/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @author Denis M. Kishenko */ package org.apache.harmony.awt.gl; import java.awt.Shape; import java.awt.geom.PathIterator; public class Crossing { /** * Allowable tolerance for bounds comparison */ static final double DELTA = 1E-5; /** * If roots have distance less then ROOT_DELTA they are double */ static final double ROOT_DELTA = 1E-10; /** * Rectangle cross segment */ public static final int CROSSING = 255; /** * Unknown crossing result */ static final int UNKNOWN = 254; /** * Solves quadratic equation * @param eqn - the coefficients of the equation * @param res - the roots of the equation * @return a number of roots */ public static int solveQuad(double eqn[], double res[]) { double a = eqn[2]; double b = eqn[1]; double c = eqn[0]; int rc = 0; if (a == 0.0) { if (b == 0.0) { return -1; } res[rc++] = -c / b; } else { double d = b * b - 4.0 * a * c; // d < 0.0 if (d < 0.0) { return 0; } d = Math.sqrt(d); res[rc++] = (- b + d) / (a * 2.0); // d != 0.0 if (d != 0.0) { res[rc++] = (- b - d) / (a * 2.0); } } return fixRoots(res, rc); } /** * Solves cubic equation * @param eqn - the coefficients of the equation * @param res - the roots of the equation * @return a number of roots */ public static int solveCubic(double eqn[], double res[]) { double d = eqn[3]; if (d == 0) { return solveQuad(eqn, res); } double a = eqn[2] / d; double b = eqn[1] / d; double c = eqn[0] / d; int rc = 0; double Q = (a * a - 3.0 * b) / 9.0; double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0; double Q3 = Q * Q * Q; double R2 = R * R; double n = - a / 3.0; if (R2 < Q3) { double t = Math.acos(R / Math.sqrt(Q3)) / 3.0; double p = 2.0 * Math.PI / 3.0; double m = -2.0 * Math.sqrt(Q); res[rc++] = m * Math.cos(t) + n; res[rc++] = m * Math.cos(t + p) + n; res[rc++] = m * Math.cos(t - p) + n; } else { // Debug.println("R2 >= Q3 (" + R2 + "/" + Q3 + ")"); double A = Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0); if (R > 0.0) { A = -A; } // if (A == 0.0) { if (-ROOT_DELTA < A && A < ROOT_DELTA) { res[rc++] = n; } else { double B = Q / A; res[rc++] = A + B + n; // if (R2 == Q3) { double delta = R2 - Q3; if (-ROOT_DELTA < delta && delta < ROOT_DELTA) { res[rc++] = - (A + B) / 2.0 + n; } } } return fixRoots(res, rc); } /** * Excludes double roots. Roots are double if they lies enough close with each other. * @param res - the roots * @param rc - the roots count * @return new roots count */ static int fixRoots(double res[], int rc) { int tc = 0; for(int i = 0; i < rc; i++) { out: { for(int j = i + 1; j < rc; j++) { if (isZero(res[i] - res[j])) { break out; } } res[tc++] = res[i]; } } return tc; } /** * QuadCurve class provides basic functionality to find curve crossing and calculating bounds */ public static class QuadCurve { double ax, ay, bx, by; double Ax, Ay, Bx, By; public QuadCurve(double x1, double y1, double cx, double cy, double x2, double y2) { ax = x2 - x1; ay = y2 - y1; bx = cx - x1; by = cy - y1; Bx = bx + bx; // Bx = 2.0 * bx Ax = ax - Bx; // Ax = ax - 2.0 * bx By = by + by; // By = 2.0 * by Ay = ay - By; // Ay = ay - 2.0 * by } int cross(double res[], int rc, double py1, double py2) { int cross = 0; for (int i = 0; i < rc; i++) { double t = res[i]; // CURVE-OUTSIDE if (t < -DELTA || t > 1 + DELTA) { continue; } // CURVE-START if (t < DELTA) { if (py1 < 0.0 && (bx != 0.0 ? bx : ax - bx) < 0.0) { cross--; } continue; } // CURVE-END if (t > 1 - DELTA) { if (py1 < ay && (ax != bx ? ax - bx : bx) > 0.0) { cross++; } continue; } // CURVE-INSIDE double ry = t * (t * Ay + By); // ry = t * t * Ay + t * By if (ry > py2) { double rxt = t * Ax + bx; // rxt = 2.0 * t * Ax + Bx = 2.0 * t * Ax + 2.0 * bx if (rxt > -DELTA && rxt < DELTA) { continue; } cross += rxt > 0.0 ? 1 : -1; } } // for return cross; } int solvePoint(double res[], double px) { double eqn[] = {-px, Bx, Ax}; return solveQuad(eqn, res); } int solveExtrem(double res[]) { int rc = 0; if (Ax != 0.0) { res[rc++] = - Bx / (Ax + Ax); } if (Ay != 0.0) { res[rc++] = - By / (Ay + Ay); } return rc; } int addBound(double bound[], int bc, double res[], int rc, double minX, double maxX, boolean changeId, int id) { for(int i = 0; i < rc; i++) { double t = res[i]; if (t > -DELTA && t < 1 + DELTA) { double rx = t * (t * Ax + Bx); if (minX <= rx && rx <= maxX) { bound[bc++] = t; bound[bc++] = rx; bound[bc++] = t * (t * Ay + By); bound[bc++] = id; if (changeId) { id++; } } } } return bc; } } /** * CubicCurve class provides basic functionality to find curve crossing and calculating bounds */ public static class CubicCurve { double ax, ay, bx, by, cx, cy; double Ax, Ay, Bx, By, Cx, Cy; double Ax3, Bx2; public CubicCurve(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2) { ax = x2 - x1; ay = y2 - y1; bx = cx1 - x1; by = cy1 - y1; cx = cx2 - x1; cy = cy2 - y1; Cx = bx + bx + bx; // Cx = 3.0 * bx Bx = cx + cx + cx - Cx - Cx; // Bx = 3.0 * cx - 6.0 * bx Ax = ax - Bx - Cx; // Ax = ax - 3.0 * cx + 3.0 * bx Cy = by + by + by; // Cy = 3.0 * by By = cy + cy + cy - Cy - Cy; // By = 3.0 * cy - 6.0 * by Ay = ay - By - Cy; // Ay = ay - 3.0 * cy + 3.0 * by Ax3 = Ax + Ax + Ax; Bx2 = Bx + Bx; } int cross(double res[], int rc, double py1, double py2) { int cross = 0; for (int i = 0; i < rc; i++) { double t = res[i]; // CURVE-OUTSIDE if (t < -DELTA || t > 1 + DELTA) { continue; } // CURVE-START if (t < DELTA) { if (py1 < 0.0 && (bx != 0.0 ? bx : (cx != bx ? cx - bx : ax - cx)) < 0.0) { cross--; } continue; } // CURVE-END if (t > 1 - DELTA) { if (py1 < ay && (ax != cx ? ax - cx : (cx != bx ? cx - bx : bx)) > 0.0) { cross++; } continue; } // CURVE-INSIDE double ry = t * (t * (t * Ay + By) + Cy); // ry = t * t * t * Ay + t * t * By + t * Cy if (ry > py2) { double rxt = t * (t * Ax3 + Bx2) + Cx; // rxt = 3.0 * t * t * Ax + 2.0 * t * Bx + Cx if (rxt > -DELTA && rxt < DELTA) { rxt = t * (Ax3 + Ax3) + Bx2; // rxt = 6.0 * t * Ax + 2.0 * Bx if (rxt < -DELTA || rxt > DELTA) { // Inflection point continue; } rxt = ax; } cross += rxt > 0.0 ? 1 : -1; } } //for return cross; } int solvePoint(double res[], double px) { double eqn[] = {-px, Cx, Bx, Ax}; return solveCubic(eqn, res); } int solveExtremX(double res[]) { double eqn[] = {Cx, Bx2, Ax3}; return solveQuad(eqn, res); } int solveExtremY(double res[]) { double eqn[] = {Cy, By + By, Ay + Ay + Ay}; return solveQuad(eqn, res); } int addBound(double bound[], int bc, double res[], int rc, double minX, double maxX, boolean changeId, int id) { for(int i = 0; i < rc; i++) { double t = res[i]; if (t > -DELTA && t < 1 + DELTA) { double rx = t * (t * (t * Ax + Bx) + Cx); if (minX <= rx && rx <= maxX) { bound[bc++] = t; bound[bc++] = rx; bound[bc++] = t * (t * (t * Ay + By) + Cy); bound[bc++] = id; if (changeId) { id++; } } } } return bc; } } /** * Returns how many times ray from point (x,y) cross line. */ public static int crossLine(double x1, double y1, double x2, double y2, double x, double y) { // LEFT/RIGHT/UP/EMPTY if ((x < x1 && x < x2) || (x > x1 && x > x2) || (y > y1 && y > y2) || (x1 == x2)) { return 0; } // DOWN if (y < y1 && y < y2) { } else { // INSIDE if ((y2 - y1) * (x - x1) / (x2 - x1) <= y - y1) { // INSIDE-UP return 0; } } // START if (x == x1) { return x1 < x2 ? 0 : -1; } // END if (x == x2) { return x1 < x2 ? 1 : 0; } // INSIDE-DOWN return x1 < x2 ? 1 : -1; } /** * Returns how many times ray from point (x,y) cross quard curve */ public static int crossQuad(double x1, double y1, double cx, double cy, double x2, double y2, double x, double y) { // LEFT/RIGHT/UP/EMPTY if ((x < x1 && x < cx && x < x2) || (x > x1 && x > cx && x > x2) || (y > y1 && y > cy && y > y2) || (x1 == cx && cx == x2)) { return 0; } // DOWN if (y < y1 && y < cy && y < y2 && x != x1 && x != x2) { if (x1 < x2) { return x1 < x && x < x2 ? 1 : 0; } return x2 < x && x < x1 ? -1 : 0; } // INSIDE QuadCurve c = new QuadCurve(x1, y1, cx, cy, x2, y2); double px = x - x1; double py = y - y1; double res[] = new double[3]; int rc = c.solvePoint(res, px); return c.cross(res, rc, py, py); } /** * Returns how many times ray from point (x,y) cross cubic curve */ public static int crossCubic(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2, double x, double y) { // LEFT/RIGHT/UP/EMPTY if ((x < x1 && x < cx1 && x < cx2 && x < x2) || (x > x1 && x > cx1 && x > cx2 && x > x2) || (y > y1 && y > cy1 && y > cy2 && y > y2) || (x1 == cx1 && cx1 == cx2 && cx2 == x2)) { return 0; } // DOWN if (y < y1 && y < cy1 && y < cy2 && y < y2 && x != x1 && x != x2) { if (x1 < x2) { return x1 < x && x < x2 ? 1 : 0; } return x2 < x && x < x1 ? -1 : 0; } // INSIDE CubicCurve c = new CubicCurve(x1, y1, cx1, cy1, cx2, cy2, x2, y2); double px = x - x1; double py = y - y1; double res[] = new double[3]; int rc = c.solvePoint(res, px); return c.cross(res, rc, py, py); } /** * Returns how many times ray from point (x,y) cross path */ public static int crossPath(PathIterator p, double x, double y) { int cross = 0; double mx, my, cx, cy; mx = my = cx = cy = 0.0; double coords[] = new double[6]; while (!p.isDone()) { switch (p.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (cx != mx || cy != my) { cross += crossLine(cx, cy, mx, my, x, y); } mx = cx = coords[0]; my = cy = coords[1]; break; case PathIterator.SEG_LINETO: cross += crossLine(cx, cy, cx = coords[0], cy = coords[1], x, y); break; case PathIterator.SEG_QUADTO: cross += crossQuad(cx, cy, coords[0], coords[1], cx = coords[2], cy = coords[3], x, y); break; case PathIterator.SEG_CUBICTO: cross += crossCubic(cx, cy, coords[0], coords[1], coords[2], coords[3], cx = coords[4], cy = coords[5], x, y); break; case PathIterator.SEG_CLOSE: if (cy != my || cx != mx) { cross += crossLine(cx, cy, cx = mx, cy = my, x, y); } break; } // checks if the point (x,y) is the vertex of shape with PathIterator p if (x == cx && y == cy) { cross = 0; cy = my; break; } p.next(); } if (cy != my) { cross += crossLine(cx, cy, mx, my, x, y); } return cross; } /** * Returns how many times ray from point (x,y) cross shape */ public static int crossShape(Shape s, double x, double y) { if (!s.getBounds2D().contains(x, y)) { return 0; } return crossPath(s.getPathIterator(null), x, y); } /** * Returns true if value enough small */ public static boolean isZero(double val) { return -DELTA < val && val < DELTA; } /** * Sort bound array */ static void sortBound(double bound[], int bc) { for(int i = 0; i < bc - 4; i += 4) { int k = i; for(int j = i + 4; j < bc; j += 4) { if (bound[k] > bound[j]) { k = j; } } if (k != i) { double tmp = bound[i]; bound[i] = bound[k]; bound[k] = tmp; tmp = bound[i + 1]; bound[i + 1] = bound[k + 1]; bound[k + 1] = tmp; tmp = bound[i + 2]; bound[i + 2] = bound[k + 2]; bound[k + 2] = tmp; tmp = bound[i + 3]; bound[i + 3] = bound[k + 3]; bound[k + 3] = tmp; } } } /** * Returns are bounds intersect or not intersect rectangle */ static int crossBound(double bound[], int bc, double py1, double py2) { // LEFT/RIGHT if (bc == 0) { return 0; } // Check Y coordinate int up = 0; int down = 0; for(int i = 2; i < bc; i += 4) { if (bound[i] < py1) { up++; continue; } if (bound[i] > py2) { down++; continue; } return CROSSING; } // UP if (down == 0) { return 0; } if (up != 0) { // bc >= 2 sortBound(bound, bc); boolean sign = bound[2] > py2; for(int i = 6; i < bc; i += 4) { boolean sign2 = bound[i] > py2; if (sign != sign2 && bound[i + 1] != bound[i - 3]) { return CROSSING; } sign = sign2; } } return UNKNOWN; } /** * Returns how many times rectangle stripe cross line or the are intersect */ public static int intersectLine(double x1, double y1, double x2, double y2, double rx1, double ry1, double rx2, double ry2) { // LEFT/RIGHT/UP if ((rx2 < x1 && rx2 < x2) || (rx1 > x1 && rx1 > x2) || (ry1 > y1 && ry1 > y2)) { return 0; } // DOWN if (ry2 < y1 && ry2 < y2) { } else { // INSIDE if (x1 == x2) { return CROSSING; } // Build bound double bx1, bx2; if (x1 < x2) { bx1 = x1 < rx1 ? rx1 : x1; bx2 = x2 < rx2 ? x2 : rx2; } else { bx1 = x2 < rx1 ? rx1 : x2; bx2 = x1 < rx2 ? x1 : rx2; } double k = (y2 - y1) / (x2 - x1); double by1 = k * (bx1 - x1) + y1; double by2 = k * (bx2 - x1) + y1; // BOUND-UP if (by1 < ry1 && by2 < ry1) { return 0; } // BOUND-DOWN if (by1 > ry2 && by2 > ry2) { } else { return CROSSING; } } // EMPTY if (x1 == x2) { return 0; } // CURVE-START if (rx1 == x1) { return x1 < x2 ? 0 : -1; } // CURVE-END if (rx1 == x2) { return x1 < x2 ? 1 : 0; } if (x1 < x2) { return x1 < rx1 && rx1 < x2 ? 1 : 0; } return x2 < rx1 && rx1 < x1 ? -1 : 0; } /** * Returns how many times rectangle stripe cross quad curve or the are intersect */ public static int intersectQuad(double x1, double y1, double cx, double cy, double x2, double y2, double rx1, double ry1, double rx2, double ry2) { // LEFT/RIGHT/UP ------------------------------------------------------ if ((rx2 < x1 && rx2 < cx && rx2 < x2) || (rx1 > x1 && rx1 > cx && rx1 > x2) || (ry1 > y1 && ry1 > cy && ry1 > y2)) { return 0; } // DOWN --------------------------------------------------------------- if (ry2 < y1 && ry2 < cy && ry2 < y2 && rx1 != x1 && rx1 != x2) { if (x1 < x2) { return x1 < rx1 && rx1 < x2 ? 1 : 0; } return x2 < rx1 && rx1 < x1 ? -1 : 0; } // INSIDE ------------------------------------------------------------- QuadCurve c = new QuadCurve(x1, y1, cx, cy, x2, y2); double px1 = rx1 - x1; double py1 = ry1 - y1; double px2 = rx2 - x1; double py2 = ry2 - y1; double res1[] = new double[3]; double res2[] = new double[3]; int rc1 = c.solvePoint(res1, px1); int rc2 = c.solvePoint(res2, px2); // INSIDE-LEFT/RIGHT if (rc1 == 0 && rc2 == 0) { return 0; } // Build bound -------------------------------------------------------- double minX = px1 - DELTA; double maxX = px2 + DELTA; double bound[] = new double[28]; int bc = 0; // Add roots bc = c.addBound(bound, bc, res1, rc1, minX, maxX, false, 0); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, false, 1); // Add extremal points` rc2 = c.solveExtrem(res2); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 2); // Add start and end if (rx1 < x1 && x1 < rx2) { bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 4; } if (rx1 < x2 && x2 < rx2) { bound[bc++] = 1.0; bound[bc++] = c.ax; bound[bc++] = c.ay; bound[bc++] = 5; } // End build bound ---------------------------------------------------- int cross = crossBound(bound, bc, py1, py2); if (cross != UNKNOWN) { return cross; } return c.cross(res1, rc1, py1, py2); } /** * Returns how many times rectangle stripe cross cubic curve or the are intersect */ public static int intersectCubic(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2, double rx1, double ry1, double rx2, double ry2) { // LEFT/RIGHT/UP if ((rx2 < x1 && rx2 < cx1 && rx2 < cx2 && rx2 < x2) || (rx1 > x1 && rx1 > cx1 && rx1 > cx2 && rx1 > x2) || (ry1 > y1 && ry1 > cy1 && ry1 > cy2 && ry1 > y2)) { return 0; } // DOWN if (ry2 < y1 && ry2 < cy1 && ry2 < cy2 && ry2 < y2 && rx1 != x1 && rx1 != x2) { if (x1 < x2) { return x1 < rx1 && rx1 < x2 ? 1 : 0; } return x2 < rx1 && rx1 < x1 ? -1 : 0; } // INSIDE CubicCurve c = new CubicCurve(x1, y1, cx1, cy1, cx2, cy2, x2, y2); double px1 = rx1 - x1; double py1 = ry1 - y1; double px2 = rx2 - x1; double py2 = ry2 - y1; double res1[] = new double[3]; double res2[] = new double[3]; int rc1 = c.solvePoint(res1, px1); int rc2 = c.solvePoint(res2, px2); // LEFT/RIGHT if (rc1 == 0 && rc2 == 0) { return 0; } double minX = px1 - DELTA; double maxX = px2 + DELTA; // Build bound -------------------------------------------------------- double bound[] = new double[40]; int bc = 0; // Add roots bc = c.addBound(bound, bc, res1, rc1, minX, maxX, false, 0); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, false, 1); // Add extrimal points rc2 = c.solveExtremX(res2); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 2); rc2 = c.solveExtremY(res2); bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 4); // Add start and end if (rx1 < x1 && x1 < rx2) { bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 0.0; bound[bc++] = 6; } if (rx1 < x2 && x2 < rx2) { bound[bc++] = 1.0; bound[bc++] = c.ax; bound[bc++] = c.ay; bound[bc++] = 7; } // End build bound ---------------------------------------------------- int cross = crossBound(bound, bc, py1, py2); if (cross != UNKNOWN) { return cross; } return c.cross(res1, rc1, py1, py2); } /** * Returns how many times rectangle stripe cross path or the are intersect */ public static int intersectPath(PathIterator p, double x, double y, double w, double h) { int cross = 0; int count; double mx, my, cx, cy; mx = my = cx = cy = 0.0; double coords[] = new double[6]; double rx1 = x; double ry1 = y; double rx2 = x + w; double ry2 = y + h; while (!p.isDone()) { count = 0; switch (p.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (cx != mx || cy != my) { count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2); } mx = cx = coords[0]; my = cy = coords[1]; break; case PathIterator.SEG_LINETO: count = intersectLine(cx, cy, cx = coords[0], cy = coords[1], rx1, ry1, rx2, ry2); break; case PathIterator.SEG_QUADTO: count = intersectQuad(cx, cy, coords[0], coords[1], cx = coords[2], cy = coords[3], rx1, ry1, rx2, ry2); break; case PathIterator.SEG_CUBICTO: count = intersectCubic(cx, cy, coords[0], coords[1], coords[2], coords[3], cx = coords[4], cy = coords[5], rx1, ry1, rx2, ry2); break; case PathIterator.SEG_CLOSE: if (cy != my || cx != mx) { count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2); } cx = mx; cy = my; break; } if (count == CROSSING) { return CROSSING; } cross += count; p.next(); } if (cy != my) { count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2); if (count == CROSSING) { return CROSSING; } cross += count; } return cross; } /** * Returns how many times rectangle stripe cross shape or the are intersect */ public static int intersectShape(Shape s, double x, double y, double w, double h) { if (!s.getBounds2D().intersects(x, y, w, h)) { return 0; } return intersectPath(s.getPathIterator(null), x, y, w, h); } /** * Returns true if cross count correspond inside location for non zero path rule */ public static boolean isInsideNonZero(int cross) { return cross != 0; } /** * Returns true if cross count correspond inside location for even-odd path rule */ public static boolean isInsideEvenOdd(int cross) { return (cross & 1) != 0; } }