| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I got access to a touchscreen laptop w/ Debian 9, hence I could fix and test the implementation.
X11 DisplayDriver.java:
- Store and pass through xi_opcode of XI extension, queried at initialization stage
X11Window.c Fixes:
- Initialize JavaWindow's xiTouchCoords[].id w/ -1, as required to track the pointer
- Pass through xi_opcode as stored in X11 DisplayDriver
X11Display.c Fixes:
- sendTouchScreenEvent: Throw RuntimeException if 0 > actionId (Internal Error: based on xiTouchCoords[].id tracking)
- DispatchMessages's windowPointer determination:
-- Query potenial XI Event first: IF XI Event, must use XIDeviceEvent's event Window
-- Only IF not an XI Event, we can use evt.xany.window as the event window
- DispatchMessages's XI Event Handling:
-- Always break deviceid search loop if id found, preserving index and time spend
Works on my Debian 9 device, tested w/ com.jogamp.opengl.test.junit.jogl.demos.es2.newt.TestGearsES2NEWT:
- One pointer (finger) press, drag and release (click)
- PinchToZoomGesture works
- DoubleTabScrollGesture works
+++
Potential Issues:
JavaWindow's xiTouchCoords[].id accuracy is crucial to pointer tracking
during XI_TouchBegin -> XI_TouchUpdate -> XI_TouchEnd.
In the normal course of action:
- XI_TouchBegin sets the id, assuming it is yet set
- XI_TouchUpdate assumes it is set
- XI_TouchEnd clears the id, assuming it is set
This field in the JavaWindow array only gets reset to -1 once at native window
creation. We may need to figure out when to reset this field to -1.
If the XI_TouchEnd events would get lost for whatever reason,
the above tracking state would be broken.
|
|\ |
|
| |\
| | |
| | | |
Fix overlay/underlay position mismatch in X11UnderlayTracker (bug 1315)
|
| | |
| | |
| | |
| | |
| | |
| | | |
enabled
With the overscan enabled by the Raspberry Pi firmware, which seems to be the default for some attached displays, the underlayWindow size will be e.g. 1888x1048 (retrieved from X11), whereas the overlayWindow size remains at 1920x1080 (retrieved from the Broadcom VC IV implementation). This causes the overlay window to be visually offset by a few pixels. Correct this by applying an offset when the two don't match. (Both displays are assumed to have the same center.)
|
| |\ \
| | | |
| | | | |
Fix mouse button reporting in X11UnderlayTracker
|
| | |/ |
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
746383476aa449e9cab4a25df27be85b61aa074b
Add more verbose DBG_PRINT
- @ CreateWindow: extension, scanning device/class, registered deviceid
- @ DispatchMessage: XI_TouchBegin, XI_TouchUpdate and XI_TouchEnd
On my test machine w/o a touchscreen I correctly:
- detected extension
- detected no XITouchClass device, hence no deviceid registered
X11: [CreateWindow]: XI: Window 0x6600016, Extension 131
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[1/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[2/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[3/13].class[1/3]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[3/13].class[2/3]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[3/13].class[3/3]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[4/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[5/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[6/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[7/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[8/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[9/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[10/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[11/13].class[1/1]: type 0 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[1/7]: type 1 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[2/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[3/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[4/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[5/7]: type 2 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[6/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[12/13].class[7/7]: type 3 (is XITouchClass 0)
X11: [CreateWindow]: XI: Scan Window 0x6600016, device[13/13].class[1/1]: type 0 (is XITouchClass 0)
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
92006e4baef57f1f3fb647dd307aed5989fd4c8d
Previous commit 92006e4baef57f1f3fb647dd307aed5989fd4c8d
(Note to Danny: I cannot test this now - please re-test and/or review)
X11Common::JavaWindow
- Owns XI extension's xiOpcode, selected xiTouchDeviceId and tracked XITouchPosition array
X11Window::CreateWindow
- Query XI extension only once @ window creation and earmark xiOpcode in JavaWindow instance
- Fix: Device selection code was "class->type != XITouchClass",
but shouldn't it be 'XITouchClass == class->type' (as patched here)
- Fix: Free XIQueryDevice returned XIDeviceInfo array via XIFreeDeviceInfo
- Earmark deviceid in JavaWindow instance
X11Display
- Moved global static touch_coordinates to JavaWindow::xiTouchCoords instance
X11Display::DispatchMessage
- Changed event handling structure similar to https://keithp.com/blogs/Cursor_tracking/
- Fix: Free XGetEventData's optional memory allocation via XFreeEventData
- Reuse JavaWindow's queried xiOpcode
- Fix: Don't overrise windowPointer, instead validate and require a match. JavaWindow must match!
- Fix: Also validate chosen deviceid with JavaWindow's registered device
Newt Build:
- Added libXi in build recipe and doc
|
|\ \
| | |
| | | |
add touch event support for x11 server
|
| |/ |
|
|\ \
| | |
| | | |
Typo in javadoc of GLDrawable#isRealized
|
| |/ |
|
|\ \
| | |
| | | |
Improved layout of last paragraph in class javadoc
|
| |/ |
|
| |
| |
| |
| |
| |
| | |
GLBufferStateTracker needs to support ARB_indirect_parameters,
i.e. checkTargetName(target) and getQueryName(target)
need to recognize GL4.GL_PARAMETER_BUFFER_ARB.
|
|\ \
| | |
| | | |
Fix viewport height in BCM VC IV ScreenDriver
|
| |/
| |
| |
| | |
This should fix https://jogamp.org/bugzilla/show_bug.cgi?id=1254, which leads to windowed sketches not being centered in Processing.
|
|\ \
| | |
| | | |
SWTAccessor: Cleanup disable debug messages
|
| | | |
|
| | | |
|
| | | |
|
|\ \ \
| | | |
| | | | |
Removing double quotes from included shaders
|
| | |/
| |/|
| | | |
https://jogamp.org/bugzilla/show_bug.cgi?id=1283
|
| | |
| | |
| | |
| | | |
NoDoubleBufferedPBuffer no more required for Mesa >= 18.2.2
|
|\ \ \ |
|
| |\ \ \
| | | | |
| | | | | |
Fix BugZilla bug 1357
|
| | |/ / |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
On [GNU/Linux] X11 JFXEDTUtil is not required, since X11 can handle multi-threaded native parenting,
however, the Windows platform does require JFXEDTUtil.
Currently the default is to use JFXEDTUtil, which operates solely on the JavaFX thread
for windowing lifecycle and even-dispatch operations.
This behavior can be toggled via the boolean property 'jogamp.newt.javafx.UseJFXEDT',
which currently defaults to 'true'
This behavior might be analyzed in more detail for a fine grained EDTUtil decision.
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
NewtCanvasJFX.NativeWindow shall pass through NewtCanvasJFX's Canvas position
to properly position the NEWT child window inside the top level Window.
NewtJFXReparentingKeyAdapter demonstrating manual reparenting demonstrates this case.
TestGearsES2NewtCanvasAWT's default behavior is to use a surrounding border
for the NEWTCanvasAWT child, similar to TestNewtCanvasJFXGLn.
|
| | | |
| | | |
| | | |
| | | | |
NewtJFXReparentingKeyAdapter functionality
|
| | | | |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
NEWTDemoListener
NativeWindowHolder abstracts access to is-a or has-a parent component's NativeWindow
like NewtCanvasAWT, NewtCanvasJFX and NewtCanvasSWT
Adding API Doc for NEWTDemoListener.
|
| | | | |
|
| | | | |
|
| | | |
| | | |
| | | |
| | | |
| | | | |
This is automatically issued when receiving the javafx.stage.WindowEvent#WINDOW_CLOSE_REQUEST
from the attached top-level JavaFX Window
|
| | | | |
|
| | | | |
|
| | | | |
|
|/ / /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
NewtCanvasJFX
NewtCanvasJFX, a JavaFX Canvas Node, allows attaching a native NEWT Window to the JavaFX Node's native Window (if attached).
The mechanism is similar to NewtCanvasAWT.
Current implementation supports placing the NEWT Window
into the JavaFX scene of the native window correctly,
as well as the following different lifecycles
- attach NewtCanvasJFX to already visible group->scene->window
- attach NewtCanvasJFX to not yet visible or attached group->scene->window
- attach NEWT Window before or after NewtCanvasJFX's visibility
The above is covered by unit test: TestNewtCanvasJFXGLn
This is the initial commit for JavaFX support and has been tested on
- OpenJDK 8 + OpenJFX 8
- GNU/Linux X11
|
| | |
| | |
| | |
| | | |
rarely occurs on terminating or killing the process
|
| | |
| | |
| | |
| | | |
Also refactor query to jogamp.nativewindow.BcmVCArtifacts
|
|\ \ \
| | | |
| | | | |
Change BCM VC IV detection to handle presence of vc4 DRI module
|
| | | |
| | | |
| | | |
| | | | |
When the VC4 DRM driver isn't loaded, we want to load the VC IV GLES2 driver, which is - unfortunately - only available as libGLESv2.so.
|
| |/ /
| | |
| | |
| | | |
The recent Raspbian release comes with a vc4 kernel module that can be activated with a device tree overlay. In this case, we want to use the DRI & Mesa / Gallium3D driver instead of the BCM VC IV one, whose userspace library remains in /opt/vc.
|
|\ \ \ |
|
| |/ / |
|
| | |
| | |
| | |
| | | |
We are still on the 2.3.x branch for the next release
|
|\ \ \ |
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | | |
Completes task from Bug1059. These calls are not needed as the VM
implicitly interns String constants when a class is loaded.
Signed-off-by: Harvey Harrison <[email protected]>
|
|/ /
| |
| |
| |
| |
| |
| | |
It turned out to be a missing CATransaction,
i.e. the native create/destroy commands had to be encapsulated
within [CATransaction begin] and [CATransaction commit]
causing the uncommitted CATransaction.
|