/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @author Denis M. Kishenko */ package jogamp.graph.geom.plane; import java.util.NoSuchElementException; import com.jogamp.graph.geom.AABBox; import com.jogamp.graph.geom.Vertex; import com.jogamp.graph.geom.opengl.SVertex; import jogamp.graph.math.plane.Crossing; public final class Path2D implements Cloneable { public static final int WIND_EVEN_ODD = PathIterator.WIND_EVEN_ODD; public static final int WIND_NON_ZERO = PathIterator.WIND_NON_ZERO; static final String invalidWindingRuleValue = "Invalid winding rule value"; static final String iteratorOutOfBounds = "Iterator out of bounds"; /** * The buffers size */ private static final int BUFFER_SIZE = 10; /** * The buffers capacity */ private static final int BUFFER_CAPACITY = 10; /** * The point's types buffer */ byte[] types; /** * The points buffer */ float[] points; /** * The point's type buffer size */ int typeSize; /** * The points buffer size */ int pointSize; /** * The path rule */ int rule; /** * The space amount in points buffer for different segmenet's types */ static int pointShift[] = { 2, // MOVETO 2, // LINETO 4, // QUADTO 6, // CUBICTO 0}; // CLOSE /* * GeneralPath path iterator */ class Iterator implements PathIterator { /** * The current cursor position in types buffer */ int typeIndex; /** * The current cursor position in points buffer */ int pointIndex; /** * The source GeneralPath object */ Path2D p; /** * The path iterator transformation */ AffineTransform t; /** * Constructs a new GeneralPath.Iterator for given general path * @param path - the source GeneralPath object */ Iterator(Path2D path) { this(path, null); } /** * Constructs a new GeneralPath.Iterator for given general path and transformation * @param path - the source GeneralPath object * @param at - the AffineTransform object to apply rectangle path */ Iterator(Path2D path, AffineTransform at) { this.p = path; this.t = at; } public int getWindingRule() { return p.getWindingRule(); } public boolean isDone() { return typeIndex >= p.typeSize; } public void next() { typeIndex++; } public int currentSegment(float[] coords) { if (isDone()) { throw new NoSuchElementException(iteratorOutOfBounds); } int type = p.types[typeIndex]; int count = Path2D.pointShift[type]; System.arraycopy(p.points, pointIndex, coords, 0, count); if (t != null) { t.transform(coords, 0, coords, 0, count / 2); } pointIndex += count; return type; } } public Path2D() { this(WIND_NON_ZERO, BUFFER_SIZE); } public Path2D(int rule) { this(rule, BUFFER_SIZE); } public Path2D(int rule, int initialCapacity) { setWindingRule(rule); types = new byte[initialCapacity]; points = new float[initialCapacity * 2]; } public Path2D(Path2D path) { this(WIND_NON_ZERO, BUFFER_SIZE); PathIterator p = path.iterator(null); setWindingRule(p.getWindingRule()); append(p, false); } public void setWindingRule(int rule) { if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) { throw new NoSuchElementException(invalidWindingRuleValue); } this.rule = rule; } public int getWindingRule() { return rule; } /** * Checks points and types buffer size to add pointCount points. If necessary realloc buffers to enlarge size. * @param pointCount - the point count to be added in buffer */ void checkBuf(int pointCount, boolean checkMove) { if (checkMove && typeSize == 0) { throw new IllegalPathStateException("First segment should be SEG_MOVETO type"); } if (typeSize == types.length) { byte tmp[] = new byte[typeSize + BUFFER_CAPACITY]; System.arraycopy(types, 0, tmp, 0, typeSize); types = tmp; } if (pointSize + pointCount > points.length) { float tmp[] = new float[pointSize + Math.max(BUFFER_CAPACITY * 2, pointCount)]; System.arraycopy(points, 0, tmp, 0, pointSize); points = tmp; } } public void moveTo(float x, float y) { if (typeSize > 0 && types[typeSize - 1] == PathIterator.SEG_MOVETO) { points[pointSize - 2] = x; points[pointSize - 1] = y; } else { checkBuf(2, false); types[typeSize++] = PathIterator.SEG_MOVETO; points[pointSize++] = x; points[pointSize++] = y; } } public void lineTo(float x, float y) { checkBuf(2, true); types[typeSize++] = PathIterator.SEG_LINETO; points[pointSize++] = x; points[pointSize++] = y; } public void quadTo(float x1, float y1, float x2, float y2) { checkBuf(4, true); types[typeSize++] = PathIterator.SEG_QUADTO; points[pointSize++] = x1; points[pointSize++] = y1; points[pointSize++] = x2; points[pointSize++] = y2; } public void curveTo(float x1, float y1, float x2, float y2, float x3, float y3) { checkBuf(6, true); types[typeSize++] = PathIterator.SEG_CUBICTO; points[pointSize++] = x1; points[pointSize++] = y1; points[pointSize++] = x2; points[pointSize++] = y2; points[pointSize++] = x3; points[pointSize++] = y3; } final public int size() { return typeSize; } final public boolean isClosed() { return typeSize > 0 && types[typeSize - 1] == PathIterator.SEG_CLOSE ; } public void closePath() { if (!isClosed()) { checkBuf(0, true); types[typeSize++] = PathIterator.SEG_CLOSE; } } public String toString() { return "[size "+size()+", closed "+isClosed()+"]"; } public void append(Path2D path, boolean connect) { PathIterator p = path.iterator(null); append(p, connect); } public void append(PathIterator path, boolean connect) { while (!path.isDone()) { float coords[] = new float[6]; switch (path.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (!connect || typeSize == 0) { moveTo(coords[0], coords[1]); break; } if (types[typeSize - 1] != PathIterator.SEG_CLOSE && points[pointSize - 2] == coords[0] && points[pointSize - 1] == coords[1]) { break; } // NO BREAK; case PathIterator.SEG_LINETO: lineTo(coords[0], coords[1]); break; case PathIterator.SEG_QUADTO: quadTo(coords[0], coords[1], coords[2], coords[3]); break; case PathIterator.SEG_CUBICTO: curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); break; case PathIterator.SEG_CLOSE: closePath(); break; } path.next(); connect = false; } } public SVertex getCurrentPoint() { if (typeSize == 0) { return null; } int j = pointSize - 2; if (types[typeSize - 1] == PathIterator.SEG_CLOSE) { for (int i = typeSize - 2; i > 0; i--) { int type = types[i]; if (type == PathIterator.SEG_MOVETO) { break; } j -= pointShift[type]; } } return new SVertex(points[j], points[j + 1]); } public void reset() { typeSize = 0; pointSize = 0; } public void transform(AffineTransform t) { t.transform(points, 0, points, 0, pointSize / 2); } public Path2D createTransformedShape(AffineTransform t) { Path2D p = (Path2D)clone(); if (t != null) { p.transform(t); } return p; } public final synchronized AABBox getBounds2D() { float rx1, ry1, rx2, ry2; if (pointSize == 0) { rx1 = ry1 = rx2 = ry2 = 0.0f; } else { int i = pointSize - 1; ry1 = ry2 = points[i--]; rx1 = rx2 = points[i--]; while (i > 0) { float y = points[i--]; float x = points[i--]; if (x < rx1) { rx1 = x; } else if (x > rx2) { rx2 = x; } if (y < ry1) { ry1 = y; } else if (y > ry2) { ry2 = y; } } } // FIXME: Rami's code had this in, but AABBox uses upper left - lower right - right ? // return new AABBox(rx1, ry1, 0f, rx2 - rx1, ry2 - ry1, 0f); return new AABBox(rx1, ry1, 0f, rx2, ry2, 0f); } /** * Checks cross count according to path rule to define is it point inside shape or not. * @param cross - the point cross count * @return true if point is inside path, or false otherwise */ boolean isInside(int cross) { if (rule == WIND_NON_ZERO) { return Crossing.isInsideNonZero(cross); } return Crossing.isInsideEvenOdd(cross); } public boolean contains(float px, float py) { return isInside(Crossing.crossShape(this, px, py)); } public boolean contains(float rx, float ry, float rw, float rh) { int cross = Crossing.intersectShape(this, rx, ry, rw, rh); return cross != Crossing.CROSSING && isInside(cross); } public boolean intersects(float rx, float ry, float rw, float rh) { int cross = Crossing.intersectShape(this, rx, ry, rw, rh); return cross == Crossing.CROSSING || isInside(cross); } public boolean contains(Vertex p) { return contains(p.getX(), p.getY()); } public boolean contains(AABBox r) { return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } public boolean intersects(AABBox r) { return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); } public PathIterator iterator() { return new Iterator(this); } public PathIterator iterator(AffineTransform t) { return new Iterator(this, t); } /* public PathIterator getPathIterator(AffineTransform t, float flatness) { return new FlatteningPathIterator(getPathIterator(t), flatness); } */ @Override public Object clone() { try { Path2D p = (Path2D) super.clone(); p.types = types.clone(); p.points = points.clone(); return p; } catch (CloneNotSupportedException e) { throw new InternalError(); } } }