/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** NOTE: The Original Code (as defined below) has been licensed to Sun ** Microsystems, Inc. ("Sun") under the SGI Free Software License B ** (Version 1.1), shown above ("SGI License"). Pursuant to Section ** 3.2(3) of the SGI License, Sun is distributing the Covered Code to ** you under an alternative license ("Alternative License"). This ** Alternative License includes all of the provisions of the SGI License ** except that Section 2.2 and 11 are omitted. Any differences between ** the Alternative License and the SGI License are offered solely by Sun ** and not by SGI. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. */ public class Backend { private BasicCurveEvaluator curveEvaluator; private BasicSurfaceEvaluator surfaceEvaluator; public Backend( BasicCurveEvaluator c, BasicSurfaceEvaluator e ) { this.c = c; this.e = e; } /* surface backend routines */ /** * bgnsurf - preamble to surface definition and evaluations */ public void bgnsurf( boolean wiretris, boolean wirequads, long nuid ) { wireframetris = wiretris; wireframequads = wirequads; /*in the spec, GLU_DISPLAY_MODE is either * GLU_FILL * GLU_OUTLINE_POLY * GLU_OUTLINE_PATCH. *In fact, GLU_FLL is has the same effect as * set GL_FRONT_AND_BACK to be GL_FILL * and GLU_OUTLINE_POLY is the same as set * GL_FRONT_AND_BACK to be GL_LINE *It is more efficient to do this once at the beginning of *each surface than to do it for each primitive. * The internal has more options: outline_triangle and outline_quad *can be seperated. But since this is not in spec, and more importantly, *this is not so useful, so we don't need to keep this option. */ surfaceEvaluator.bgnmap2f( nuid ); if(wiretris) surfaceEvaluator.polymode(N_MESHLINE); else surfaceEvaluator.polymode(N_MESHFILL); } public void patch( float ulo, float uhi, float vlo, float vhi ) { surfaceEvaluator.domain2f( ulo, uhi, vlo, vhi ); } /** * surfpts - pass a desription of a surface map */ public void surfpts(long type, /* geometry, color, texture, normal */ float[] pts, /* control points */ long ustride, /* distance to next point in u direction */ long vstride, /* distance to next point in v direction */ int uorder, /* u parametric order */ int vorder, /* v parametric order */ float ulo, /* u lower bound */ float uhi, /* u upper bound */ float vlo, /* v lower bound */ float vhi /* v upper bound */ ) { surfaceEvaluator.map2f( type,ulo,uhi,ustride,uorder,vlo,vhi,vstride,vorder,pts ); surfaceEvaluator.enable( type ); } public void surfbbox( long type, float[] from, float[] to ) { surfaceEvaluator.range2f( type, from, to ); } /** * surfgrid - define a lattice of points with origin and offset */ public void surfgrid( float u0, float u1, long nu, float v0, float v1, long nv ) { surfaceEvaluator.mapgrid2f( nu, u0, u1, nv, v0, v1 ); } /** * surfmesh - evaluate a mesh of points on lattice */ public void surfmesh( long u, long v, long n, long m ) { if( wireframequads ) { long v0, v1; long u0f = u, u1f = u+n; long v0f = v, v1f = v+m; long parity = (u & 1); for( v0 = v0f, v1 = v0f++ ; v0= 3 ) { surfaceEvaluator.bgnclosedline(); if( mesh[0][2] == 0 ) surfaceEvaluator.evalcoord2f( mesh[0][3], mesh[0][0], mesh[0][1] ); else surfaceEvaluator.evalpoint2i( (long) mesh[0][0], (long) mesh[0][1] ); if( mesh[1][2] == 0 ) surfaceEvaluator.evalcoord2f( mesh[1][3], mesh[1][0], mesh[1][1] ); else surfaceEvaluator.evalpoint2i( (long) mesh[1][0], (long) mesh[1][1] ); surfaceEvaluator.evalcoord2f( nuid, u, v ); surfaceEvaluator.endclosedline(); } mesh[meshindex][0] = u; mesh[meshindex][1] = v; mesh[meshindex][2] = 0; mesh[meshindex][3] = nuid; meshindex = (meshindex+1) % 2; } else { surfaceEvaluator.evalcoord2f( nuid, u, v ); } } /** * tmeshvert - evaluate a grid point of a triangle mesh */ public void tmeshvert( GridVertex g ) { long u = g->gparam[0]; long v = g->gparam[1]; npts++; if( wireframetris ) { if( npts >= 3 ) { surfaceEvaluator.bgnclosedline(); if( mesh[0][2] == 0 ) surfaceEvaluator.evalcoord2f( (long) mesh[0][3], mesh[0][0], mesh[0][1] ); else surfaceEvaluator.evalpoint2i( (long) mesh[0][0], (long) mesh[0][1] ); if( mesh[1][2] == 0 ) surfaceEvaluator.evalcoord2f( (long) mesh[1][3], mesh[1][0], mesh[1][1] ); else surfaceEvaluator.evalpoint2i( (long) mesh[1][0], (long) mesh[1][1] ); surfaceEvaluator.evalpoint2i( u, v ); surfaceEvaluator.endclosedline(); } mesh[meshindex][0] = u; mesh[meshindex][1] = v; mesh[meshindex][2] = 1; meshindex = (meshindex+1) % 2; } else { surfaceEvaluator.evalpoint2i( u, v ); } } /** the same as tmeshvert(trimvertex), for efficiency purpose */ public void tmeshvert( float u, float v ) { long nuid = 0; npts++; if( wireframetris ) { if( npts >= 3 ) { surfaceEvaluator.bgnclosedline(); if( mesh[0][2] == 0 ) surfaceEvaluator.evalcoord2f( mesh[0][3], mesh[0][0], mesh[0][1] ); else surfaceEvaluator.evalpoint2i( (long) mesh[0][0], (long) mesh[0][1] ); if( mesh[1][2] == 0 ) surfaceEvaluator.evalcoord2f( mesh[1][3], mesh[1][0], mesh[1][1] ); else surfaceEvaluator.evalpoint2i( (long) mesh[1][0], (long) mesh[1][1] ); surfaceEvaluator.evalcoord2f( nuid, u, v ); surfaceEvaluator.endclosedline(); } mesh[meshindex][0] = u; mesh[meshindex][1] = v; mesh[meshindex][2] = 0; mesh[meshindex][3] = nuid; meshindex = (meshindex+1) % 2; } else { surfaceEvaluator.evalcoord2f( nuid, u, v ); } } /** * linevert - evaluate a point on an outlined contour */ public void linevert( TrimVertex t ) { surfaceEvaluator.evalcoord2f( t.nuid, t.param[0], t.param[1] ); } /** * linevert - evaluate a grid point of an outlined contour */ public void linevert( GridVertex g ) { surfaceEvaluator.evalpoint2i( g.gparam[0], g.gparam[1] ); } /** * bgnoutline - preamble to outlined rendering */ public void bgnoutline( ) { surfaceEvaluator.bgnline(); } /** * endoutline - postamble to outlined rendering */ public void endoutline( ) { surfaceEvaluator.endline(); } /** * endsurf - postamble to surface */ public void endsurf( ) { surfaceEvaluator.endmap2f(); } /** * triangle - output a triangle */ public void triangle( TrimVertex a, TrimVertex b, TrimVertex c ) { bgntfan(); tmeshvert( a ); tmeshvert( b ); tmeshvert( c ); endtfan(); } public void bgntfan() { surfaceEvaluator.bgntfan(); } public void endtfan() { surfaceEvaluator.endtfan(); } public void bgnqstrip() { surfaceEvaluator.bgnqstrip(); } public void endqstrip() { surfaceEvaluator.endqstrip(); } public void evalUStrip(int n_upper, float v_upper, float[] upper_val, int n_lower, float v_lower, float[] lower_val) { surfaceEvaluator.evalUStrip(n_upper, v_upper, upper_val, n_lower, v_lower, lower_val); } public void evalVStrip(int n_left, float u_left, float[] left_val, int n_right, float v_right, float[] right_val) { surfaceEvaluator.evalVStrip(n_left, u_left, left_val, n_right, u_right, right_val); } public void tmeshvertNOGE(TrimVertex *t) { // NOTE: under undefined USE_OPTTT #ifdef } public void tmeshvertNOGE_BU(TrimVertex *t) { // NOTE: under undefined USE_OPTTT #ifdef } public void tmeshvertNOGE_BV(TrimVertex *t) { // NOTE: under undefined USE_OPTTT #ifdef } public void preEvaluateBU(float u) { surfaceEvaluator.inPreEvaluateBU_intfac(u); } public void preEvaluateBV(float v) { surfaceEvaluator.inPreEvaluateBV_intfac(v); } /* curve backend routines */ public void bgncurv( void ) { curveEvaluator.bgnmap1f( 0 ); } public void segment( float ulo, float uhi ) { curveEvaluator.domain1f( ulo, uhi ); } public void curvpts(long type, /* geometry, color, texture, normal */ float[] pts, /* control points */ long stride, /* distance to next point */ int order, /* parametric order */ float ulo, /* lower parametric bound */ float uhi ) /* upper parametric bound */ { curveEvaluator.map1f( type, ulo, uhi, stride, order, pts ); curveEvaluator.enable( type ); } public void curvgrid( float u0, float u1, long nu ) { curveEvaluator.mapgrid1f( nu, u0, u1 ); } public void curvmesh( long from, long n ) { curveEvaluator.mapmesh1f( N_MESHFILL, from, from+n ); } public void curvpt( float u ) { curveEvaluator.evalcoord1f( 0, u ); } public void bgnline( ) { curveEvaluator.bgnline(); } public void endline( ) { curveEvaluator.endline(); } public void endcurv( ) { curveEvaluator.endmap1f(); } private boolean wireframetris; private boolean wireframequads; private int npts; private float[][] mesh = new float[3][4]; private int meshindex; }