| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
|
|
|
| |
'setNEWTChild(..)'
|
|
|
|
| |
position
|
| |
|
|
|
|
|
|
| |
TestGLCanvasSWTNewtCanvasSWTPosInTabs (2/2)
Complete merging unit tests.
|
|
|
|
| |
setBounds(..)
|
|
|
|
|
|
| |
gets realized on MacOS
This fixes GLCanvas's High-DPI scaled size issue on MacOS of Bug 1358.
|
|
|
|
| |
get[Location|Size]InPixels(..) and getLocationOnScreen()
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TestGLCanvasSWTNewtCanvasSWTPosInTabs (1/2)
Testing the TabFolder and a SashForm in the 2nd tab
covering both SWT layout use cases on both out SWT support classes SWT GLCanvas and NewtCanvasSWT.
Merging TestBug1421NewtCanvasSWTPosInTabs + TestBug672NewtCanvasSWTSashFormComposite
into TestGLCanvasSWTNewtCanvasSWTPosInTabs.
TestBug672NewtCanvasSWTSashFormComposite exposes that SWT GLCanvas
still requires work for proper High-DPI scaling on OSX!
|
|
|
|
| |
regardless of High-DPI
|
|
|
|
| |
layout using NewtCanvasSWT on MacOSX with High-DPI Retina
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Even w/ commit fb211581fefc994d1458a2a74801dfb937170f39, propagating the SWT pixelScale to NEWT-Child,
hasPixelScale was never updated via updatePixelScale() through native callback [NSView viewDidChangeBackingProperties]!
[NSView viewDidChangeBackingProperties] not being called on [created] child windows (NewtCanvasSWT)
confused the overal pixelScale state, i.e. no hasPixelScale update via updatePixelScale(..).
This change explicitly queries OSXUtil.GetWindowPixelScale(handle) (commit e6d53e29f05a6928192f6c4a988b2aa558be8d65)for:
1) updateMaxScreenPixelScaleByWindowHandle(..), which now updates the actual hasPixelScale after native creation
and for
2) setSurfaceScale(..), which directly calls updatePixelScale(..) with the queried actual pixelScale
instead of relying on the native callback [NSView viewDidChangeBackingProperties].
|
|
|
|
|
|
|
|
|
| |
utilize it for convertTo*Units(..)
Detected pixelScale on SWT should be propagated to the NEWT Child
using 'newtChild.setSurfaceScale(pixelScale)' to allow an impact.
Also utilize computed pixel for converTo*Units(..) implementation.
|
|
|
|
|
|
|
|
| |
pixel-units
Commit ca7f0fb61b0a608b6e684a5bbde71f6ecb6e3fe0
did one thing wrong: Using the pixel-unit size for
NEWT child window operations where window-units are required.
|
|
|
|
|
| |
It is now possible to retrieve the pixel scale [NSWindow backingScaleFactor]
after native creation by NEWT - as we have changed the lifecycly (all-in-one native method on AppKit)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
lib lookup
New property 'jogl.ffmpeg.lib' may be set to 'internal',
setting PREFER_SYSTEM_LIBS:=false (default it true)
Non system internal libraries are named 'internal_<basename>',
e.g. 'internal_avutil'.
System default libraries are named '<basename>',
e.g. 'avutil'.
If PREFER_SYSTEM_LIBS is true (default),
we lookup the default library first,
then the versioned library names and last the internal library.
If PREFER_SYSTEM_LIBS is false,
we lookup the internal library first,
then the versioned library names and last the default library.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
specialization
On MacOS, commit 12eed5d38616d23b6e8e2e5b497dfc2f54d90c90 replaced all
parent.getLocationOnScreen(..) calls with OSXUtil.GetLocationOnScreen(parentHandle, ..)
avoiding the EDT + Appkit Deadlock with native parenting.
On MacOS AWT and JAWT are using offscreen CALayer since Java >= 1.7.0,
therefor the MacOSXJAWTWindow's native window handle can't be used to gather
the screen position via OSXUtil.
However, the JAWT Window specialization MacOSXJAWTWindow implements a non-locking code-path
and we can decide to use it by querying the general interface OffscreenLayerOption.
|
|
|
|
|
|
|
|
|
|
|
|
| |
its destroyedShares
Picking up Tom Nuydens suggestion to utilize a WeakIdentityHashMap instead of a IdentityHashMap,
allowing destroyed GLContext to be removed from the GLContextShareSet through the GC.
TestSharedContextVBOES2NEWT5 demonstrates the use-case, having one master context
and several slaves being spawn off, killed and new sets to be spawn off.
Here the GLContextShareSet shall not hard-reference the destroyed and user-unreferenced context,
but allowing the system to GC 'em.
|
|
|
|
|
|
|
|
|
| |
- refine some method names, eg
-- 'addNew' -> 'mapNewEntry'
-- 'hasCreatedSharedLeft(..)' -> 'hasCreatedSharesLeft(..)'
- add 'getCreatedShareCount(..)' and 'getDestroyedShareCount(..)'
- add 'getSize()' and 'printMap(..)'
|
| |
|
|
|
|
| |
See gluegen commit 178c7b9d40e06a04790542241912ca21d2c7b92f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GLProfile.computeProfileImpl(..) as of Bug 1084 is not the culprit here and its hardware criteria filter works.
The issue is commit 99a064327bf991318841c858d21d13e55d6b39db of Bug 1203,
in particular the change in GLProfile re:
"Merge computed EGL-Profile-Map (1) and Desktop-Profile-Map (2)
per device, instead of just using the last computation,
preserving and favoratizing the Desktop-Profile-Map."
Here the Desktop-Profile-Map overwrites the EGL-Profile-Map and hence
the software mapping gets used.
Indeed, this is a regression cause by the work of Bug 1203.
+++
Resolution is to revert the explicit 'union mapping'
and rely on an enhanced 'GLContextImpl.remapAvailableGLVersions(fromDevice, toDevice)' function.
Here the EGLDrawableFactory _already_ maps the EGL device's GL Versions to the 'host' device (e.g. X11).
This has to be refined so that the remap will not overwrite the 'host' device's already detected GL Versions.
That alone is enough, so that GLProfile can simply use the 'mappedEGLProfiles' of the 'host' device if detected, which already is a merged mapping of X11 host- and EGL sub-device.
In case no 'mappedEGLProfiles' are available, we simply use the 'mappedDesktopProfiles'.
|
|
|
|
|
|
|
|
|
|
|
|
| |
GLBufferObjectTracker
As of the time of implementation, named immutable buffers were not fully supported within GL 4.4.
This has changed, i.e. GL 4.5 supports glNamedBufferStorage.
This patch adds support for the immutable named buffer storage case.
jogl commit 09fc7aa5539731bb0fba835caee61f6eb837ecff,
added GLBufferObjectTracker allowing to keep required references to NIO object.
This tracker complements the NIO buffer lifecycle with the GL semantics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
available before using
commit f4281b5ee80d7674134bfee357695a98382884a3 for Bug 1156 (DRM/GBM)
introduced the call to 'eglGetPlatformDisplay(..)' for known EGL-platforms.
However, 'eglGetPlatformDisplay(..)' is only available for EGL versions >= 1.5
or 'eglGetPlatformDisplayEXT(..)' if EGL extension 'EGL_EXT_platform_base' is available.
This patch adds a singular EGL version probe and a secondary extension fallback test
at first call using EGL_NO_DISPLAY on both EGL_VERSION and EGL_EXTENSION eglQueryString(..) calls.
If 'eglGetPlatformDisplay*(..)' is not available, simply use 'eglGetDisplay(..)'.
This regression also impacted Bug 1417 (Android bringup using current SDK + NDK),
i.e. disabled most Android devices as their EGL version is often 1.4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
library
DRM/GBM is enabled for Linux in general.
Nativewindow's 'nativewindow_drm' DRM/GBM native library is already seperated.
NEWT get its 'newt_drm' DRM/GBM native library.
NEWT's main head native library is renamed from 'newt' -> 'newt_head'
and is earmarked for further seperation similar to Nativewindow's.
At least a 'newt_wayland' will probably followup when support is added.
Goal is to remove DRM/GBM dependency for Linux X11 operation
as well as removing X11 dependency for Linux DRM/GBM operation.
|
|
|
|
| |
CapabilitiesImmutable not being GLCapabilitiesImmutable
|
|
|
|
| |
reminder
|
|
|
|
|
|
|
|
|
|
| |
TestShutdownCompleteNEWT revealed that EGLDrawableFactory won't be properly
re-created within subsequent GLProfile/GLDrawableFactory initSingleton()
after a GLProfile.shutdown() call.
Hence after the shutdown() call, subsequent GLProfile have no EGLDrawableFactory available and hence may not have a default device existent in case no desktop-factory is available.
Allow EGLDrawableFactory to be re-created after a shutdown().
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and not repositionable.
Our two fixed size and position console cases 'bcm.egl' and 'egl.gbm' (drm.gbm)
only operate in a console like fullscreen mode.
We should earmark and expose this behavior, as well as handle it by not waiting for a position / size
and not attempting to change position and size.
Reducing WindowImpl.minimumReconfigStateMask to bare minimum values:
STATE_MASK_VISIBLE | STATE_MASK_FOCUSED;
New WindowImpl.mutableSizePosReconfigStateMask extends WindowImpl.minimumReconfigStateMask, representing previous values:
STATE_MASK_VISIBLE | STATE_MASK_FOCUSED | STATE_MASK_FULLSCREEN | STATE_MASK_RESIZABLE | STATE_MASK_REPOSITIONABLE;
All WindowDriver implementations previously using WindowImpl.minimumReconfigStateMask
are now using WindowImpl.mutableSizePosReconfigStateMask but the explicit console driver named above.
I would have liked to add the STATE_BIT_FULLSCREEN to the current stateMask to notify this semantics,
however this would have lead to more code changes as our fullscreen mode assumes to be 'on top' of the normal mode.
Here the normal mode is essentially fullscreen and no back/forth fullscreen setting is useful or allowed.
Therefore, both fixed size & position console driver won't expose themselves as being in fullscreen mode.
|
|
|
|
| |
AppKit/EDT deadlock for parent screen location lookup
|
|
|
|
| |
screen position directly w/o locking.
|
|
|
|
| |
in test case
|
|
|
|
|
|
|
| |
clean ExclusiveContextThread
No, this does not resolve the issue - but is the proper test case.
ExclusiveContextBase10 also gets the preVis test.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
whichever is greater)
Certain WM's may modify the windowing position 'a little', which has been experienced on one X11 server
during invisible setting. The insets were removed and its value added to the position!
We could argue that this is an issue in our windowing code, however, the WM is free to reposition a window.
Refines commit b8db98376069a72ad40b7ef2fe2d9003aea2b091
|
|
|
|
|
|
|
|
|
|
| |
NVIDIA 440.36 using FBO
Tested with com.jogamp.opengl.test.junit.jogl.tile.TestTiledPrintingGearsNewtAWT,
which crashes in native makeCurrent of NV driver gl-core when using SurfacelessCtx.
Therefor we had to revert the commit 4fe9e1dfa67f4e5d614f48c02ad88e4cdd1ed415
enabling SurfacelessCtx with NV driver >= 430.40.
|
|
|
|
|
|
| |
earmark spanning across monitors
drmModeSetCrtc(..)'s x/y parameter are the surface's offset to be scanned out from one CRT!
|
| |
|
|
|
|
| |
(NewtCommon.c)
|
|
|
|
|
|
|
|
|
|
|
| |
XPeekEvent(..)
The wait loop uses XPeekEvent(dpy, &e),
which can block indefinite if queue is empty.
Replace with timeout only _and_ only wait on CreateWindow0(..)
not when queried via X11Display dispatch loop on events
when it is assumed the information has been propagated already.
|
|
|
|
| |
(X11Display + X11Window)
|
|
|
|
|
|
|
|
|
|
|
| |
closing)
Commit d5ba4cae824087879a4857e20961a95da04eaebb clarified and simplified the lifecycle of a PointerImpl instance, i.e. drop its resurrection in
PointerImpl.validateHandle() in favor of a hard exception.
This caused detection of subsequent PointerImpl lifecycle issues,
as instances were not fully destroyed on Display closing and
references not null'ed in Display and Screen instances.
|
|
|
|
| |
This bug never allowed a PointerIconImpl to be destroyed via PointerIconImpl.destroy()
|
|
|
|
|
|
|
|
|
| |
stdin in vsync-wait-loop
User input during test from the console will also end up in stdin of the console after the java application has been closed.
This is not only annoying, but also a security concern, as the input gets executed if containing a CR.
Further, the vsync-wait-loop shall ignore stdin.
|
|
|
|
| |
Move native handle check to pre-destruction call in PointerIconImpl.destroyOnEDT(..), unifying single destruction and all.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ReleasePrimitiveArrayCritical(..) in GetPrimitiveArrayCritical(..) code path!
Now that was quite a miss, causing the bugs in the first place!
The freeze was caused in the JVM, as this open GetPrimitiveArrayCritical(..) disabled the GC.
This was reported via '-Xcheck:jni'.
Depending on the system/jvm, the freeze may happen early or only after a while.
This code path was not executed with new property 'newt.disable.PointerIcon' set,
but from there to finding the missing critical release - a journey:
- jstack showed
"main" #1 prio=5 os_prio=0 cpu=275.71ms elapsed=51.93s allocated=9710K defined_classes=472 tid=0x00007f7084015000 nid=0x1a39 waiting on condition [0x00007f70897c2000]
java.lang.Thread.State: RUNNABLE
at jogamp.opengl.es3.GLES3Impl.dispatch_glUniformMatrix4fv1(Native Method)
at jogamp.opengl.es3.GLES3Impl.glUniformMatrix4fv(GLES3Impl.java:2585)
at jogamp.opengl.es3.GLES3Impl.glUniform(GLES3Impl.java:10713)
-- said that this thread was no more running, waiting on condition ..
-- glUniformMatrix4fv1 was given an array!
- '-Xcheck:jni' gave:
Warning: Calling other JNI functions in the scope of Get/ReleasePrimitiveArrayCritical or Get/ReleaseStringCritical
-- Now it is clear that the lack of releasing the critical array, returning to Java and then calling other JNI methods
caused the Warning - and eventually the freeze.
|
| |
|
|
|
|
| |
launch script test-demo-launcher0.sh: Tested with '-Xcheck:jni'
|
|
|
|
|
|
|
| |
initialization
Was within hasOpenGLDesktopSupport(), but then DesktopGL libs would have been already loaded and looked-up.
This is not necessary and only wastes resources and time.
|
| |
|