From 81c911541690f573b631974212f0e49d4d83daba Mon Sep 17 00:00:00 2001 From: petrs Date: Sun, 2 Jun 2013 20:41:32 +0200 Subject: reformatted to same style --- .../classes/com/jogamp/opengl/math/Quaternion.java | 387 +++++++++++---------- 1 file changed, 207 insertions(+), 180 deletions(-) (limited to 'src/jogl') diff --git a/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java b/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java index 0cc5f5ae7..cf0496cbe 100644 --- a/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java +++ b/src/jogl/classes/com/jogamp/opengl/math/Quaternion.java @@ -27,191 +27,204 @@ */ package com.jogamp.opengl.math; - - public class Quaternion { - protected float x,y,z,w; + protected float x, y, z, w; - public Quaternion(){ + public Quaternion() { } - + public Quaternion(float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; } - - /** Constructor to create a rotation based quaternion from two vectors + + /** + * Constructor to create a rotation based quaternion from two vectors + * * @param vector1 * @param vector2 */ - public Quaternion(float[] vector1, float[] vector2) - { - float theta = (float)FloatUtil.acos(dot(vector1, vector2)); - float[] cross = cross(vector1,vector2); + public Quaternion(float[] vector1, float[] vector2) { + float theta = (float) FloatUtil.acos(dot(vector1, vector2)); + float[] cross = cross(vector1, vector2); cross = normalizeVec(cross); - this.x = (float)FloatUtil.sin(theta/2)*cross[0]; - this.y = (float)FloatUtil.sin(theta/2)*cross[1]; - this.z = (float)FloatUtil.sin(theta/2)*cross[2]; - this.w = (float)FloatUtil.cos(theta/2); + this.x = (float) FloatUtil.sin(theta / 2) * cross[0]; + this.y = (float) FloatUtil.sin(theta / 2) * cross[1]; + this.z = (float) FloatUtil.sin(theta / 2) * cross[2]; + this.w = (float) FloatUtil.cos(theta / 2); this.normalize(); } - - /** Transform the rotational quaternion to axis based rotation angles + + /** + * Transform the rotational quaternion to axis based rotation angles + * * @return new float[4] with ,theta,Rx,Ry,Rz */ - public float[] toAxis() - { + public float[] toAxis() { float[] vec = new float[4]; - float scale = (float)FloatUtil.sqrt(x * x + y * y + z * z); - vec[0] =(float) FloatUtil.acos(w) * 2.0f; + float scale = (float) FloatUtil.sqrt(x * x + y * y + z * z); + vec[0] = (float) FloatUtil.acos(w) * 2.0f; vec[1] = x / scale; vec[2] = y / scale; vec[3] = z / scale; return vec; } - - /** Normalize a vector + + /** + * Normalize a vector + * * @param vector input vector * @return normalized vector */ - private float[] normalizeVec(float[] vector) - { + private float[] normalizeVec(float[] vector) { float[] newVector = new float[3]; - float d = FloatUtil.sqrt(vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2]); - if(d> 0.0f) - { - newVector[0] = vector[0]/d; - newVector[1] = vector[1]/d; - newVector[2] = vector[2]/d; + float d = FloatUtil.sqrt(vector[0] * vector[0] + vector[1] * vector[1] + + vector[2] * vector[2]); + if (d > 0.0f) { + newVector[0] = vector[0] / d; + newVector[1] = vector[1] / d; + newVector[2] = vector[2] / d; } return newVector; } - /** compute the dot product of two points + + /** + * compute the dot product of two points + * * @param vec1 vector 1 * @param vec2 vector 2 * @return the dot product as float */ - private float dot(float[] vec1, float[] vec2) - { - return (vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2]); + private float dot(float[] vec1, float[] vec2) { + return (vec1[0] * vec2[0] + vec1[1] * vec2[1] + vec1[2] * vec2[2]); } - /** cross product vec1 x vec2 + + /** + * cross product vec1 x vec2 + * * @param vec1 vector 1 * @param vec2 vecttor 2 * @return the resulting vector */ - private float[] cross(float[] vec1, float[] vec2) - { + private float[] cross(float[] vec1, float[] vec2) { float[] out = new float[3]; - out[0] = vec2[2]*vec1[1] - vec2[1]*vec1[2]; - out[1] = vec2[0]*vec1[2] - vec2[2]*vec1[0]; - out[2] = vec2[1]*vec1[0] - vec2[0]*vec1[1]; + out[0] = vec2[2] * vec1[1] - vec2[1] * vec1[2]; + out[1] = vec2[0] * vec1[2] - vec2[2] * vec1[0]; + out[2] = vec2[1] * vec1[0] - vec2[0] * vec1[1]; return out; } + public float getW() { return w; } + public void setW(float w) { this.w = w; } + public float getX() { return x; } + public void setX(float x) { this.x = x; } + public float getY() { return y; } + public void setY(float y) { this.y = y; } + public float getZ() { return z; } + public void setZ(float z) { this.z = z; } - /** Add a quaternion + /** + * Add a quaternion + * * @param q quaternion */ - public void add(Quaternion q) - { - x+=q.x; - y+=q.y; - z+=q.z; + public void add(Quaternion q) { + x += q.x; + y += q.y; + z += q.z; } - - /** Subtract a quaternion + + /** + * Subtract a quaternion + * * @param q quaternion */ - public void subtract(Quaternion q) - { - x-=q.x; - y-=q.y; - z-=q.z; + public void subtract(Quaternion q) { + x -= q.x; + y -= q.y; + z -= q.z; } - - /** Divide a quaternion by a constant + + /** + * Divide a quaternion by a constant + * * @param n a float to divide by */ - public void divide(float n) - { - x/=n; - y/=n; - z/=n; + public void divide(float n) { + x /= n; + y /= n; + z /= n; } - - /** Multiply this quaternion by - * the param quaternion + + /** + * Multiply this quaternion by the param quaternion + * * @param q a quaternion to multiply with */ - public void mult(Quaternion q) - { - float w1 = w*q.w - x*q.x - y*q.y - z*q.z; + public void mult(Quaternion q) { + float w1 = w * q.w - x * q.x - y * q.y - z * q.z; - float x1 = w*q.x + x*q.w + y*q.z - z*q.y; - float y1 = w*q.y - x*q.z + y*q.w + z*q.x; - float z1 = w*q.z + x*q.y - y*q.x + z*q.w; + float x1 = w * q.x + x * q.w + y * q.z - z * q.y; + float y1 = w * q.y - x * q.z + y * q.w + z * q.x; + float z1 = w * q.z + x * q.y - y * q.x + z * q.w; w = w1; x = x1; y = y1; - z = z1; + z = z1; } - - /** Multiply a quaternion by a constant + + /** + * Multiply a quaternion by a constant + * * @param n a float constant */ - public void mult(float n) - { - x*=n; - y*=n; - z*=n; + public void mult(float n) { + x *= n; + y *= n; + z *= n; } - - /** Normalize a quaternion required if - * to be used as a rotational quaternion + + /** + * Normalize a quaternion required if to be used as a rotational quaternion */ - public void normalize() - { - float norme = (float)FloatUtil.sqrt(w*w + x*x + y*y + z*z); - if (norme == 0.0f) - { - w = 1.0f; + public void normalize() { + float norme = (float) FloatUtil.sqrt(w * w + x * x + y * y + z * z); + if (norme == 0.0f) { + w = 1.0f; x = y = z = 0.0f; - } - else - { - float recip = 1.0f/norme; + } else { + float recip = 1.0f / norme; w *= recip; x *= recip; @@ -219,42 +232,42 @@ public class Quaternion { z *= recip; } } - - /** Invert the quaternion If rotational, - * will produce a the inverse rotation + + /** + * Invert the quaternion If rotational, will produce a the inverse rotation */ - public void inverse() - { - float norm = w*w + x*x + y*y + z*z; + public void inverse() { + float norm = w * w + x * x + y * y + z * z; - float recip = 1.0f/norm; + float recip = 1.0f / norm; w *= recip; - x = -1*x*recip; - y = -1*y*recip; - z = -1*z*recip; + x = -1 * x * recip; + y = -1 * y * recip; + z = -1 * z * recip; } - - /** Transform this quaternion to a - * 4x4 column matrix representing the rotation - * @return new float[16] column matrix 4x4 + + /** + * Transform this quaternion to a 4x4 column matrix representing the + * rotation + * + * @return new float[16] column matrix 4x4 */ - public float[] toMatrix() - { + public float[] toMatrix() { float[] matrix = new float[16]; - matrix[0] = 1.0f - 2*y*y - 2*z*z; - matrix[1] = 2*x*y + 2*w*z; - matrix[2] = 2*x*z - 2*w*y; + matrix[0] = 1.0f - 2 * y * y - 2 * z * z; + matrix[1] = 2 * x * y + 2 * w * z; + matrix[2] = 2 * x * z - 2 * w * y; matrix[3] = 0; - matrix[4] = 2*x*y - 2*w*z; - matrix[5] = 1.0f - 2*x*x - 2*z*z; - matrix[6] = 2*y*z + 2*w*x; + matrix[4] = 2 * x * y - 2 * w * z; + matrix[5] = 1.0f - 2 * x * x - 2 * z * z; + matrix[6] = 2 * y * z + 2 * w * x; matrix[7] = 0; - matrix[8] = 2*x*z + 2*w*y; - matrix[9] = 2*y*z - 2*w*x; - matrix[10] = 1.0f - 2*x*x - 2*y*y; + matrix[8] = 2 * x * z + 2 * w * y; + matrix[9] = 2 * y * z - 2 * w * x; + matrix[10] = 1.0f - 2 * x * x - 2 * y * y; matrix[11] = 0; matrix[12] = 0; @@ -263,15 +276,18 @@ public class Quaternion { matrix[15] = 1; return matrix; } - - /** Set this quaternion from a Sphereical interpolation - * of two param quaternion, used mostly for rotational animation. - *

- * Note: Method does not normalize this quaternion! - *

- *

- * See http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ - *

+ + /** + * Set this quaternion from a Sphereical interpolation of two param + * quaternion, used mostly for rotational animation. + *

+ * Note: Method does not normalize this quaternion! + *

+ *

+ * See http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/ + * quaternions/slerp/ + *

+ * * @param a initial quaternion * @param b target quaternion * @param t float between 0 and 1 representing interp. @@ -279,7 +295,7 @@ public class Quaternion { public void slerp(Quaternion a, Quaternion b, float t) { final float cosom = a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; final float t1 = 1.0f - t; - + // if the two quaternions are close, just use linear interpolation if (cosom >= 0.95f) { x = a.x * t1 + b.x * t; @@ -288,8 +304,9 @@ public class Quaternion { w = a.w * t1 + b.w * t; return; } - - // the quaternions are nearly opposite, we can pick any axis normal to a,b + + // the quaternions are nearly opposite, we can pick any axis normal to + // a,b // to do the rotation if (cosom <= -0.99f) { x = 0.5f * (a.x + b.x); @@ -298,94 +315,104 @@ public class Quaternion { w = 0.5f * (a.w + b.w); return; } - + // cosom is now withion range of acos, do a SLERP final float sinom = FloatUtil.sqrt(1.0f - cosom * cosom); final float omega = FloatUtil.acos(cosom); - + final float scla = FloatUtil.sin(t1 * omega) / sinom; - final float sclb = FloatUtil.sin( t * omega) / sinom; - + final float sclb = FloatUtil.sin(t * omega) / sinom; + x = a.x * scla + b.x * sclb; y = a.y * scla + b.y * sclb; z = a.z * scla + b.z * sclb; w = a.w * scla + b.w * sclb; } - - /** Check if this quaternion is empty, ie (0,0,0,1) + + /** + * Check if this quaternion is empty, ie (0,0,0,1) + * * @return true if empty, false otherwise */ - public boolean isEmpty() - { - if (w==1 && x==0 && y==0 && z==0) + public boolean isEmpty() { + if (w == 1 && x == 0 && y == 0 && z == 0) return true; return false; } - - /** Check if this quaternion represents an identity - * matrix, for rotation. + + /** + * Check if this quaternion represents an identity matrix, for rotation. + * * @return true if it is an identity rep., false otherwise */ - public boolean isIdentity() - { - if (w==0 && x==0 && y==0 && z==0) + public boolean isIdentity() { + if (w == 0 && x == 0 && y == 0 && z == 0) return true; return false; } - - /** compute the quaternion from a 3x3 column matrix - * @param m 3x3 column matrix + + /** + * compute the quaternion from a 3x3 column matrix + * + * @param m 3x3 column matrix */ public void setFromMatrix(float[] m) { - float T= m[0] + m[4] + m[8] + 1; - if (T>0){ - float S = 0.5f / (float)FloatUtil.sqrt(T); + float T = m[0] + m[4] + m[8] + 1; + if (T > 0) { + float S = 0.5f / (float) FloatUtil.sqrt(T); w = 0.25f / S; - x = ( m[5] - m[7]) * S; - y = ( m[6] - m[2]) * S; - z = ( m[1] - m[3] ) * S; - } - else{ - if ((m[0] > m[4])&(m[0] > m[8])) { - float S = FloatUtil.sqrt( 1.0f + m[0] - m[4] - m[8] ) * 2f; // S=4*qx + x = (m[5] - m[7]) * S; + y = (m[6] - m[2]) * S; + z = (m[1] - m[3]) * S; + } else { + if ((m[0] > m[4]) & (m[0] > m[8])) { + float S = FloatUtil.sqrt(1.0f + m[0] - m[4] - m[8]) * 2f; // S=4*qx w = (m[7] - m[5]) / S; x = 0.25f * S; - y = (m[3] + m[1]) / S; - z = (m[6] + m[2]) / S; - } - else if (m[4] > m[8]) { - float S = FloatUtil.sqrt( 1.0f + m[4] - m[0] - m[8] ) * 2f; // S=4*qy + y = (m[3] + m[1]) / S; + z = (m[6] + m[2]) / S; + } else if (m[4] > m[8]) { + float S = FloatUtil.sqrt(1.0f + m[4] - m[0] - m[8]) * 2f; // S=4*qy w = (m[6] - m[2]) / S; - x = (m[3] + m[1]) / S; + x = (m[3] + m[1]) / S; y = 0.25f * S; - z = (m[7] + m[5]) / S; - } - else { - float S = FloatUtil.sqrt( 1.0f + m[8] - m[0] - m[4] ) * 2f; // S=4*qz + z = (m[7] + m[5]) / S; + } else { + float S = FloatUtil.sqrt(1.0f + m[8] - m[0] - m[4]) * 2f; // S=4*qz w = (m[3] - m[1]) / S; - x = (m[6] + m[2]) / S; - y = (m[7] + m[5]) / S; + x = (m[6] + m[2]) / S; + y = (m[7] + m[5]) / S; z = 0.25f * S; - } + } } } - - /** Check if the the 3x3 matrix (param) is in fact - * an affine rotational matrix + + /** + * Check if the the 3x3 matrix (param) is in fact an affine rotational + * matrix + * * @param m 3x3 column matrix * @return true if representing a rotational matrix, false otherwise */ public boolean isRotationMatrix(float[] m) { double epsilon = 0.01; // margin to allow for rounding errors - if (FloatUtil.abs(m[0]*m[3] + m[3]*m[4] + m[6]*m[7]) > epsilon) return false; - if (FloatUtil.abs(m[0]*m[2] + m[3]*m[5] + m[6]*m[8]) > epsilon) return false; - if (FloatUtil.abs(m[1]*m[2] + m[4]*m[5] + m[7]*m[8]) > epsilon) return false; - if (FloatUtil.abs(m[0]*m[0] + m[3]*m[3] + m[6]*m[6] - 1) > epsilon) return false; - if (FloatUtil.abs(m[1]*m[1] + m[4]*m[4] + m[7]*m[7] - 1) > epsilon) return false; - if (FloatUtil.abs(m[2]*m[2] + m[5]*m[5] + m[8]*m[8] - 1) > epsilon) return false; - return (FloatUtil.abs(determinant(m)-1) < epsilon); + if (FloatUtil.abs(m[0] * m[3] + m[3] * m[4] + m[6] * m[7]) > epsilon) + return false; + if (FloatUtil.abs(m[0] * m[2] + m[3] * m[5] + m[6] * m[8]) > epsilon) + return false; + if (FloatUtil.abs(m[1] * m[2] + m[4] * m[5] + m[7] * m[8]) > epsilon) + return false; + if (FloatUtil.abs(m[0] * m[0] + m[3] * m[3] + m[6] * m[6] - 1) > epsilon) + return false; + if (FloatUtil.abs(m[1] * m[1] + m[4] * m[4] + m[7] * m[7] - 1) > epsilon) + return false; + if (FloatUtil.abs(m[2] * m[2] + m[5] * m[5] + m[8] * m[8] - 1) > epsilon) + return false; + return (FloatUtil.abs(determinant(m) - 1) < epsilon); } + private float determinant(float[] m) { - return m[0]*m[4]*m[8] + m[3]*m[7]*m[2] + m[6]*m[1]*m[5] - m[0]*m[7]*m[5] - m[3]*m[1]*m[8] - m[6]*m[4]*m[2]; + return m[0] * m[4] * m[8] + m[3] * m[7] * m[2] + m[6] * m[1] * m[5] + - m[0] * m[7] * m[5] - m[3] * m[1] * m[8] - m[6] * m[4] * m[2]; } } -- cgit v1.2.3