/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @author Denis M. Kishenko */ package jogamp.graph.geom.plane; import java.io.IOException; import java.io.Serializable; import jogamp.graph.math.MathFloat; import org.apache.harmony.misc.HashCode; import com.jogamp.graph.geom.Vertex; import com.jogamp.graph.geom.Vertex.Factory; public class AffineTransform implements Cloneable, Serializable { private static final long serialVersionUID = 1330973210523860834L; static final String determinantIsZero = "Determinant is zero"; public static final int TYPE_IDENTITY = 0; public static final int TYPE_TRANSLATION = 1; public static final int TYPE_UNIFORM_SCALE = 2; public static final int TYPE_GENERAL_SCALE = 4; public static final int TYPE_QUADRANT_ROTATION = 8; public static final int TYPE_GENERAL_ROTATION = 16; public static final int TYPE_GENERAL_TRANSFORM = 32; public static final int TYPE_FLIP = 64; public static final int TYPE_MASK_SCALE = TYPE_UNIFORM_SCALE | TYPE_GENERAL_SCALE; public static final int TYPE_MASK_ROTATION = TYPE_QUADRANT_ROTATION | TYPE_GENERAL_ROTATION; /** * The TYPE_UNKNOWN is an initial type value */ static final int TYPE_UNKNOWN = -1; /** * The min value equivalent to zero. If absolute value less then ZERO it considered as zero. */ static final float ZERO = (float) 1E-10; private final Vertex.Factory pointFactory; /** * The values of transformation matrix */ float m00; float m10; float m01; float m11; float m02; float m12; /** * The transformation type */ transient int type; public AffineTransform() { pointFactory = null; type = TYPE_IDENTITY; m00 = m11 = 1.0f; m10 = m01 = m02 = m12 = 0.0f; } public AffineTransform(Factory factory) { pointFactory = factory; type = TYPE_IDENTITY; m00 = m11 = 1.0f; m10 = m01 = m02 = m12 = 0.0f; } public AffineTransform(AffineTransform t) { this.pointFactory = t.pointFactory; this.type = t.type; this.m00 = t.m00; this.m10 = t.m10; this.m01 = t.m01; this.m11 = t.m11; this.m02 = t.m02; this.m12 = t.m12; } public AffineTransform(Vertex.Factory factory, float m00, float m10, float m01, float m11, float m02, float m12) { pointFactory = factory; this.type = TYPE_UNKNOWN; this.m00 = m00; this.m10 = m10; this.m01 = m01; this.m11 = m11; this.m02 = m02; this.m12 = m12; } public AffineTransform(Vertex.Factory factory, float[] matrix) { pointFactory = factory; this.type = TYPE_UNKNOWN; m00 = matrix[0]; m10 = matrix[1]; m01 = matrix[2]; m11 = matrix[3]; if (matrix.length > 4) { m02 = matrix[4]; m12 = matrix[5]; } } /* * Method returns type of affine transformation. * * Transform matrix is * m00 m01 m02 * m10 m11 m12 * * According analytic geometry new basis vectors are (m00, m01) and (m10, m11), * translation vector is (m02, m12). Original basis vectors are (1, 0) and (0, 1). * Type transformations classification: * TYPE_IDENTITY - new basis equals original one and zero translation * TYPE_TRANSLATION - translation vector isn't zero * TYPE_UNIFORM_SCALE - vectors length of new basis equals * TYPE_GENERAL_SCALE - vectors length of new basis doesn't equal * TYPE_FLIP - new basis vector orientation differ from original one * TYPE_QUADRANT_ROTATION - new basis is rotated by 90, 180, 270, or 360 degrees * TYPE_GENERAL_ROTATION - new basis is rotated by arbitrary angle * TYPE_GENERAL_TRANSFORM - transformation can't be inversed */ public int getType() { if (type != TYPE_UNKNOWN) { return type; } int type = 0; if (m00 * m01 + m10 * m11 != 0.0) { type |= TYPE_GENERAL_TRANSFORM; return type; } if (m02 != 0.0 || m12 != 0.0) { type |= TYPE_TRANSLATION; } else if (m00 == 1.0 && m11 == 1.0 && m01 == 0.0 && m10 == 0.0) { type = TYPE_IDENTITY; return type; } if (m00 * m11 - m01 * m10 < 0.0) { type |= TYPE_FLIP; } float dx = m00 * m00 + m10 * m10; float dy = m01 * m01 + m11 * m11; if (dx != dy) { type |= TYPE_GENERAL_SCALE; } else if (dx != 1.0) { type |= TYPE_UNIFORM_SCALE; } if ((m00 == 0.0 && m11 == 0.0) || (m10 == 0.0 && m01 == 0.0 && (m00 < 0.0 || m11 < 0.0))) { type |= TYPE_QUADRANT_ROTATION; } else if (m01 != 0.0 || m10 != 0.0) { type |= TYPE_GENERAL_ROTATION; } return type; } public float getScaleX() { return m00; } public float getScaleY() { return m11; } public float getShearX() { return m01; } public float getShearY() { return m10; } public float getTranslateX() { return m02; } public float getTranslateY() { return m12; } public boolean isIdentity() { return getType() == TYPE_IDENTITY; } public void getMatrix(float[] matrix) { matrix[0] = m00; matrix[1] = m10; matrix[2] = m01; matrix[3] = m11; if (matrix.length > 4) { matrix[4] = m02; matrix[5] = m12; } } public float getDeterminant() { return m00 * m11 - m01 * m10; } public void setTransform(float m00, float m10, float m01, float m11, float m02, float m12) { this.type = TYPE_UNKNOWN; this.m00 = m00; this.m10 = m10; this.m01 = m01; this.m11 = m11; this.m02 = m02; this.m12 = m12; } public void setTransform(AffineTransform t) { type = t.type; setTransform(t.m00, t.m10, t.m01, t.m11, t.m02, t.m12); } public void setToIdentity() { type = TYPE_IDENTITY; m00 = m11 = 1.0f; m10 = m01 = m02 = m12 = 0.0f; } public void setToTranslation(float mx, float my) { m00 = m11 = 1.0f; m01 = m10 = 0.0f; m02 = mx; m12 = my; if (mx == 0.0f && my == 0.0f) { type = TYPE_IDENTITY; } else { type = TYPE_TRANSLATION; } } public void setToScale(float scx, float scy) { m00 = scx; m11 = scy; m10 = m01 = m02 = m12 = 0.0f; if (scx != 1.0f || scy != 1.0f) { type = TYPE_UNKNOWN; } else { type = TYPE_IDENTITY; } } public void setToShear(float shx, float shy) { m00 = m11 = 1.0f; m02 = m12 = 0.0f; m01 = shx; m10 = shy; if (shx != 0.0f || shy != 0.0f) { type = TYPE_UNKNOWN; } else { type = TYPE_IDENTITY; } } public void setToRotation(float angle) { float sin = MathFloat.sin(angle); float cos = MathFloat.cos(angle); if (MathFloat.abs(cos) < ZERO) { cos = 0.0f; sin = sin > 0.0f ? 1.0f : -1.0f; } else if (MathFloat.abs(sin) < ZERO) { sin = 0.0f; cos = cos > 0.0f ? 1.0f : -1.0f; } m00 = m11 = cos; m01 = -sin; m10 = sin; m02 = m12 = 0.0f; type = TYPE_UNKNOWN; } public void setToRotation(float angle, float px, float py) { setToRotation(angle); m02 = px * (1.0f - m00) + py * m10; m12 = py * (1.0f - m00) - px * m10; type = TYPE_UNKNOWN; } public static AffineTransform getTranslateInstance(Vertex.Factory factory, float mx, float my) { AffineTransform t = new AffineTransform(factory); t.setToTranslation(mx, my); return t; } public static AffineTransform getScaleInstance(Vertex.Factory factory, float scx, float scY) { AffineTransform t = new AffineTransform(factory); t.setToScale(scx, scY); return t; } public static AffineTransform getShearInstance(Vertex.Factory factory, float shx, float shy) { AffineTransform t = new AffineTransform(factory); t.setToShear(shx, shy); return t; } public static AffineTransform getRotateInstance(Vertex.Factory factory, float angle) { AffineTransform t = new AffineTransform(factory); t.setToRotation(angle); return t; } public static AffineTransform getRotateInstance(Vertex.Factory factory, float angle, float x, float y) { AffineTransform t = new AffineTransform(factory); t.setToRotation(angle, x, y); return t; } public void translate(float mx, float my) { concatenate(AffineTransform.getTranslateInstance(pointFactory, mx, my)); } public void scale(float scx, float scy) { concatenate(AffineTransform.getScaleInstance(pointFactory, scx, scy)); } public void shear(float shx, float shy) { concatenate(AffineTransform.getShearInstance(pointFactory, shx, shy)); } public void rotate(float angle) { concatenate(AffineTransform.getRotateInstance(pointFactory, angle)); } public void rotate(float angle, float px, float py) { concatenate(AffineTransform.getRotateInstance(pointFactory, angle, px, py)); } /** * Multiply matrix of two AffineTransform objects. * The first argument's {@link Vertex.Factory} is being used. * * @param t1 - the AffineTransform object is a multiplicand * @param t2 - the AffineTransform object is a multiplier * @return an AffineTransform object that is a result of t1 multiplied by matrix t2. */ AffineTransform multiply(AffineTransform t1, AffineTransform t2) { return new AffineTransform(t1.pointFactory, t1.m00 * t2.m00 + t1.m10 * t2.m01, // m00 t1.m00 * t2.m10 + t1.m10 * t2.m11, // m01 t1.m01 * t2.m00 + t1.m11 * t2.m01, // m10 t1.m01 * t2.m10 + t1.m11 * t2.m11, // m11 t1.m02 * t2.m00 + t1.m12 * t2.m01 + t2.m02, // m02 t1.m02 * t2.m10 + t1.m12 * t2.m11 + t2.m12);// m12 } public void concatenate(AffineTransform t) { setTransform(multiply(t, this)); } public void preConcatenate(AffineTransform t) { setTransform(multiply(this, t)); } public AffineTransform createInverse() throws NoninvertibleTransformException { float det = getDeterminant(); if (MathFloat.abs(det) < ZERO) { throw new NoninvertibleTransformException(determinantIsZero); } return new AffineTransform( this.pointFactory, m11 / det, // m00 -m10 / det, // m10 -m01 / det, // m01 m00 / det, // m11 (m01 * m12 - m11 * m02) / det, // m02 (m10 * m02 - m00 * m12) / det // m12 ); } public Vertex transform(Vertex src, Vertex dst) { if (dst == null) { dst = pointFactory.create(); } float x = src.getX(); float y = src.getY(); dst.setCoord(x * m00 + y * m01 + m02, x * m10 + y * m11 + m12); return dst; } public void transform(Vertex[] src, int srcOff, Vertex[] dst, int dstOff, int length) { while (--length >= 0) { Vertex srcPoint = src[srcOff++]; float x = srcPoint.getX(); float y = srcPoint.getY(); Vertex dstPoint = dst[dstOff]; if (dstPoint == null) { throw new IllegalArgumentException("dst["+dstOff+"] is null"); } dstPoint.setCoord(x * m00 + y * m01 + m02, x * m10 + y * m11 + m12); dst[dstOff++] = dstPoint; } } public void transform(float[] src, int srcOff, float[] dst, int dstOff, int length) { int step = 2; if (src == dst && srcOff < dstOff && dstOff < srcOff + length * 2) { srcOff = srcOff + length * 2 - 2; dstOff = dstOff + length * 2 - 2; step = -2; } while (--length >= 0) { float x = src[srcOff + 0]; float y = src[srcOff + 1]; dst[dstOff + 0] = x * m00 + y * m01 + m02; dst[dstOff + 1] = x * m10 + y * m11 + m12; srcOff += step; dstOff += step; } } public Vertex deltaTransform(Vertex src, Vertex dst) { if (dst == null) { dst = pointFactory.create(); } float x = src.getX(); float y = src.getY(); dst.setCoord(x * m00 + y * m01, x * m10 + y * m11); return dst; } public void deltaTransform(float[] src, int srcOff, float[] dst, int dstOff, int length) { while (--length >= 0) { float x = src[srcOff++]; float y = src[srcOff++]; dst[dstOff++] = x * m00 + y * m01; dst[dstOff++] = x * m10 + y * m11; } } public Vertex inverseTransform(Vertex src, Vertex dst) throws NoninvertibleTransformException { float det = getDeterminant(); if (MathFloat.abs(det) < ZERO) { throw new NoninvertibleTransformException(determinantIsZero); } if (dst == null) { dst = pointFactory.create(); } float x = src.getX() - m02; float y = src.getY() - m12; dst.setCoord((x * m11 - y * m01) / det, (y * m00 - x * m10) / det); return dst; } public void inverseTransform(float[] src, int srcOff, float[] dst, int dstOff, int length) throws NoninvertibleTransformException { float det = getDeterminant(); if (MathFloat.abs(det) < ZERO) { throw new NoninvertibleTransformException(determinantIsZero); } while (--length >= 0) { float x = src[srcOff++] - m02; float y = src[srcOff++] - m12; dst[dstOff++] = (x * m11 - y * m01) / det; dst[dstOff++] = (y * m00 - x * m10) / det; } } public Path2D createTransformedShape(Path2D src) { if (src == null) { return null; } if (src instanceof Path2D) { return ((Path2D)src).createTransformedShape(this); } PathIterator path = src.iterator(this); Path2D dst = new Path2D(path.getWindingRule()); dst.append(path, false); return dst; } @Override public String toString() { return getClass().getName() + "[[" + m00 + ", " + m01 + ", " + m02 + "], [" //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$ + m10 + ", " + m11 + ", " + m12 + "]]"; //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ } @Override public Object clone() { try { return super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(); } } @Override public int hashCode() { HashCode hash = new HashCode(); hash.append(m00); hash.append(m01); hash.append(m02); hash.append(m10); hash.append(m11); hash.append(m12); return hash.hashCode(); } @Override public boolean equals(Object obj) { if (obj == this) { return true; } if (obj instanceof AffineTransform) { AffineTransform t = (AffineTransform)obj; return m00 == t.m00 && m01 == t.m01 && m02 == t.m02 && m10 == t.m10 && m11 == t.m11 && m12 == t.m12; } return false; } /** * Write AffineTrasform object to the output steam. * @param stream - the output stream * @throws IOException - if there are I/O errors while writing to the output strem */ private void writeObject(java.io.ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); } /** * Read AffineTransform object from the input stream * @param stream - the input steam * @throws IOException - if there are I/O errors while reading from the input strem * @throws ClassNotFoundException - if class could not be found */ private void readObject(java.io.ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); type = TYPE_UNKNOWN; } }