/* * Copyright (c) 2005 Sun Microsystems, Inc. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN * MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR * ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR * DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, * ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF * SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * You acknowledge that this software is not designed or intended for use * in the design, construction, operation or maintenance of any nuclear * facility. */ package com.sun.opengl.util.texture; import java.nio.*; import javax.media.opengl.*; import javax.media.opengl.glu.*; import com.sun.opengl.impl.*; /** * Represents an OpenGL texture object. Contains convenience routines * for enabling/disabling OpenGL texture state, binding this texture, * and computing texture coordinates for both the entire image as well * as a sub-image. * *

Non-power-of-two restrictions *
When creating an OpenGL texture object, the Texture class will * attempt to leverage the GL_ARB_texture_non_power_of_two * and GL_ARB_texture_rectangle * extensions (in that order) whenever possible. If neither extension * is available, the Texture class will simply upload a non-pow2-sized * image into a standard pow2-sized texture (without any special * scaling). Since the choice of extension (or whether one is used at * all) depends on the user's machine configuration, developers are * recommended to use {@link #getImageTexCoords} and {@link * #getSubImageTexCoords}, as those methods will calculate the * appropriate texture coordinates for the situation. * *

One caveat in this approach is that certain texture wrap modes * (e.g. GL_REPEAT) are not legal when the GL_ARB_texture_rectangle * extension is in use. Another issue to be aware of is that in the * default pow2 scenario, if the original image does not have pow2 * dimensions, then wrapping may not work as one might expect since * the image does not extend to the edges of the pow2 texture. If * texture wrapping is important, it is recommended to use only * pow2-sized images with the Texture class. * *

Performance Tips *
For best performance, try to avoid calling {@link #enable} / * {@link #bind} / {@link #disable} any more than necessary. For * example, applications using many Texture objects in the same scene * may want to reduce the number of calls to both {@link #enable} and * {@link #disable}. To do this it is necessary to call {@link * #getTarget} to make sure the OpenGL texture target is the same for * all of the Texture objects in use; non-power-of-two textures using * the GL_ARB_texture_rectangle extension use a different target than * power-of-two textures using the GL_TEXTURE_2D target. Note that * when switching between textures it is necessary to call {@link * #bind}, but when drawing many triangles all using the same texture, * for best performance only one call to {@link #bind} should be made. * *

Alpha premultiplication and blending *
The mathematically correct way to perform blending in OpenGL * (with the SrcOver "source over destination" mode, or any other * Porter-Duff rule) is to use "premultiplied color components", which * means the R/G/ B color components have already been multiplied by * the alpha value. To make things easier for developers, the Texture * class will automatically convert non-premultiplied image data into * premultiplied data when storing it into an OpenGL texture. As a * result, it is important to use the correct blending function; for * example, the SrcOver rule is expressed as:

    gl.glBlendFunc(GL.GL_ONE, GL.GL_ONE_MINUS_SRC_ALPHA);
* Also, when using a texture function like GL_MODULATE where * the current color plays a role, it is important to remember to make * sure that the color is specified in a premultiplied form, for * example:
    float a = ...;
    float r = r * a;
    float g = g * a;
    float b = b * a;
    gl.glColor4f(r, g, b, a);
* * @author Chris Campbell * @author Kenneth Russell */ public class Texture { /** The GL target type. */ private int target; /** The GL texture ID. */ private int texID; /** The width of the texture. */ private int texWidth; /** The height of the texture. */ private int texHeight; /** The width of the image. */ private int imgWidth; /** The height of the image. */ private int imgHeight; /** Indicates whether the TextureData requires a vertical flip of the texture coords. */ private boolean mustFlipVertically; /** The texture coordinates corresponding to the entire image. */ private TextureCoords coords; /** An estimate of the amount of texture memory this texture consumes. */ private int estimatedMemorySize; private static final boolean DEBUG = Debug.debug("Texture"); private static final boolean VERBOSE = Debug.verbose(); // For now make Texture constructor package-private to limit the // number of public APIs we commit to Texture(TextureData data) throws GLException { GL gl = GLU.getCurrentGL(); texID = createTextureID(gl); updateImage(data); } // Constructor for use when creating e.g. cube maps, where there is // no initial texture data Texture(int target) throws GLException { GL gl = GLU.getCurrentGL(); texID = createTextureID(gl); this.target = target; } /** * Enables this texture's target (e.g., GL_TEXTURE_2D) in the * current GL context's state. This method is a shorthand equivalent * of the following OpenGL code:
    gl.glEnable(texture.getTarget());
* * See the performance tips above for hints * on how to maximize performance when using many Texture objects. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void enable() throws GLException { GLU.getCurrentGL().glEnable(target); } /** * Disables this texture's target (e.g., GL_TEXTURE_2D) in the * current GL context's state. This method is a shorthand equivalent * of the following OpenGL code:
    gl.glDisable(texture.getTarget());
* * See the performance tips above for hints * on how to maximize performance when using many Texture objects. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void disable() throws GLException { GLU.getCurrentGL().glDisable(target); } /** * Binds this texture to the current GL context. This method is a * shorthand equivalent of the following OpenGL code:
    gl.glBindTexture(texture.getTarget(), texture.getTextureObject());
* * See the performance tips above for hints * on how to maximize performance when using many Texture objects. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void bind() throws GLException { GLU.getCurrentGL().glBindTexture(target, texID); } /** * Disposes the native resources used by this texture object. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void dispose() throws GLException { GLU.getCurrentGL().glDeleteTextures(1, new int[] {texID}, 0); texID = 0; } /** * Returns the OpenGL "target" of this texture. * * @return the OpenGL target of this texture * @see javax.media.opengl.GL#GL_TEXTURE_2D * @see javax.media.opengl.GL#GL_TEXTURE_RECTANGLE_ARB */ public int getTarget() { return target; } /** * Returns the width of the allocated OpenGL texture in pixels. * Note that the texture width will be greater than or equal to the * width of the image contained within. * * @return the width of the texture */ public int getWidth() { return texWidth; } /** * Returns the height of the allocated OpenGL texture in pixels. * Note that the texture height will be greater than or equal to the * height of the image contained within. * * @return the height of the texture */ public int getHeight() { return texHeight; } /** * Returns the width of the image contained within this texture. * Note that for non-power-of-two textures in particular this may * not be equal to the result of {@link #getWidth}. It is * recommended that applications call {@link #getImageTexCoords} and * {@link #getSubImageTexCoords} rather than using this API * directly. * * @return the width of the image */ public int getImageWidth() { return imgWidth; } /** * Returns the height of the image contained within this texture. * Note that for non-power-of-two textures in particular this may * not be equal to the result of {@link #getHeight}. It is * recommended that applications call {@link #getImageTexCoords} and * {@link #getSubImageTexCoords} rather than using this API * directly. * * @return the height of the image */ public int getImageHeight() { return imgHeight; } /** * Returns the set of texture coordinates corresponding to the * entire image. If the TextureData indicated that the texture * coordinates must be flipped vertically, the returned * TextureCoords will take that into account. * * @return the texture coordinates corresponding to the entire image */ public TextureCoords getImageTexCoords() { return coords; } /** * Returns the set of texture coordinates corresponding to the * specified sub-image. The (x1, y1) and (x2, y2) points are * specified in terms of pixels starting from the lower-left of the * image. (x1, y1) should specify the lower-left corner of the * sub-image and (x2, y2) the upper-right corner of the sub-image. * If the TextureData indicated that the texture coordinates must be * flipped vertically, the returned TextureCoords will take that * into account; this should not be handled by the end user in the * specification of the y1 and y2 coordinates. * * @return the texture coordinates corresponding to the specified sub-image */ public TextureCoords getSubImageTexCoords(int x1, int y1, int x2, int y2) { if (target == GL.GL_TEXTURE_RECTANGLE_ARB) { if (mustFlipVertically) { return new TextureCoords(x1, texHeight - y1, x2, texHeight - y2); } else { return new TextureCoords(x1, y1, x2, y2); } } else { float tx1 = (float)x1 / (float)texWidth; float ty1 = (float)y1 / (float)texHeight; float tx2 = (float)x2 / (float)texWidth; float ty2 = (float)y2 / (float)texHeight; if (mustFlipVertically) { return new TextureCoords(tx1, 1.0f - ty1, tx2, 1.0f - ty2); } else { return new TextureCoords(tx1, ty1, tx2, ty2); } } } /** * Updates the entire content area of this texture using the data in * the given image. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void updateImage(TextureData data) throws GLException { updateImage(data, 0); } /** * Indicates whether this texture's texture coordinates must be * flipped vertically in order to properly display the texture. This * is handled automatically by {@link #getImageTexCoords} and {@link * #getSubImageTexCoords}, but applications may generate or * otherwise produce texture coordinates which must be corrected. */ public boolean getMustFlipVertically() { return mustFlipVertically; } /** * Updates the content area of the specified target of this texture * using the data in the given image. In general this is intended * for construction of cube maps. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void updateImage(TextureData data, int target) throws GLException { GL gl = GLU.getCurrentGL(); imgWidth = data.getWidth(); imgHeight = data.getHeight(); mustFlipVertically = data.getMustFlipVertically(); int newTarget = 0; if (data.getMipmap()) { // GLU always scales the texture's dimensions to be powers of // two. It also doesn't really matter exactly what the texture // width and height are because the texture coords are always // between 0.0 and 1.0. imgWidth = nextPowerOfTwo(imgWidth); imgHeight = nextPowerOfTwo(imgHeight); texWidth = imgWidth; texHeight = imgHeight; newTarget = GL.GL_TEXTURE_2D; } else if ((isPowerOfTwo(imgWidth) && isPowerOfTwo(imgHeight)) || gl.isExtensionAvailable("GL_ARB_texture_non_power_of_two")) { if (DEBUG) { if (isPowerOfTwo(imgWidth) && isPowerOfTwo(imgHeight)) { System.err.println("Power-of-two texture"); } else { System.err.println("Using GL_ARB_texture_non_power_of_two"); } } texWidth = imgWidth; texHeight = imgHeight; newTarget = GL.GL_TEXTURE_2D; } else if (gl.isExtensionAvailable("GL_ARB_texture_rectangle")) { if (DEBUG) { System.err.println("Using GL_ARB_texture_rectangle"); } texWidth = imgWidth; texHeight = imgHeight; newTarget = GL.GL_TEXTURE_RECTANGLE_ARB; } else { if (DEBUG) { System.err.println("Expanding texture to power-of-two dimensions"); } if (data.getBorder() != 0) { throw new RuntimeException("Scaling up a non-power-of-two texture which has a border won't work"); } texWidth = nextPowerOfTwo(imgWidth); texHeight = nextPowerOfTwo(imgHeight); newTarget = GL.GL_TEXTURE_2D; } setImageSize(imgWidth, imgHeight, newTarget); if (target != 0) { // Allow user to override auto detection and skip bind step (for // cubemap construction) newTarget = target; if (this.target == 0) { throw new GLException("Override of target failed; no target specified yet"); } gl.glBindTexture(this.target, texID); } else { gl.glBindTexture(newTarget, texID); } int minFilter = (data.getMipmap() ? GL.GL_LINEAR_MIPMAP_LINEAR : GL.GL_LINEAR); int magFilter = GL.GL_LINEAR; int wrapMode = (gl.isExtensionAvailable("GL_VERSION_1_2") ? GL.GL_CLAMP_TO_EDGE : GL.GL_CLAMP); // REMIND: figure out what to do for GL_TEXTURE_RECTANGLE_ARB if (newTarget != GL.GL_TEXTURE_RECTANGLE_ARB) { gl.glTexParameteri(newTarget, GL.GL_TEXTURE_MIN_FILTER, minFilter); gl.glTexParameteri(newTarget, GL.GL_TEXTURE_MAG_FILTER, magFilter); gl.glTexParameteri(newTarget, GL.GL_TEXTURE_WRAP_S, wrapMode); gl.glTexParameteri(newTarget, GL.GL_TEXTURE_WRAP_T, wrapMode); if (newTarget == GL.GL_TEXTURE_CUBE_MAP) { gl.glTexParameteri(newTarget, GL.GL_TEXTURE_WRAP_R, wrapMode); } } if (data.getMipmap()) { int[] align = new int[1]; gl.glGetIntegerv(GL.GL_UNPACK_ALIGNMENT, align, 0); // save alignment gl.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, data.getAlignment()); if (data.isDataCompressed()) { throw new GLException("May not request mipmap generation for compressed textures"); } try { GLU glu = new GLU(); glu.gluBuild2DMipmaps(newTarget, data.getInternalFormat(), data.getWidth(), data.getHeight(), data.getPixelFormat(), data.getPixelType(), data.getBuffer()); } finally { gl.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, align[0]); // restore alignment } } else { checkCompressedTextureExtensions(data); Buffer[] mipmapData = data.getMipmapData(); if (mipmapData != null) { int width = texWidth; int height = texHeight; for (int i = 0; i < mipmapData.length; i++) { if (data.isDataCompressed()) { // Need to use glCompressedTexImage2D directly to allocate and fill this image gl.glCompressedTexImage2D(newTarget, i, data.getInternalFormat(), width, height, data.getBorder(), mipmapData[i].remaining(), mipmapData[i]); } else { // Allocate texture image at this level gl.glTexImage2D(newTarget, i, data.getInternalFormat(), width, height, data.getBorder(), data.getPixelFormat(), data.getPixelType(), null); updateSubImageImpl(data, newTarget, i, 0, 0, 0, 0, data.getWidth(), data.getHeight()); } width /= 2; height /= 2; } } else { if (data.isDataCompressed()) { // Need to use glCompressedTexImage2D directly to allocate and fill this image gl.glCompressedTexImage2D(newTarget, 0, data.getInternalFormat(), texWidth, texHeight, data.getBorder(), data.getBuffer().capacity(), data.getBuffer()); } else { gl.glTexImage2D(newTarget, 0, data.getInternalFormat(), texWidth, texHeight, data.getBorder(), data.getPixelFormat(), data.getPixelType(), null); updateSubImageImpl(data, newTarget, 0, 0, 0, 0, 0, data.getWidth(), data.getHeight()); } } } // Don't overwrite target if we're loading e.g. faces of a cube // map if ((this.target == 0) || (this.target == GL.GL_TEXTURE_2D) || (this.target == GL.GL_TEXTURE_RECTANGLE_ARB)) { this.target = newTarget; } // This estimate will be wrong for cube maps estimatedMemorySize = data.getEstimatedMemorySize(); } /** * Updates a subregion of the content area of this texture using the * given data. Only updates the specified mipmap level and does not * re-generate mipmaps if they were originally produced or loaded. * * @param data the image data to be uploaded to this texture * @param mipmapLevel the mipmap level of the texture to set. If * this is non-zero and the TextureData contains mipmap data, the * appropriate mipmap level will be selected. * @param x the x offset (in pixels) relative to the lower-left corner * of this texture * @param y the y offset (in pixels) relative to the lower-left corner * of this texture * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void updateSubImage(TextureData data, int mipmapLevel, int x, int y) throws GLException { updateSubImageImpl(data, target, mipmapLevel, x, y, 0, 0, data.getWidth(), data.getHeight()); } /** * Updates a subregion of the content area of this texture using the * specified sub-region of the given data. Only updates the * specified mipmap level and does not re-generate mipmaps if they * were originally produced or loaded. This method is only supported * for uncompressed TextureData sources. * * @param data the image data to be uploaded to this texture * @param mipmapLevel the mipmap level of the texture to set. If * this is non-zero and the TextureData contains mipmap data, the * appropriate mipmap level will be selected. * @param dstx the x offset (in pixels) relative to the lower-left corner * of this texture where the update will be applied * @param dsty the y offset (in pixels) relative to the lower-left corner * of this texture where the update will be applied * @param srcx the x offset (in pixels) relative to the lower-left corner * of the supplied TextureData from which to fetch the update rectangle * @param srcy the y offset (in pixels) relative to the lower-left corner * of the supplied TextureData from which to fetch the update rectangle * @param width the width (in pixels) of the rectangle to be updated * @param height the height (in pixels) of the rectangle to be updated * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void updateSubImage(TextureData data, int mipmapLevel, int dstx, int dsty, int srcx, int srcy, int width, int height) throws GLException { if (data.isDataCompressed()) { throw new GLException("updateSubImage specifying a sub-rectangle is not supported for compressed TextureData"); } updateSubImageImpl(data, target, mipmapLevel, dstx, dsty, srcx, srcy, width, height); } /** * Sets the OpenGL floating-point texture parameter for the * texture's target. This gives control over parameters such as * GL_TEXTURE_MAX_ANISOTROPY_EXT. Causes this texture to be bound to * the current texture state. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void setTexParameterf(int parameterName, float value) { bind(); GL gl = GLU.getCurrentGL(); gl.glTexParameterf(target, parameterName, value); } /** * Sets the OpenGL multi-floating-point texture parameter for the * texture's target. Causes this texture to be bound to the current * texture state. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void setTexParameterfv(int parameterName, FloatBuffer params) { bind(); GL gl = GLU.getCurrentGL(); gl.glTexParameterfv(target, parameterName, params); } /** * Sets the OpenGL multi-floating-point texture parameter for the * texture's target. Causes this texture to be bound to the current * texture state. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void setTexParameterfv(int parameterName, float[] params, int params_offset) { bind(); GL gl = GLU.getCurrentGL(); gl.glTexParameterfv(target, parameterName, params, params_offset); } /** * Sets the OpenGL integer texture parameter for the texture's * target. This gives control over parameters such as * GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, which by default are set * to GL_CLAMP_TO_EDGE if OpenGL 1.2 is supported on the current * platform and GL_CLAMP if not. Causes this texture to be bound to * the current texture state. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void setTexParameteri(int parameterName, int value) { bind(); GL gl = GLU.getCurrentGL(); gl.glTexParameteri(target, parameterName, value); } /** * Sets the OpenGL multi-integer texture parameter for the texture's * target. Causes this texture to be bound to the current texture * state. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void setTexParameteriv(int parameterName, IntBuffer params) { bind(); GL gl = GLU.getCurrentGL(); gl.glTexParameteriv(target, parameterName, params); } /** * Sets the OpenGL multi-integer texture parameter for the texture's * target. Causes this texture to be bound to the current texture * state. * * @throws GLException if no OpenGL context was current or if any * OpenGL-related errors occurred */ public void setTexParameteriv(int parameterName, int[] params, int params_offset) { bind(); GL gl = GLU.getCurrentGL(); gl.glTexParameteriv(target, parameterName, params, params_offset); } /** * Returns the underlying OpenGL texture object for this texture. * Most applications will not need to access this, since it is * handled automatically by the bind() and dispose() APIs. */ public int getTextureObject() { return texID; } /** Returns an estimate of the amount of texture memory in bytes this Texture consumes. It should only be treated as an estimate; most applications should not need to query this but instead let the OpenGL implementation page textures in and out as necessary. */ public int getEstimatedMemorySize() { return estimatedMemorySize; } //---------------------------------------------------------------------- // Internals only below this point // /** * Returns true if the given value is a power of two. * * @return true if the given value is a power of two, false otherwise */ private static boolean isPowerOfTwo(int val) { return ((val & (val - 1)) == 0); } /** * Returns the nearest power of two that is larger than the given value. * If the given value is already a power of two, this method will simply * return that value. * * @param val the value * @return the next power of two */ private static int nextPowerOfTwo(int val) { int ret = 1; while (ret < val) { ret <<= 1; } return ret; } /** * Updates the actual image dimensions; usually only called from * updateImage. */ private void setImageSize(int width, int height, int target) { imgWidth = width; imgHeight = height; if (target == GL.GL_TEXTURE_RECTANGLE_ARB) { if (mustFlipVertically) { coords = new TextureCoords(0, imgHeight, imgWidth, 0); } else { coords = new TextureCoords(0, 0, imgWidth, imgHeight); } } else { if (mustFlipVertically) { coords = new TextureCoords(0, (float) imgHeight / (float) texHeight, (float) imgWidth / (float) texWidth, 0); } else { coords = new TextureCoords(0, 0, (float) imgWidth / (float) texWidth, (float) imgHeight / (float) texHeight); } } } private void updateSubImageImpl(TextureData data, int newTarget, int mipmapLevel, int dstx, int dsty, int srcx, int srcy, int width, int height) throws GLException { GL gl = GLU.getCurrentGL(); if (gl.isExtensionAvailable("GL_EXT_abgr")) { data.setHaveEXTABGR(true); } Buffer buffer = data.getBuffer(); if (buffer == null && data.getMipmapData() == null) { // Assume user just wanted to get the Texture object allocated return; } gl.glBindTexture(newTarget, texID); int rowlen = data.getRowLength(); int dataWidth = data.getWidth(); int dataHeight = data.getHeight(); if (data.getMipmapData() != null) { // Compute the width, height and row length at the specified mipmap level // Note we do not support specification of the row length for // mipmapped textures at this point for (int i = 0; i < mipmapLevel; i++) { width /= 2; height /= 2; dataWidth /= 2; dataHeight /= 2; } rowlen = 0; buffer = data.getMipmapData()[mipmapLevel]; } // Clip incoming rectangles to what is available both on this // texture and in the incoming TextureData if (srcx < 0) { width += srcx; srcx = 0; } if (srcy < 0) { height += srcy; srcy = 0; } // NOTE: not sure whether the following two are the correct thing to do if (dstx < 0) { width += dstx; dstx = 0; } if (dsty < 0) { height += dsty; dsty = 0; } if (srcx + width > dataWidth) { width = dataWidth - srcx; } if (srcy + height > dataHeight) { height = dataHeight - srcy; } if (dstx + width > texWidth) { width = texWidth - dstx; } if (dsty + height > texHeight) { height = texHeight - dsty; } checkCompressedTextureExtensions(data); if (data.isDataCompressed()) { gl.glCompressedTexSubImage2D(newTarget, mipmapLevel, dstx, dsty, width, height, data.getInternalFormat(), buffer.remaining(), buffer); } else { int[] align = new int[1]; int[] rowLength = new int[1]; int[] skipRows = new int[1]; int[] skipPixels = new int[1]; gl.glGetIntegerv(GL.GL_UNPACK_ALIGNMENT, align, 0); // save alignment gl.glGetIntegerv(GL.GL_UNPACK_ROW_LENGTH, rowLength, 0); // save row length gl.glGetIntegerv(GL.GL_UNPACK_SKIP_ROWS, skipRows, 0); // save skipped rows gl.glGetIntegerv(GL.GL_UNPACK_SKIP_PIXELS, skipPixels, 0); // save skipped pixels gl.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, data.getAlignment()); if (DEBUG && VERBOSE) { System.out.println("Row length = " + rowlen); System.out.println("skip pixels = " + srcx); System.out.println("skip rows = " + srcy); System.out.println("dstx = " + dstx); System.out.println("dsty = " + dsty); System.out.println("width = " + width); System.out.println("height = " + height); } gl.glPixelStorei(GL.GL_UNPACK_ROW_LENGTH, rowlen); gl.glPixelStorei(GL.GL_UNPACK_SKIP_ROWS, srcy); gl.glPixelStorei(GL.GL_UNPACK_SKIP_PIXELS, srcx); gl.glTexSubImage2D(newTarget, mipmapLevel, dstx, dsty, width, height, data.getPixelFormat(), data.getPixelType(), buffer); gl.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, align[0]); // restore alignment gl.glPixelStorei(GL.GL_UNPACK_ROW_LENGTH, rowLength[0]); // restore row length gl.glPixelStorei(GL.GL_UNPACK_SKIP_ROWS, skipRows[0]); // restore skipped rows gl.glPixelStorei(GL.GL_UNPACK_SKIP_PIXELS, skipPixels[0]); // restore skipped pixels } } private void checkCompressedTextureExtensions(TextureData data) { GL gl = GLU.getCurrentGL(); if (data.isDataCompressed()) { switch (data.getInternalFormat()) { case GL.GL_COMPRESSED_RGB_S3TC_DXT1_EXT: case GL.GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: case GL.GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: case GL.GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: if (!gl.isExtensionAvailable("GL_EXT_texture_compression_s3tc") && !gl.isExtensionAvailable("GL_NV_texture_compression_vtc")) { throw new GLException("DXTn compressed textures not supported by this graphics card"); } break; default: // FIXME: should test availability of more texture // compression extensions here break; } } } /** * Creates a new texture ID. * * @param gl the GL object associated with the current OpenGL context * @return a new texture ID */ private static int createTextureID(GL gl) { int[] tmp = new int[1]; gl.glGenTextures(1, tmp, 0); return tmp[0]; } }