| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
getCustomClass(..) shall throw all required exceptions upstream.
Previous essential NEWT driver exception information got suppressed if failing, only disclosed in debug mode.
|
|
|
|
|
|
| |
GBM driver is now under egl/gbm subpackage and has been replaced by bcm_vc_iv boilerplate.
Native code is reentrant capable and cleaned up.
TODO: EGLDisplayUtil work with SharedResourceRunner
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
Also issue the orderFront0 call within createWindow1 (aligned with IOS code)
|
|
|
|
|
|
| |
Introducing boolean property 'newt.macos.useAppKitEDTUtil', which defaults to 'false'.
If enabled, the new AppKitEDTUtil is being used, operating on the AppKit main thread.
This is used to ease debugging Bug 1393, minimizing thread context switches.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
X11Window.c's 'NewtWindows_getFrameExtends(..)'
retrieves the insets via XGetWindowProperty on _NET_FRAME_EXTENTS.
Right after window creation this method fails as the WM did not yet
provide the information as the window has not yet been mapped.
Implementation needs to retry for a certain amount of time (250ms)
and maximum number of attempts (96 XEvent).
This issue surfaced while validating fix for Bug 1393,
testing TestDisplayLifecycle02NEWT also on X11.
|
|
|
|
| |
insetsChanged + insetsVisibleChanged
|
|
|
|
| |
argument. Method only changes state.
|
|
|
|
|
|
| |
Additionally, setPointerIcon0 must also be made async on AppKit (instead of wait),
we have to assume/hope the user won't pull the PointerIconImpl instance in-between ;-)
Hence removing the comment regarding the lifecycle.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AppKit NSWindow creation
MacOS 10.14.6 + OpenJDK11U produces occasional freezes on AppKit Main Thread
Latest manual tests after resolving Bug 1389
disclosed a few occasional freezes using NEWT + Java11.
These are related to probable AWT changes since Java8,
as these do not occur with Java8.
Fix: Spun off orderFront0(=setVisible) async off-thread on AppKit after sync AppKit NSWindow creation.
This fix also aligns the macos createWindow code with the new simplified ios implementation,
see commit 004c67c73a0309158c30929cd0d6513e23f34803
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
disableBackgroundErase (impl. semantics)
Commit 13c6bbbde5ea476d60e0a2f04a5172d3302d0edd simply removed the
AWT commonly used SunToolkit lock/unlock methods, which was incorrect.
It lead to certain resources access collisions as access has to be synchronized
using the same reentry lock across AWT and NativeWindow/JOGL.
We utilize the new com.jogamp.common.util.UnsafeUtil of GlueGen commit 07c1885e9a3d1f3a3853414648c06fb3864bc69f
to disable the IllegalAccessLogger while fetching the methods/fields and making them accessible.
JAWUtil also hosts access to SunToolkit's disableBackgroundAccess(Component)
aligning the code for GLCanvas, NewtCanvasAWT and AWTCanvas.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previous commits removed access to OSX's GraphicsDevice.getCGDisplayID()
on Java9+, avoiding illegal reflective access.
Here we JAWTUtil.getMonitorDisplayID(..) simply returns null
if Java9 or !OSX, so the sole NewtFactory caller falls back
to the alternative working solution.
Orig patch Wade Walker:
This was used on Mac OS only to create a MonitorDevice in
NewtFactoryAWT. But there was a fallback method for creating
MonitorDevice, and testing with TestGearsES2GLJPanelAWT shows that the
fallback method seems to give identical results on Mac, so changed to
just use the fallback method (which is now the only method) everywhere.
This gets rid of an illegal reflective access.
|
|
|
|
|
|
|
| |
and remove the redColor default background (debug only).
IOSUtil.CreateUIWindow(..) also gets its 'visible' attribute,
to be true only for demo Hello1 code - false for intended Proxy Surface Hook.
|
|
|
|
| |
See commit 004c67c73a0309158c30929cd0d6513e23f34803
|
|
|
|
|
|
|
|
| |
Astonishingly, the original code path doesn't show up the CAEAGL View/Layer (only the red test background)
even though t is 1:1 equal to this alternative calls.
Keeping the original path intact for future validation, another round of hours of analysis.
The original code path will be removed in the next commit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Note: Two subsequent commit will add some required change in the
native UIWindow/UIView creation methods to actually make the NEWT view being displayed ;-)
The demo 'com.jogamp.opengl.demos.ios.Hello' demonstrated a standard NEWT application
running on iOS.
Previous NativeWindow wrap-around demo is preserved in 'com.jogamp.opengl.demos.ios.Hello1'.
Tested on ipad 11'inch arm64 and x86_64 simulation:
- Using GearsES2 demo
- PixelScale 1f, 2f and 0f - last two using max pixel scale
- Touch w/ GearsES2 works:
-- 1 finger rotate
-- 2 finger drag
-- 2 finger pinch-zoom gesture detection
|
| |
|
|
|
|
|
|
|
|
|
|
| |
- IOSUtil/OSXUtil: Return float value and refine name to GetScreenPixelScale*
- WindowDriver's updateMaxScreenPixelScaleByDisplayID(..) and updateMaxScreenPixelScaleByWindowHandle(..)
will only update the maxPixelScale, as actual user pixelSize change should not be triggered here.
A user pixelSize adaption to the changed underlying scale capabilities (e.g. switch monitor)
should be supported by the implemented WindowDriver's: updatePixelScale(..) called by native code.
|
|
|
|
|
|
|
|
|
| |
Adding the missing JogAmp copyright tag on certain files.
Currently in debate whether 'JogAmp Community' is a legal Copyright tag in the first place,
we might need to add (or replace it with) my authorship.
However, as authorship is well documented via the git repository,
this should be no real world issue.
|
|
|
|
|
|
| |
and not int[], this avoid copying in case given pNames are normalized.
This is benecifical for X11, Windows and the upcoming iOS touch/pointer support.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
using our OpenJFK 9 x86_64 and arm64 build.
Test demo class is 'com.jogamp.opengl.demos.ios.Hello',
residing in the new demo folder 'src/demos/com/jogamp/opengl/demos/ios/Hello.java'.
This commit does not yet include a working NEWT
specialization for iOS, but it shall followup soon.
Instead this commit demonstrates JOGL operating on
native UIWindow, UIView and CAEAGLLayer as provided by
Nativewindow's IOSUtil.
Test Video https://www.youtube.com/watch?v=Z4lUQNFTGMI
+++
Notable bug: The FBO used and sharing the COLORBUFFER RENDERBUFFER
memory resources with CAEAGLLayer to be displayed in the UIView
seemingly cannot handle GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24
or GL_DEPTH_COMPONENT32 depth buffer - none at all (Device + Simulation).
Therefor the default demo GLEventListener chosen here
don't require a depth buffer ;-)
This issue can hopefully be mitigated with other means
than using a flat FBO sink similar to FBO multisampling.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
dimensions)
Christian reported this bug and described multiple pathways.
This change usese the following:
- access to getClientAreaInPixels w/ fallback of
- DPIUtil.autoScaleUp(getClientArea())
I hardly have tested this on Linux/GTK, even though I use a High DPI monitor,
maybe just because of it and Eclipse _poor_ state of proper UI presentation.
Christian: Please test this .. if buggy, reopen quick for release 2.4.0
SWT/GTK High-DPI is a PIA:
- GDK_SCALE renders offscreen and scales the image (wow & ugly)
- GDK_DPI_SCALE works at least on the fonts properly
- swt.autoScale is pretty much like: What will be scaled?
It scales some icons in Eclipse, not fonts and result in Eclipse
looks horrible.
Maybe I just made this patch to vent about this poor state of things.
Notable: KDE looks great and uses DPI, firefox some GDK_DPI_SCALE equivalent (OK)
One also wonders why there is only a single scale dimension, where DPI differs x/y!
But enough of my rant :)
|
|
|
|
|
|
|
| |
reparenting!
Bug 1362 fix or workaround: Seems SWT/GTK3 at least performs lazy initialization
Minimal action required: setBackground of the parent canvas before reparenting!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WindowDriver.createWindow0(..)
OSX 10.14.3 Mojave issues a WARNING: NSWindow drag regions should only be invalidated on the Main Thread! This will throw an exception in the future.
The complaint about NativeWindow (NW)'s OSXUtil.CreateNSWindow0(..)
might be valid, which does create a NS Window instance w/ NSView and framebuffer initialized.
However, the complaint about NEWT's WindowDriver.createWindow0(..)
is not, since the initialization incl framebuffer happened later
on the main thread.
Regardless, encapsulated both construction fully to run on the Main-Thread.
+++
Originally the Main-Thread design spec was like:
Must run on Main-Thread when or after making visible.
Oh well.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I got access to a touchscreen laptop w/ Debian 9, hence I could fix and test the implementation.
X11 DisplayDriver.java:
- Store and pass through xi_opcode of XI extension, queried at initialization stage
X11Window.c Fixes:
- Initialize JavaWindow's xiTouchCoords[].id w/ -1, as required to track the pointer
- Pass through xi_opcode as stored in X11 DisplayDriver
X11Display.c Fixes:
- sendTouchScreenEvent: Throw RuntimeException if 0 > actionId (Internal Error: based on xiTouchCoords[].id tracking)
- DispatchMessages's windowPointer determination:
-- Query potenial XI Event first: IF XI Event, must use XIDeviceEvent's event Window
-- Only IF not an XI Event, we can use evt.xany.window as the event window
- DispatchMessages's XI Event Handling:
-- Always break deviceid search loop if id found, preserving index and time spend
Works on my Debian 9 device, tested w/ com.jogamp.opengl.test.junit.jogl.demos.es2.newt.TestGearsES2NEWT:
- One pointer (finger) press, drag and release (click)
- PinchToZoomGesture works
- DoubleTabScrollGesture works
+++
Potential Issues:
JavaWindow's xiTouchCoords[].id accuracy is crucial to pointer tracking
during XI_TouchBegin -> XI_TouchUpdate -> XI_TouchEnd.
In the normal course of action:
- XI_TouchBegin sets the id, assuming it is yet set
- XI_TouchUpdate assumes it is set
- XI_TouchEnd clears the id, assuming it is set
This field in the JavaWindow array only gets reset to -1 once at native window
creation. We may need to figure out when to reset this field to -1.
If the XI_TouchEnd events would get lost for whatever reason,
the above tracking state would be broken.
|
|\ |
|
| |\
| | |
| | | |
Fix overlay/underlay position mismatch in X11UnderlayTracker (bug 1315)
|
| | |
| | |
| | |
| | |
| | |
| | | |
enabled
With the overscan enabled by the Raspberry Pi firmware, which seems to be the default for some attached displays, the underlayWindow size will be e.g. 1888x1048 (retrieved from X11), whereas the overlayWindow size remains at 1920x1080 (retrieved from the Broadcom VC IV implementation). This causes the overlay window to be visually offset by a few pixels. Correct this by applying an offset when the two don't match. (Both displays are assumed to have the same center.)
|
| |\ \
| | | |
| | | | |
Fix mouse button reporting in X11UnderlayTracker
|
| | |/ |
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
746383476aa449e9cab4a25df27be85b61aa074b
Add more verbose DBG_PRINT
- @ CreateWindow: extension, scanning device/class, registered deviceid
- @ DispatchMessage: XI_TouchBegin, XI_TouchUpdate and XI_TouchEnd
On my test machine w/o a touchscreen I correctly:
- detected extension
- detected no XITouchClass device, hence no deviceid registered
X11: [CreateWindow]: XI: Window 0x6600016, Extension 131
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[2/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[3/13].class[1/3]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[3/13].class[2/3]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[3/13].class[3/3]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[4/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[5/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[6/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[7/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[10/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[11/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[13/13].class[1/1]: type 0 (is XITouchClass 0)
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
92006e4baef57f1f3fb647dd307aed5989fd4c8d
Previous commit 92006e4baef57f1f3fb647dd307aed5989fd4c8d
(Note to Danny: I cannot test this now - please re-test and/or review)
X11Common::JavaWindow
- Owns XI extension's xiOpcode, selected xiTouchDeviceId and tracked XITouchPosition array
X11Window::CreateWindow
- Query XI extension only once @ window creation and earmark xiOpcode in JavaWindow instance
- Fix: Device selection code was "class->type != XITouchClass",
but shouldn't it be 'XITouchClass == class->type' (as patched here)
- Fix: Free XIQueryDevice returned XIDeviceInfo array via XIFreeDeviceInfo
- Earmark deviceid in JavaWindow instance
X11Display
- Moved global static touch_coordinates to JavaWindow::xiTouchCoords instance
X11Display::DispatchMessage
- Changed event handling structure similar to https://keithp.com/blogs/Cursor_tracking/
- Fix: Free XGetEventData's optional memory allocation via XFreeEventData
- Reuse JavaWindow's queried xiOpcode
- Fix: Don't overrise windowPointer, instead validate and require a match. JavaWindow must match!
- Fix: Also validate chosen deviceid with JavaWindow's registered device
Newt Build:
- Added libXi in build recipe and doc
|
|\ \
| | |
| | | |
add touch event support for x11 server
|
| |/ |
|
|\ \
| | |
| | | |
Fix viewport height in BCM VC IV ScreenDriver
|
| |/
| |
| |
| | |
This should fix https://jogamp.org/bugzilla/show_bug.cgi?id=1254, which leads to windowed sketches not being centered in Processing.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On [GNU/Linux] X11 JFXEDTUtil is not required, since X11 can handle multi-threaded native parenting,
however, the Windows platform does require JFXEDTUtil.
Currently the default is to use JFXEDTUtil, which operates solely on the JavaFX thread
for windowing lifecycle and even-dispatch operations.
This behavior can be toggled via the boolean property 'jogamp.newt.javafx.UseJFXEDT',
which currently defaults to 'true'
This behavior might be analyzed in more detail for a fine grained EDTUtil decision.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
NewtCanvasJFX.NativeWindow shall pass through NewtCanvasJFX's Canvas position
to properly position the NEWT child window inside the top level Window.
NewtJFXReparentingKeyAdapter demonstrating manual reparenting demonstrates this case.
TestGearsES2NewtCanvasAWT's default behavior is to use a surrounding border
for the NEWTCanvasAWT child, similar to TestNewtCanvasJFXGLn.
|
| | |
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
NEWTDemoListener
NativeWindowHolder abstracts access to is-a or has-a parent component's NativeWindow
like NewtCanvasAWT, NewtCanvasJFX and NewtCanvasSWT
Adding API Doc for NEWTDemoListener.
|
| | |
|
| | |
|
| |
| |
| |
| |
| | |
This is automatically issued when receiving the javafx.stage.WindowEvent#WINDOW_CLOSE_REQUEST
from the attached top-level JavaFX Window
|
| | |
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NewtCanvasJFX
NewtCanvasJFX, a JavaFX Canvas Node, allows attaching a native NEWT Window to the JavaFX Node's native Window (if attached).
The mechanism is similar to NewtCanvasAWT.
Current implementation supports placing the NEWT Window
into the JavaFX scene of the native window correctly,
as well as the following different lifecycles
- attach NewtCanvasJFX to already visible group->scene->window
- attach NewtCanvasJFX to not yet visible or attached group->scene->window
- attach NEWT Window before or after NewtCanvasJFX's visibility
The above is covered by unit test: TestNewtCanvasJFXGLn
This is the initial commit for JavaFX support and has been tested on
- OpenJDK 8 + OpenJFX 8
- GNU/Linux X11
|