVisible(..) allowing recreation and avoid usage of unavail resources
- crucial for power suspend/resume, which itself calls activity onPause()/onResume(),
this ensures resources are not used onPause().
- Animator suspend is not sufficient due to surfaceRedrawNeeded(..) hook etc ..
- iff power suspend leads to surfaceDestroyed(..), recreation is now possible due to setVisible(true) on onResume()
even though I have not observed this on Android 2.3 and 4.0.1
Tested on Android 2.3 and Android 4.0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
closeNativeImpl(); Complete visibleChanged() in reconfigureWindowImpl() even if resize or reposition can't be handled
Add missing eglDestroySurface() in closeNativeImpl()
- missing egl surface destruction leaked it's resource ..
Complete visibleChanged() in reconfigureWindowImpl() even if resize or reposition can't be handled
- properly detect resize and reposition request, warn if this action cannot be completed
but contine w/ workflow -> visibleChanged()
- this allows properly handling of setVisible(..) and it's visible-changed detection polling
|
|
|
|
|
|
|
| |
Native BCM_VC_IV code CreateWindow() uses the default alpha value setting,
which is alpha:8 ! Hence we require to chose alpha from the egl configurations
TODO: Properly select the alpha mode in CreateWindow()! This will allow this hack.
|
|
|
|
| |
for NewtCanvasSWT workaround - not required anymore
|
|
|
|
| |
ScreenDriver, WindowDriver] to reduce complexity and programatic selection.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mouse tracker
Rasperry PI uses the 'BCM VC IV' GPU via console as it's default configuration.
This driver enables direct support for JOGL/NEWT.
Due to the lack of detection (TODO) users have to specify the Java property:
-Dnativewindow.ws.name=jogamp.newt.driver.bcm.vc.iv
- Autodetection should be included in 'NativeWindowFactory._getNativeWindowingType()'
while adding a new TYPE: 'TYPE_BCM_VC_IV'.
- Autodetection may need to detect whether an X11 Display runs and the installed
EGL library uses it (instead of the default console one)
This work is authored in coop w/ Xerxes Rånby <[email protected]>!
|
|\ |
|
| |
| |
| |
| | |
-cp jar/atomic/newt-driver-kd.jar -Dnativewindow.ws.name=jogamp.newt.driver.kd
|
| |
| |
| |
| | |
-cp jar/atomic/newt-driver-kd.jar -Dnativewindow.ws.name=jogamp.newt.driver.kd
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
NewtCanvasSWT allowing to parent NEWT windows natively.
SWT GLCanvas creates lazy when resource is ready
- Ensures drawable and context are created when size > zero and native visualID is valid.
The latter is platform dependent.
- Note that you cannot utilize custom GLCapabilities w/ this one,
since the configurations is already realized - use NewtCanvasSWT.
Create new NewtCanvasSWT allowing to parent NEWT windows natively:
- Similar to NewtCanvasAWT
- Allows attaching / detaching NEWT windows
NewtCanvasAWT: Public setNEWTChild(..) fixed
Added test cases for the above - tested on Linux, OSX and Windows w/ SWT
Note: As usual for OSX, add -XstartOnFirstThread
Details:
- NEWT Display has new method: 'EDTUtil setEDTUtil(EDTUtil)'
allowing to set a custom event dispatch utility.
We use this to set our SWTEDTUtil for using NEWT w/ SWT
complying w/ SWT threading constraints.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
capabilities-type; Add a pre-set nativeVisualID to chooseGraphicsConfiguration(..)
Map factory to device-type _and_ capabilities-type:
- Allows using different GraphicsConfigurationFactory implementations for different capabilities-types.
Previous impl. failed to use an OpenGL agnostic CapabilitiesImmutable for 'chooseGraphicsConfiguration(..)'
since only the GL aware factory was mapped. The latter failed since it expected a GLCapabilitiesImmutable.
- The passed capabilities-type as well as device-type given at getFactory(..)
is traversed top-to-down to find a most suitable factory:
For-All devT := getTopDownDeviceTypes(deviceType)
For-All capsT := getTopDownCapabilitiesTypes(capabilitiesType)
f = factory.get(devT, capsT);
if(f) { return f; }
end
end
Add a pre-set nativeVisualID to chooseGraphicsConfiguration(..)
- In situations where a native visualID is already chosen [by external means for example],
but we still need to query a matching GraphicsConfiguration - we require to pass
a non VisualIDHolder.VID_UNDEFINED nativeVisualID.
We had a hack implemented before within some implementations and their static calls,
however an agnostic mechanism is required to implement new NativeSurface/Window's
platform agnostic.
- X11GLXGraphicsConfigurationFactory: respect a pre-set xvisualID
- X11GLXDrawableFactory.createProxySurfaceImpl(..) queries the given windowHandle's
visualID and 'chooses' the configuration accordingly. If the visualID is undefined
an exception is thrown, since window is invalid.
These mechanics are implicit for Windows and OSX.
Fix X11GLXGraphicsConfiguration.updateGraphicsConfiguration():
- Skip any action if a valid X11GLCapabilities is already chosen, i.e. w/ visualID.
Otherwise choose a suitable configuration incl. visualID.
The latter is quite impossible and invalid, since visualID must be defined at window creation time
and the update method is issued with a valid window.
X11 - Misc:
- Added 'int jogamp.nativewindow.x11.X11Lib.GetVisualIDFromWindow(..)'
- All returned visualID's are of type 'int'
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
GLAutoDrawable multi-threading w/ proper pattern (hope so)
Considering code changes and remarks:
3ed491213f8f7f05d7b9866b50d764370d8ff5f6
1a91ec5c8b6fd9d9db7bc115569c369fe7b38e9b
3334a924309a9361a448d69bc707d4cce416b430
4f27bcecf7484dc041551f52a5c49e2884cb3867
It seems necessary to have
- recursive locking employed for all semantic actions which changes drawable & context (and the Window resource)
- to avoid deadlock, we have to ensure the locked code segment will not spawn
off to another thread, or a thread holds the lock, spawns of an action requiring the lock. .. sure
- other read-only methods (flags, ..) shall at least utilize a safe local copy of a volatile field
if further use to produce the result is necessary.
- flags like sendReshape require to be volatile to guarantee it's being processed
Patch impacts: AWT/SWT GLCanvas, GLAutoDrawableBase [and it's specializations]
and hopefully closes any loopholes of missing a cache hit, etc.
If you review this and find optimizations, i.e. removing a lock due to semantics etc,
don't hold back and discuss it, please.
|
| |
| |
| |
| |
| |
| | |
toggle mouse adapter :)
Moved the fullscreen toggle mouse adapter to main test class.
|
| |
| |
| |
| |
| |
| |
| |
| | |
Exceptions caused by NEWTEvent processing (on it's EDT)
were not propagated to the caller (diff thread).
Hence the EDT were brought down and the caller may have waited forever (deadlock).
Catch exception if caller waits and throw exception at waiting point.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
- New FBObject implementation handling FBO and it's attachments *** API CHANGE: Util -> Core ***
while it's size and sample-count can be reconfigured on the fly.
- com.jogamp.opengl.util.FBObject -> com.jogamp.opengl.FBObject
- agnostic to texture unit
- separate attachments using OO hierarchy reflecting FBO
- handling MSAA and blitting
- no FBO destruction for reconfig (attach/detach)
- New GLFBODrawableImpl impl. an FBObject based GLDrawable
- Instantiated by a dummy native surface (onscreen and invisible)
hooked up to a dummy GLDrawable, which is the delegation for context creation.
- Utilizies ProxySurface.UpstreamSurfaceHook for dummy surface
avoiding specialization for native platforms.
- TODO: Allow to utilize common surface interface as a
dummy-surface to supporting API seperation of
windowing/GL. The latter allows impl. of createGLDrawable(NativeSurface)
with FBO.
- New OffscreenAutoDrawable (extends GLAutoDrawableDelegate)
for all offscreen drawables. Shall replace GLPbuffer.
- New GLCapabilities*.isFBO() / setFBO(boolean) to request FBO offscreen,
similar to isPBuffer(). Rule: if both are requested, FBO shall be favored.
- GLContext adds raw FBO availability query (min. FBO avail),
FBObject contains fine grained queries (TODO: Move parts to GLContext for efficiency).
- Add framebuffer tracking, allowing fast querying:
- GLBase/GLContext:
public int getBoundFramebuffer(int target);
public int getDefaultDrawFramebuffer();
public int getDefaultReadFramebuffer();
- GLContextImpl
public final void setBoundFramebuffer(int target, int framebufferName)
.. called by GL impl bind framebuffer
- GL: getDefaultDrawFramebuffer(), getDefaultReadFramebuffer()
Adding default framebuffer queries being issued by
GL.glBindFramebuffer(target, 0) w/ a default framebuffer, o.e. zero.
This allows a transparent use of a custom FBO even in case the applications
attempts to reset FBO to zero.
Value flow: GL <- GLContext <- GLDrawable,
- GLCapabilities handle fbo/pbuffer seperate, don't disable the other
- GLContext/GL track read/write framebuffer to be queried by FBObject
to determine whether to bind/unbind a framebuffer
- Test cases for multiple FBO w/ and w/o MSAA
Other Features:
- New interface ProxySurface.UpstreamSurfaceHook,
allowing to hook an upstream surface of unknown type
providing lifecycle and information (size, ..) callbacks.
Used for all new dummy NativeSurface impl and SWT GLCanvas.
- GLContext -> GLDrawable propagation context/drawable lifecycle
via ProxySurface.UpstreamSurfaceHook allowing dynamic resources
to react (create, init, ..)
- contextRealized()
- contextMadeCurrent()
- SurfaceChangeable -> MutableSurface
currently only contains setting the surface handle.
TODO: May need to move ProxySurface.UpstreamSurfaceHook -> MutableSurface.UpstreamSurfaceHook,
allowing other impl. classes (NEWT OffscreenWindow) to utilize the new
upstream hookup mechanism - will allow FBO/Dummy window to work.
- SWT GLCanvas using ProxySurface.UpstreamSurfaceHook for proper size
propagation.
- New GLAutoDrawable::getUpstreamWidget(), allowing GLEventListener
to fetch the owning Java side UI element (NEWT, SWT, AWT, ..).
- GLDrawableFactory: Removed createOffscreenSurface() - unused and not GL related
- EGLDrawableFactory handles device/profile avail. mapping
while actually creating context/drawable.
This allows us to learn whether the ES context is software/hardware as well as FBO avail.
- EGLDrawable: Removed secret buckets of EGL configs :)
Employ native surface (X11, WGL, ..) to EGL 'mapping' in
EGLDrawableFactory utilizing new EGLUpstreamSurfaceHook (implements ProxySurface.UpstreamSurfaceHook).
Other Bugs:
- Add CTX_OPTION_DEBUG to ctx/extension cache key since only a debug ctx
may expose the ARB debug capability.
This bug caused lack of ARB/AMD debug functionality.
- Fix GLProfile deadlock (debug mode, w/ EGL/ES, no X11),
dump availability information _after_ lock.
- ImmModeSink draw(): Use GL's glDrawElements(..), don't cast for GL2ES1.
Fixes use for GL2ES2.
- Fix KeyEvent.getKeyChar() comment (-> only stable for keyTyped(..))
Misc:
- Refined alot of API doc
- New GLExtensions holds commonly used GL extension strings,
allows better referencing and usage lookup.
- Move GL (interface) decl. to GLBase
- GLBuffers: Cleanup API doc (format, types)
- TextureIO: Add PAM and PPM static suffix identifier
- GLCapabilities getNumSamples() returns 0 if sampleBuffers is disabled, this seems to be more natural.
- finalized a lot
|
|/
|
|
|
|
|
|
|
|
|
| |
EGLDisplayUtil adds creation of EGLGraphicsDevice.
Due to EGL's location in JOGL, supporting destruction of an EGLGraphicsDevice
is solved (hack) temporary by passing an eglTerminate callback to it's ctor.
Using EGLGraphicsDevice's close() method to also issue eglTerminate() simplifies the code.
In future we shall move EGL to nativewindow!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GLProfile and GLContext*
GLProfile: Enhance bootsrapping performance of loading GL*Impl class
- Offthread classloading of all GL*Impl via reflection at startup
reduces startup time here around 12% (800ms down to 700ms).
GLContext*: Enhance bootsrapping performance of querying available GL profiles
- Add PROFILE_ALIASING mode, defaults to true - can be disabled w/ property 'jogl.debug.GLContext.NoProfileAliasing'
- PROFILE_ALIASING:
If true (default), bootstrapping the available GL profiles
will use the highest compatible GL context for each profile,
hence skipping querying lower profiles if a compatible higher one is found.
Linux x86_64 - Nvidia: 28%, 700ms down to 500ms
Linux x86_64 - AMD : 40%, 1500ms down to 900ms
- GL*Impl:
- make fields final: glProfile, _context, buffer*Tracker and glStateTracker
- allow null _context/glProfile in initialization (bootstrapping)
- JoglVersion.getDefaultOpenGLInfo(..)
- add arg: 'boolean withCapabilitiesInfo', allowing to suppres the list of caps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GL[Auto]Drawable/GLContext re-association (switch) incl. unit test.
- GLContext adds FBO availability to profile mapping
- GLContext added 'GLDrawable setGLDrawable(GLDrawable readWrite, boolean setWriteOnly)'
allowing to set the write GLDrawable. This method enables switching context/drawable.
Fix GL[Auto]Drawable/GLContext re-association (switch) incl. unit test
Commit eed8508ae1132e5f45f788e9cb3f3d5a1050ac70 impl. of GLAutoDrawable's setContext(..)
enabled proper setting of the GLAutoDrawable context incl. updating the context's drawables.
Test covers:
- remove/set (GLContext, GLEventListener) of GL[Auto]Drawable
- switch (GLContext, GLEventListener) of 2 GLAutoDrawables
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
exceptions. Handles also XAWT BadMatch X_SetInputFocus.
X11ErrorHandler code now dumps proper information about the opcode and error message and the running Java thread.
Having propery "nativewindow.debug.X11Util.XErrorStackDump" or "nativewindow.debug=all' set,
a stack trace is dumped.
Since the X11ErrorHandler may catch an XAWT error: BadMatch X_SetInputFocus,
we cannot throw an exception and better keep running.
|
|
|
|
|
|
|
|
|
| |
- This policy allows more simple destruction handling w/o validating on the top level.
- Hence 'unlockSurface()' shall not throw any exception.
- 'lockSurface()' keeps unchanges, clarified w/ explicit 'throws' declaration,
ie will fail-fast.
|
|
|
|
|
|
|
|
| |
bc7503c77892a9e14b10e8b8e9ce48b148c6fa4c).
NEWT GLWindow multithreading fix:
- Add required locking of display(), otherwise a drawable/context destruction of another threads
could lead to [still] use asynced data.
|
|
|
|
|
|
|
|
|
|
|
|
| |
834b9e530e652b7ff7c5e222720bce3ad2b11c5f
- adapt to GlueGen Lock cleanup
- remove isSurfaceLocked(), use 'null != getSurfaceLockOwner()' instead
Misc:
- remove unused priv./impl. methods
- add @Override
|
|
|
|
|
|
| |
the windowLock. Avoiding deadlock when cmds issued from within locked code path.
This allows e.g. GLEventListener::display(..) { .. glWindow.setSize(100, 100); .. }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Derivation
- Depends on GlueGen commit 9a71703904ebfec343fb2c7266343d37a2e4c3db
JAR file name changes:
ALL JARs:
- jogl.all.jar -> jogl-all.jar
- jogl.all-noawt.jar -> jogl-all-noawt.jar
- jogl.all-mobile.jar -> jogl-all-mobile.jar
- jogl.all-android.jar -> jogl-all-android.jar
- jogl.all-android.apk -> jogl-all-android.apk
Atomic JARs:
- nativewindow.core.jar -> nativewindow-core.jar
- nativewindow.awt.jar -> nativewindow-awt.jar
- nativewindow.os.x11.jar -> nativewindow-os-x11.jar
- nativewindow.os.win.jar -> nativewindow-os-win.jar
- nativewindow.os.macosx.jar -> nativewindow-os-osx.jar
- jogl.core.jar -> jogl-core.jar
- jogl.sdk.jar -> jogl-sdk.jar
- jogl.glmobile.jar -> jogl-glmobile.jar
- jogl.glmobile.dbg.jar -> jogl-glmobile-dbg.jar
- jogl.util.jar -> jogl-util.jar
- jogl.glutess.jar -> jogl-glutess.jar
- jogl.glumipmap.jar -> jogl-glumipmap.jar
- jogl.util.fixedfuncemu.jar -> jogl-util-fixedfuncemu.jar
- jogl.awt.jar -> jogl-awt.jar
- jogl.swt.jar -> jogl-swt.jar
- jogl.util.awt.jar -> jogl-util-awt.jar
- jogl.os.x11.jar -> jogl-os-x11.jar
- jogl.os.win.jar -> jogl-os-win.jar
- jogl.os.osx.jar -> jogl-os-osx.jar
- jogl.os.android.jar -> jogl-os-android.jar
- jogl.gldesktop.jar -> jogl-gldesktop.jar
- jogl.gldesktop.dbg.jar -> jogl-gldesktop-dbg.jar
- jogl.glugldesktop.jar -> jogl-glu-gldesktop.jar
- jogl.util.gldesktop.jar -> jogl-util-gldesktop.jar
- jogl.omx.jar -> jogl-omx.jar
- jogl.cg.jar -> jogl-cg.jar
- newt.core.jar -> newt-core.jar
- newt.ogl.jar -> newt-ogl.jar
- newt.awt.jar -> newt-awt.jar
- newt.event.jar -> newt-event.jar
- newt.driver.x11.jar -> newt-driver-x11.jar
- newt.driver.win.jar -> newt-driver-win.jar
- newt.driver.macosx.jar -> newt-driver-osx.jar
- newt.driver.android.jar -> newt-driver-android.jar
- newt.driver.kd.jar -> newt-driver-kd.jar
- newt.driver.intelgdl.jar -> newt-driver-intelgdl.jar
- newt.driver.broadcomegl.jar -> newt-driver-broadcomegl.jar
Test JARs:
- jogl.test.jar -> jogl-test.jar
- jogl.test-android.jar -> jogl-test-android.jar
- jogl.test-android.apk -> jogl-test-android.apk
|