/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Denis M. Kishenko
*/
package jogamp.graph.geom.plane;
import java.io.IOException;
import java.io.Serializable;
import jogamp.graph.math.MathFloat;
import org.apache.harmony.misc.HashCode;
import com.jogamp.graph.geom.Vertex;
import com.jogamp.graph.geom.Vertex.Factory;
public class AffineTransform implements Cloneable, Serializable {
private static final long serialVersionUID = 1330973210523860834L;
static final String determinantIsZero = "Determinant is zero";
public static final int TYPE_IDENTITY = 0;
public static final int TYPE_TRANSLATION = 1;
public static final int TYPE_UNIFORM_SCALE = 2;
public static final int TYPE_GENERAL_SCALE = 4;
public static final int TYPE_QUADRANT_ROTATION = 8;
public static final int TYPE_GENERAL_ROTATION = 16;
public static final int TYPE_GENERAL_TRANSFORM = 32;
public static final int TYPE_FLIP = 64;
public static final int TYPE_MASK_SCALE = TYPE_UNIFORM_SCALE | TYPE_GENERAL_SCALE;
public static final int TYPE_MASK_ROTATION = TYPE_QUADRANT_ROTATION | TYPE_GENERAL_ROTATION;
/**
* The TYPE_UNKNOWN
is an initial type value
*/
static final int TYPE_UNKNOWN = -1;
/**
* The min value equivalent to zero. If absolute value less then ZERO it considered as zero.
*/
static final float ZERO = (float) 1E-10;
private final Vertex.Factory extends Vertex> pointFactory;
/**
* The values of transformation matrix
*/
float m00;
float m10;
float m01;
float m11;
float m02;
float m12;
/**
* The transformation type
*/
transient int type;
public AffineTransform() {
pointFactory = null;
type = TYPE_IDENTITY;
m00 = m11 = 1.0f;
m10 = m01 = m02 = m12 = 0.0f;
}
public AffineTransform(Factory extends Vertex> factory) {
pointFactory = factory;
type = TYPE_IDENTITY;
m00 = m11 = 1.0f;
m10 = m01 = m02 = m12 = 0.0f;
}
public AffineTransform(AffineTransform t) {
this.pointFactory = t.pointFactory;
this.type = t.type;
this.m00 = t.m00;
this.m10 = t.m10;
this.m01 = t.m01;
this.m11 = t.m11;
this.m02 = t.m02;
this.m12 = t.m12;
}
public AffineTransform(Vertex.Factory extends Vertex> factory, float m00, float m10, float m01, float m11, float m02, float m12) {
pointFactory = factory;
this.type = TYPE_UNKNOWN;
this.m00 = m00;
this.m10 = m10;
this.m01 = m01;
this.m11 = m11;
this.m02 = m02;
this.m12 = m12;
}
public AffineTransform(Vertex.Factory extends Vertex> factory, float[] matrix) {
pointFactory = factory;
this.type = TYPE_UNKNOWN;
m00 = matrix[0];
m10 = matrix[1];
m01 = matrix[2];
m11 = matrix[3];
if (matrix.length > 4) {
m02 = matrix[4];
m12 = matrix[5];
}
}
/*
* Method returns type of affine transformation.
*
* Transform matrix is
* m00 m01 m02
* m10 m11 m12
*
* According analytic geometry new basis vectors are (m00, m01) and (m10, m11),
* translation vector is (m02, m12). Original basis vectors are (1, 0) and (0, 1).
* Type transformations classification:
* TYPE_IDENTITY - new basis equals original one and zero translation
* TYPE_TRANSLATION - translation vector isn't zero
* TYPE_UNIFORM_SCALE - vectors length of new basis equals
* TYPE_GENERAL_SCALE - vectors length of new basis doesn't equal
* TYPE_FLIP - new basis vector orientation differ from original one
* TYPE_QUADRANT_ROTATION - new basis is rotated by 90, 180, 270, or 360 degrees
* TYPE_GENERAL_ROTATION - new basis is rotated by arbitrary angle
* TYPE_GENERAL_TRANSFORM - transformation can't be inversed
*/
public int getType() {
if (type != TYPE_UNKNOWN) {
return type;
}
int type = 0;
if (m00 * m01 + m10 * m11 != 0.0) {
type |= TYPE_GENERAL_TRANSFORM;
return type;
}
if (m02 != 0.0 || m12 != 0.0) {
type |= TYPE_TRANSLATION;
} else
if (m00 == 1.0 && m11 == 1.0 && m01 == 0.0 && m10 == 0.0) {
type = TYPE_IDENTITY;
return type;
}
if (m00 * m11 - m01 * m10 < 0.0) {
type |= TYPE_FLIP;
}
float dx = m00 * m00 + m10 * m10;
float dy = m01 * m01 + m11 * m11;
if (dx != dy) {
type |= TYPE_GENERAL_SCALE;
} else
if (dx != 1.0) {
type |= TYPE_UNIFORM_SCALE;
}
if ((m00 == 0.0 && m11 == 0.0) ||
(m10 == 0.0 && m01 == 0.0 && (m00 < 0.0 || m11 < 0.0)))
{
type |= TYPE_QUADRANT_ROTATION;
} else
if (m01 != 0.0 || m10 != 0.0) {
type |= TYPE_GENERAL_ROTATION;
}
return type;
}
public float getScaleX() {
return m00;
}
public float getScaleY() {
return m11;
}
public float getShearX() {
return m01;
}
public float getShearY() {
return m10;
}
public float getTranslateX() {
return m02;
}
public float getTranslateY() {
return m12;
}
public boolean isIdentity() {
return getType() == TYPE_IDENTITY;
}
public void getMatrix(float[] matrix) {
matrix[0] = m00;
matrix[1] = m10;
matrix[2] = m01;
matrix[3] = m11;
if (matrix.length > 4) {
matrix[4] = m02;
matrix[5] = m12;
}
}
public float getDeterminant() {
return m00 * m11 - m01 * m10;
}
public void setTransform(float m00, float m10, float m01, float m11, float m02, float m12) {
this.type = TYPE_UNKNOWN;
this.m00 = m00;
this.m10 = m10;
this.m01 = m01;
this.m11 = m11;
this.m02 = m02;
this.m12 = m12;
}
public void setTransform(AffineTransform t) {
type = t.type;
setTransform(t.m00, t.m10, t.m01, t.m11, t.m02, t.m12);
}
public void setToIdentity() {
type = TYPE_IDENTITY;
m00 = m11 = 1.0f;
m10 = m01 = m02 = m12 = 0.0f;
}
public void setToTranslation(float mx, float my) {
m00 = m11 = 1.0f;
m01 = m10 = 0.0f;
m02 = mx;
m12 = my;
if (mx == 0.0f && my == 0.0f) {
type = TYPE_IDENTITY;
} else {
type = TYPE_TRANSLATION;
}
}
public void setToScale(float scx, float scy) {
m00 = scx;
m11 = scy;
m10 = m01 = m02 = m12 = 0.0f;
if (scx != 1.0f || scy != 1.0f) {
type = TYPE_UNKNOWN;
} else {
type = TYPE_IDENTITY;
}
}
public void setToShear(float shx, float shy) {
m00 = m11 = 1.0f;
m02 = m12 = 0.0f;
m01 = shx;
m10 = shy;
if (shx != 0.0f || shy != 0.0f) {
type = TYPE_UNKNOWN;
} else {
type = TYPE_IDENTITY;
}
}
public void setToRotation(float angle) {
float sin = MathFloat.sin(angle);
float cos = MathFloat.cos(angle);
if (MathFloat.abs(cos) < ZERO) {
cos = 0.0f;
sin = sin > 0.0f ? 1.0f : -1.0f;
} else
if (MathFloat.abs(sin) < ZERO) {
sin = 0.0f;
cos = cos > 0.0f ? 1.0f : -1.0f;
}
m00 = m11 = cos;
m01 = -sin;
m10 = sin;
m02 = m12 = 0.0f;
type = TYPE_UNKNOWN;
}
public void setToRotation(float angle, float px, float py) {
setToRotation(angle);
m02 = px * (1.0f - m00) + py * m10;
m12 = py * (1.0f - m00) - px * m10;
type = TYPE_UNKNOWN;
}
public static AffineTransform getTranslateInstance(Vertex.Factory extends Vertex> factory, float mx, float my) {
AffineTransform t = new AffineTransform(factory);
t.setToTranslation(mx, my);
return t;
}
public static AffineTransform getScaleInstance(Vertex.Factory extends Vertex> factory, float scx, float scY) {
AffineTransform t = new AffineTransform(factory);
t.setToScale(scx, scY);
return t;
}
public static AffineTransform getShearInstance(Vertex.Factory extends Vertex> factory, float shx, float shy) {
AffineTransform t = new AffineTransform(factory);
t.setToShear(shx, shy);
return t;
}
public static AffineTransform getRotateInstance(Vertex.Factory extends Vertex> factory, float angle) {
AffineTransform t = new AffineTransform(factory);
t.setToRotation(angle);
return t;
}
public static AffineTransform getRotateInstance(Vertex.Factory extends Vertex> factory, float angle, float x, float y) {
AffineTransform t = new AffineTransform(factory);
t.setToRotation(angle, x, y);
return t;
}
public void translate(float mx, float my) {
concatenate(AffineTransform.getTranslateInstance(pointFactory, mx, my));
}
public void scale(float scx, float scy) {
concatenate(AffineTransform.getScaleInstance(pointFactory, scx, scy));
}
public void shear(float shx, float shy) {
concatenate(AffineTransform.getShearInstance(pointFactory, shx, shy));
}
public void rotate(float angle) {
concatenate(AffineTransform.getRotateInstance(pointFactory, angle));
}
public void rotate(float angle, float px, float py) {
concatenate(AffineTransform.getRotateInstance(pointFactory, angle, px, py));
}
/**
* Multiply matrix of two AffineTransform objects.
* The first argument's {@link Vertex.Factory} is being used.
*
* @param t1 - the AffineTransform object is a multiplicand
* @param t2 - the AffineTransform object is a multiplier
* @return an AffineTransform object that is a result of t1 multiplied by matrix t2.
*/
AffineTransform multiply(AffineTransform t1, AffineTransform t2) {
return new AffineTransform(t1.pointFactory,
t1.m00 * t2.m00 + t1.m10 * t2.m01, // m00
t1.m00 * t2.m10 + t1.m10 * t2.m11, // m01
t1.m01 * t2.m00 + t1.m11 * t2.m01, // m10
t1.m01 * t2.m10 + t1.m11 * t2.m11, // m11
t1.m02 * t2.m00 + t1.m12 * t2.m01 + t2.m02, // m02
t1.m02 * t2.m10 + t1.m12 * t2.m11 + t2.m12);// m12
}
public void concatenate(AffineTransform t) {
setTransform(multiply(t, this));
}
public void preConcatenate(AffineTransform t) {
setTransform(multiply(this, t));
}
public AffineTransform createInverse() throws NoninvertibleTransformException {
float det = getDeterminant();
if (MathFloat.abs(det) < ZERO) {
throw new NoninvertibleTransformException(determinantIsZero);
}
return new AffineTransform(
this.pointFactory,
m11 / det, // m00
-m10 / det, // m10
-m01 / det, // m01
m00 / det, // m11
(m01 * m12 - m11 * m02) / det, // m02
(m10 * m02 - m00 * m12) / det // m12
);
}
public Vertex transform(Vertex src, Vertex dst) {
if (dst == null) {
dst = pointFactory.create();
}
float x = src.getX();
float y = src.getY();
dst.setCoord(x * m00 + y * m01 + m02, x * m10 + y * m11 + m12);
return dst;
}
public void transform(Vertex[] src, int srcOff, Vertex[] dst, int dstOff, int length) {
while (--length >= 0) {
Vertex srcPoint = src[srcOff++];
float x = srcPoint.getX();
float y = srcPoint.getY();
Vertex dstPoint = dst[dstOff];
if (dstPoint == null) {
throw new IllegalArgumentException("dst["+dstOff+"] is null");
}
dstPoint.setCoord(x * m00 + y * m01 + m02, x * m10 + y * m11 + m12);
dst[dstOff++] = dstPoint;
}
}
public void transform(float[] src, int srcOff, float[] dst, int dstOff, int length) {
int step = 2;
if (src == dst && srcOff < dstOff && dstOff < srcOff + length * 2) {
srcOff = srcOff + length * 2 - 2;
dstOff = dstOff + length * 2 - 2;
step = -2;
}
while (--length >= 0) {
float x = src[srcOff + 0];
float y = src[srcOff + 1];
dst[dstOff + 0] = x * m00 + y * m01 + m02;
dst[dstOff + 1] = x * m10 + y * m11 + m12;
srcOff += step;
dstOff += step;
}
}
public Vertex deltaTransform(Vertex src, Vertex dst) {
if (dst == null) {
dst = pointFactory.create();
}
float x = src.getX();
float y = src.getY();
dst.setCoord(x * m00 + y * m01, x * m10 + y * m11);
return dst;
}
public void deltaTransform(float[] src, int srcOff, float[] dst, int dstOff, int length) {
while (--length >= 0) {
float x = src[srcOff++];
float y = src[srcOff++];
dst[dstOff++] = x * m00 + y * m01;
dst[dstOff++] = x * m10 + y * m11;
}
}
public Vertex inverseTransform(Vertex src, Vertex dst) throws NoninvertibleTransformException {
float det = getDeterminant();
if (MathFloat.abs(det) < ZERO) {
throw new NoninvertibleTransformException(determinantIsZero);
}
if (dst == null) {
dst = pointFactory.create();
}
float x = src.getX() - m02;
float y = src.getY() - m12;
dst.setCoord((x * m11 - y * m01) / det, (y * m00 - x * m10) / det);
return dst;
}
public void inverseTransform(float[] src, int srcOff, float[] dst, int dstOff, int length)
throws NoninvertibleTransformException
{
float det = getDeterminant();
if (MathFloat.abs(det) < ZERO) {
throw new NoninvertibleTransformException(determinantIsZero);
}
while (--length >= 0) {
float x = src[srcOff++] - m02;
float y = src[srcOff++] - m12;
dst[dstOff++] = (x * m11 - y * m01) / det;
dst[dstOff++] = (y * m00 - x * m10) / det;
}
}
public Path2D createTransformedShape(Path2D src) {
if (src == null) {
return null;
}
if (src instanceof Path2D) {
return ((Path2D)src).createTransformedShape(this);
}
PathIterator path = src.iterator(this);
Path2D dst = new Path2D(path.getWindingRule());
dst.append(path, false);
return dst;
}
@Override
public String toString() {
return
getClass().getName() +
"[[" + m00 + ", " + m01 + ", " + m02 + "], [" //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$ //$NON-NLS-4$
+ m10 + ", " + m11 + ", " + m12 + "]]"; //$NON-NLS-1$ //$NON-NLS-2$ //$NON-NLS-3$
}
@Override
public Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
@Override
public int hashCode() {
HashCode hash = new HashCode();
hash.append(m00);
hash.append(m01);
hash.append(m02);
hash.append(m10);
hash.append(m11);
hash.append(m12);
return hash.hashCode();
}
@Override
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (obj instanceof AffineTransform) {
AffineTransform t = (AffineTransform)obj;
return
m00 == t.m00 && m01 == t.m01 &&
m02 == t.m02 && m10 == t.m10 &&
m11 == t.m11 && m12 == t.m12;
}
return false;
}
/**
* Write AffineTrasform object to the output steam.
* @param stream - the output stream
* @throws IOException - if there are I/O errors while writing to the output strem
*/
private void writeObject(java.io.ObjectOutputStream stream) throws IOException {
stream.defaultWriteObject();
}
/**
* Read AffineTransform object from the input stream
* @param stream - the input steam
* @throws IOException - if there are I/O errors while reading from the input strem
* @throws ClassNotFoundException - if class could not be found
*/
private void readObject(java.io.ObjectInputStream stream) throws IOException, ClassNotFoundException {
stream.defaultReadObject();
type = TYPE_UNKNOWN;
}
}