Jogl - User's Guide

Overview

Jogl is a Java programming language binding for the OpenGL 3D graphics API. It supports integration with the Java platform's AWT and Swing widget sets while providing a minimal and easy-to-use API that handles many of the issues associated with building multithreaded OpenGL applications. Jogl provides access to the latest OpenGL routines (OpenGL 2.0 with vendor extensions) as well as platform-independent access to hardware-accelerated offscreen rendering ("pbuffers"). Jogl also provides some of the most popular features introduced by other Java bindings for OpenGL like GL4Java, LWJGL and Magician, including a composable pipeline model which can provide faster debugging for Java-based OpenGL applications than the analogous C program.

Jogl was designed for the most recent version of the Java platform and for this reason supports only J2SE 1.4 and later. It also only supports truecolor (15 bits per pixel and higher) rendering; it does not support color-indexed modes. Certain areas of the public APIs are more restrictive than in other bindings; for example, the GLCanvas and GLJPanel classes are final, unlike in GL4Java, and the GLContext class is no longer exposed in the public API. These changes have been made to keep the public API simple and because most of the programming errors that have been seen with earlier Java/OpenGL interfaces, in particular GL4Java, have been related to subclassing the OpenGL widget classes and performing manual OpenGL context management. Several complex and leading-edge OpenGL demonstrations have been successfully ported from C/C++ to Jogl without needing direct access to any of these APIs. However, all of these classes and concepts are accessible at the Java programming language level in implementation packages, and in fact the Jogl binding is itself written almost completely in the Java programming language. There are roughly 150 lines of handwritten C code in the entire Jogl source base (100 of which work around bugs in older OpenGL drivers on Windows); the rest of the native code is autogenerated during the build process by a new tool called GlueGen, the source code of which is in the Jogl source tree. Documentation for GlueGen is forthcoming.

Creating a GLDrawable

Jogl provides two basic widgets into which OpenGL rendering can be performed. The GLCanvas is a heavyweight AWT widget which supports hardware acceleration and which is intended to be the primary widget used by applications. The GLJPanel is a fully Swing-compatible lightweight widget which supports hardware acceleration but which is not as fast as the GLCanvas because it reads back the frame buffer in order to draw it using Java2D. The GLJPanel is intended to provide 100% correct Swing integration in the circumstances where a GLCanvas can not be used. See this article on The Swing Connection for more information about mixing lightweight and heavyweight widgets. See also the section on "Heavyweight and Lightweight Issues" below.

Both the GLCanvas and GLJPanel implement a common interface called GLDrawable so applications can switch between them with minimal code changes. The GLDrawable interface provides

GLCanvas and GLJPanel instances are created using the factory methods in GLDrawableFactory. These factory methods allow the user to request a certain set of OpenGL parameters in the form of a GLCapabilities object, to customize the format selection algorithm by specifying a GLCapabilitiesChooser, to share textures and display lists with other GLDrawables, and to specify the display device on which the GLDrawable will be created.

A GLCapabilities object specifies the OpenGL parameters for a newly-created widget, such as the color, alpha,, z-buffer and accumulation buffer bit depths and whether the widget is double-buffered. The default capabilities are loosely specified but provide for truecolor RGB, a reasonably large depth buffer, double-buffered, with no alpha, stencil, or accumulation buffers.

An application can override the default pixel format selection algorithm by providing a GLCapabilitiesChooser to the GLDrawableFactory. The chooseCapabilities method will be called with all of the available pixel formats as an array of GLCapabilities objects, as well as the index indicating the window system's recommended choice; it should return an integer index into this array. The DefaultGLCapabilitiesChooser uses the window system's recommendation when it is available, and otherwise attempts to use a platform-independent selection algorithm.

Writing a GLEventListener

Applications implement the GLEventListener interface to perform OpenGL drawing. When the methods of the GLEventListener are called, the underlying OpenGL context associated with the drawable is already current. The listener fetches the GL object out of the GLDrawable and begins to perform rendering.

The init() method is called when a new OpenGL context is created for the given GLDrawable. Any display lists or textures used during the application's normal rendering loop can be safely initialized in init(). It is important to note that because the underlying AWT window may be destroyed and recreated while using the same GLCanvas and GLEventListener, the GLEventListener's init() method may be called more than once during the lifetime of the application. The init() method should therefore be kept as short as possible and only contain the OpenGL initialization required for the display() method to run properly. It is the responsibility of the application to keep track of how its various OpenGL contexts share display lists, textures and other OpenGL objects so they can be either be reinitialized or so that reinitialization can be skipped when the init() callback is called.

The display() method is called to perform per-frame rendering. The reshape() method is called when the drawable has been resized; the default implementation automatically resizes the OpenGL viewport so often it is not necessary to do any work in this method. The displayChanged() method is designed to allow applications to support on-the-fly screen mode switching, but support for this is not yet implemented so the body of this method should remain empty.

It is strongly recommended that applications always refetch the GL and GLU objects out of the GLDrawable upon each call to the init(), display() and reshape() methods and pass the GL object down on the stack to any drawing routines, as opposed to storing the GL in a field and referencing it from there. The reason is that multithreading issues inherent to the AWT toolkit make it difficult to reason about which threads certain operations are occurring on, and if the GL object is stored in a field it is unfortunately too easy to accidentally make OpenGL calls from a thread that does not have a current context. This will usually cause the application to crash. For more information please see the section on multithreading.

Using the Composable Pipeline

Jogl supports the "composable pipeline" paradigm introduced by the Magician Java binding for OpenGL. The DebugGL pipeline calls glGetError after each OpenGL call, reporting any errors found. It can greatly speed up development time because of its fine-grained error checking as opposed to the manual error checking usually required in OpenGL programs written in C. The TraceGL prints logging information upon each OpenGL call and is helpful when an application crash makes it difficult to see where the error occurred.

To use these pipelines, call GLDrawable.setGL at the beginning of the init method in your GLEventListener. For example,

class MyListener implements GLEventListener {
  public void init(GLDrawable drawable) {
    drawable.setGL(new DebugGL(drawable.getGL()));
    // ...
  }

  // ...
}

Heavyweight and Lightweight Issues

As mentioned above, JOGL supplies both a heavyweight (GLCanvas) and a lightweight (GLJPanel) widget to be able to provide the fastest possible performance for applications which need it as well as 100% correct Swing integration, again for applications which need it. The GLCanvas provides much higher performance than the GLJPanel in nearly all situations and can be used in almost every kind of application except those using JInternalFrames. Please see the Swing Connection article mentioned above for details on mixing heavyweight and lightweight widgets. A couple of common pitfalls are described here.

When using JPopupMenus or Swing tool tips in conjunction with the GLCanvas, it is necessary to disable the use of lightweight widgets for the popups. See the methods ToolTipManager.setLightWeightPopupEnabled, JPopupMenu.setLightWeightPopupEnabled, and JPopupMenu.setDefaultLightWeightPopupEnabled.

There are occasionally problems with certain LayoutManagers and component configurations where if a GLCanvas is placed in the middle of a set of lightweight widgets then it may only grow and never shrink. These issues are documented somewhat in JOGL Issue 135 and most recently in the thread "Resize behaviour" in the JOGL forum. The root cause is behavior of the Canvas, and in particular its ComponentPeer. The implementation of getPreferredSize() calls getMinimumSize() and getMinimumSize() turns around and calls Component.getSize(). This effectively means that the Canvas will report its preferred size as being as large as the component has ever been. For some layout managers this doesn't seem to matter, but for others like the BoxLayout it does. See the test case attached to Issue 135 for an example. Replacing the GLCanvas with an ordinary Canvas yields the same behavior.

One suggestion was to override getPreferredSize() so that if a preferred size has not been set by the user, to default to (0, 0). This works fine for some test cases but breaks all of the other JOGL demos because they use a different LayoutManager. There appear to be a lot of interactions between heavyweight vs. lightweight widgets and layout managers. One experiment which was done was to override setSize() in GLCanvas to update the preferred size. This works down to the size specified by the user; if the window is resized any smeller the same problem appears. If reshape() (the base routine of setSize(), setBounds(), etc.) is changed to do the same thing, the demo breaks in the same way it originally did. Therefore this solution is fragile because it isn't clear which of these methods are used internally by the AWT and for what purposes.

There are two possible solutions, both application-specific. The best and most portable appears to be to put the GLCanvas into a JPanel and set the JPanel's preferred size to (0, 0). The JPanel will cause this constraint to be enforced on its contained GLCanvas. The other workaround is to call setPreferredSize(new Dimension(0, 0)) on a newly-created GLCanvas; this method is new in 1.5.

Another issue that occasionally arises on Windows is flickering during live resizing of a GLCanvas. This is caused by the AWT's repainting the background of the Canvas and can not be overridden on a per-Canvas basis, for example when subclassing Canvas into GLCanvas. The repainting of the background of Canvases on Windows can be disabled by specifying the system property -Dsun.awt.noerasebackground=true. Whether to specify this flag depends on the application and should not be done universally, but instead on a case-by-case basis. Some more detail is in the thread "TIP: JOGL + Swing flicker" in the JOGL forum.

Multithreading Issues

Jogl was designed to interoperate with the AWT, an inherently multithreaded GUI toolkit. OpenGL, in contrast, was originally designed in single-threaded C programming environments. For this reason Jogl provides a framework in which it is possible to write correct multithreaded OpenGL applications using the GLEventListener paradigm.

If an application written using Jogl interacts in any way with the mouse or keyboard, the AWT is processing these events and the multithreaded aspects of the program must be considered.

OpenGL applications usually behave in one of two ways: either they repaint only on demand, for example when mouse input comes in, or they repaint continually, regardless of whether user input is coming in. In the repaint-on-demand model, the application can merely call GLDrawable.display() manually at the end of the mouse or keyboard listener to cause repainting to be done. Alternatively if the application knows the concrete type of the GLDrawable it can call repaint() to have the painting scheduled for a later time.

In the continuous repaint model, the application typically has a main loop which is calling GLDrawable.display() repeatedly, or is using the Animator class, which does this internally. In both of these cases the OpenGL rendering will be done on this thread rather than the internal AWT event queue thread which dispatches mouse and keyboard events.

Both of these models (repaint-on-demand and repaint continually) still require the user to think about which thread keyboard and mouse events are coming in on, and which thread is performing the OpenGL rendering. OpenGL rendering may not occur directly inside the mouse or keyboard handlers, because the OpenGL context for the drawable is not current at this point (hence the warning about storing a GL object in a field, where it can be fetched and accidentally used by another thread). However, a mouse or keyboard listener may invoke GLDrawable.display().

It is generally recommended that applications perform as little work as possible inside their mouse and keyboard handlers to keep the GUI responsive. However, since OpenGL commands can not be run from directly within the mouse or keyboard event listener, the best practice is to store off state when the listener is entered and retrieve this state during the next call to GLEventListener.display().

Furthermore, it is recommended that if there are long computational sequences in the GLEventListener's display method which reference variables which may be being simultaneously modified by the AWT thread (mouse and keyboard listeners) that copies of these variables be made upon entry to display and these copies be referenced throughout display() and the methods it calls. This will prevent the values from changing while the OpenGL rendering is being performed. Errors of this kind show up in many ways, including certain kinds of flickering of the rendered image as certain pieces of objects are rendered in one place and other pieces are rendered elsewhere in the scene. Restructuring the display() method as described has solved all instances of this kind of error that have been seen with Jogl to date.

Prior to Jogl 1.1 b10, the Jogl library attempted to give applications strict control over which thread or threads performed OpenGL rendering. The setRenderingThread(), setNoAutoRedrawMode() and display() APIs were originally designed to allow the application to create its own animation thread and avoid OpenGL context switching on platforms that supported it. Unfortunately, serious stability issues caused by multithreading bugs in either vendors' OpenGL drivers or in the Java platform implementation have arisen on three of Jogl's major supported platforms: Windows, Linux and Mac OS X. In order to address these bugs, the threading model in Jogl 1.1 b10 and later has changed.

All GLEventListener callbacks and other internal OpenGL context management are now performed on one thread. (In the current implementation, this thread is the AWT event queue thread, which is a thread internal to the implementation of the AWT and which is always present when the AWT is being used. Future versions of Jogl may change the thread on which the OpenGL work is performed.) When the GLDrawable.display() method is called from user code, it now performs the work synchronously on the AWT event queue thread, even if the calling thread is a different thread. The setRenderingThread() optimization is now a no-op. The setNoAutoRedraw() API still works as previously advertised, though now that all work is done on the AWT event queue thread it no longer needs to be used in most cases. (It was previously useful for working around certain kinds of OpenGL driver bugs.)

Most applications will not see a change in behavior from this change in the Jogl implementation. Applications which use thread-local storage or complex multithreading and synchronization may see a change in their control flow requiring code changes. While it is strongly recommended to change such applications to work under the new threading model, the old threading model can be used by specifying the system property -Djogl.1thread=auto or -Djogl.1thread=false. The "auto" setting is equivalent to the behavior in 1.1 b09 and before, where on ATI cards the single-threaded mode would be used. The "false' setting is equivalent to disabling the single-threaded mode. "true" is now the default setting.

Pbuffers

Jogl exposes hardware-accelerated offscreen rendering (pbuffers) with a minimal and platform-agnostic API. Several recent demos have been successfully ported from C/C++ to Java using Jogl's pbuffer APIs. However, the pbuffer support in Jogl remains one of the more experimental aspects of the package and the APIs may need to change in the future.

To create a pbuffer, create a GLCanvas and (assuming it reports that it can create an offscreen drawable) make a pbuffer using the createOffscreenDrawable API. Because of the multithreaded nature of the AWT, the pbuffer is actually created lazily. However, even if multiple pbuffers are created, and the order in which they are rendered is significant, handling the lazy instantiation can be straightforward: the display(GLDrawable) method of one pbuffer's GLEventListener can directly call another pbuffer's display() method. See the source code for the Jogl demonstrations such as the ProceduralTexturePhysics demo and the HDR demo for examples of this usage.

Additionally, pbuffers are only created when the parent GLCanvas's display(), init(), or reshape() methods are called; in other words, it may be necessary to manually "prime" the GLCanvas by calling display() on it until it creates all of its requested pbuffers. Again, please see the demonstrations for concrete examples of this. We hope that it may be possible to hide many of these details in the future.

A pbuffer is used by calling its display() method. Rendering, as always, occurs while the pbuffer's OpenGL context is current. There are render-to-texture options that can be specified in the GLCapabilities for the pbuffer which can make it easier to operate upon the resulting pixels. These APIs are however highly experimental and not yet implemented on all platforms.

GLU

Jogl contains support for the GLU (OpenGL Utility Library) version 1.3. Jogl originally supported GLU by wrapping the C version of the APIs, but over time, and thanks to the contributions of several individuals, it now uses a pure-Java version of SGI's GLU library. The pure Java port is enabled by default, and addresses stability issues on certain Linux distributions as well as the lack of native GLU 1.3 support on the Windows platform. In case of problems with the Java port, the C version of the GLU library may be used by specifying the system property -Djogl.glu.nojava on the command line. All of the same functionality is exposed with both the Java and C versions of the GLU library; currently NURBS support is the only missing feature on both sides. If you run into problems with the Java port of the GLU library please file a bug using the Issue Tracker on the Jogl home page.

More Resources

The JOGL forum on javagaming.org is the best place to ask questions about the library. Many users, as well as the Jogl developers, read this forum frequently, and the archived threads contain a lot of useful information (which still needs to be distilled into documentation).

The JOGL demos provide several examples of usage of the library.

Pepijn Van Eeckhoudt has done JOGL ports of many of the the NeHe demos. These are small examples of various pieces of OpenGL functionality. See also the NeHe web site.

Pepijn also did a JOGL port of Paolo Martella's GLExcess demo. To see the news update about this port, go to the main GLExcess site and scroll down.

Gregory Pierce's introduction to JOGL is a useful tutorial on starting to use the JOGL library.

For release information about the JOGL library, please see the JOGL Release Information thread on the JOGL forum on javagaming.org.

Please post on the JOGL forum if you have a resource you'd like to add to this documentation.

Platform Notes

All Platforms

The following issues, among others, are outstanding on all platforms:

Windows

For correct operation, it is necessary to specify the system property -Dsun.java2d.noddraw=true when running JOGL applications on Windows; this system property disables the use of DirectDraw by Java2D. There are driver-level incompatibilities between DirectDraw and OpenGL which manifest themselves as application crashes, poor performance, bad flickering, and other artifacts. This poor behavior may exhibit itself when OpenGL and DirectDraw are simply used in the same application, not even just in the same window, so disabling Java2D's DirectDraw pipeline and forcing it to use its GDI pipeline is the only way to work around these issues. Java Web Start applications may set this system property by adding the following line to the <resources> section of the JNLP file:

<property name="sun.java2d.noddraw" value="true"/> 

JOGL currently does not interoperate well with the OpenGL pipeline for Java2D available in JDK 5.0 and later. We will address this in a future JOGL release and plan to have better interoperability by the time JDK 6.0 is shipped.

There is a serious memory leak in ATI's OpenGL drivers which is exhibited on Windows XP on Mobility Radeon 9700 hardware. It's possible it will be present on other hardware as well though it was not reproducible at the time of this writing on desktop Radeon hardware or older ATI mobile chips. The bug is documented in JOGL Issue 166 and a bug has been filed with ATI. You can confirm the presence of the bug either with the test case in that bug report or by simply running the Gears demo; if the process size grows over time in the Task Manager, the memory leak is present on your hardware. For the time being, you can work around this memory leak by specifying the system property -Djogl.GLContext.nofree on the command line when launching your JOGL applications. There is no good general-purpose workaround for this bug which behaves well on all hardware.

Solaris, Linux (X11 platforms)

No outstanding issues at this time.

Mac OS X

There are some problems with visual artifacts and stability problems with some of the Jogl demos on Mac OS X. It appears that at least some of these problems are due to bugs in Apple's OpenGL support. Bugs have been filed about these problems and it is hoped they will be addressed in the near future.

The Mac OS X port of Jogl, in particular the GL interface and its implementation, can be used either with the provided GLCanvas widget or with the Cocoa NSOpenGLView. In order to use it with Cocoa the following steps should be taken:

NOTE: the Cocoa interoperability has not yet been retested since the GLCanvas was implemented. Please report any problems found with using Jogl with an NSOpenGLView.

The following issues remain with the Mac OS X port:

Version History

JOGL's version history can be found online in the "JOGL Release Information" thread in the JOGL forum. Comments about the 1.1 release train are in the thread "JOGL 1.1 released".