/** * Copyright 2010-2024 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those of the * authors and should not be interpreted as representing official policies, either expressed * or implied, of JogAmp Community. */ package com.jogamp.graph.curve.opengl; import com.jogamp.opengl.GL; import com.jogamp.opengl.GL2ES2; import com.jogamp.opengl.GLArrayData; import com.jogamp.opengl.util.GLArrayDataClient; import com.jogamp.opengl.util.GLArrayDataEditable; import com.jogamp.opengl.util.GLArrayDataServer; import com.jogamp.opengl.util.GLArrayDataWrapper; import com.jogamp.opengl.GLProfile; import jogamp.graph.curve.opengl.VBORegion2PMSAAES2; import jogamp.graph.curve.opengl.VBORegion2PVBAAES2; import jogamp.graph.curve.opengl.VBORegionSPES2; import jogamp.graph.curve.opengl.shader.AttributeNames; import jogamp.opengl.Debug; import com.jogamp.opengl.util.glsl.ShaderProgram; import com.jogamp.opengl.util.texture.TextureSequence; import com.jogamp.graph.curve.Region; import com.jogamp.graph.font.Font; import com.jogamp.math.Vec3f; import com.jogamp.math.Vec4f; import java.io.PrintStream; import java.nio.FloatBuffer; import java.nio.IntBuffer; import java.nio.ShortBuffer; import com.jogamp.graph.curve.OutlineShape; /** A GLRegion is the OGL binding of one or more OutlineShapes * Defined by its vertices and generated triangles. The Region * defines the final shape of the OutlineShape(s), which shall produced a shaded * region on the screen. * * Implementations of the GLRegion shall take care of the OGL * binding of the depending on its context, profile. * * @see Region * @see OutlineShape */ public abstract class GLRegion extends Region { /** * Heuristics with TestTextRendererNEWT00 text_1 + text_2 = 1334 chars * - FreeSans ~ vertices 64/char, indices 33/char * - Ubuntu Light ~ vertices 100/char, indices 50/char * - FreeSerif ~ vertices 115/char, indices 61/char * * However, proper initial size is pre-calculated via .. * - {@link GLRegion#create(GLProfile, int, TextureSequence, Font, CharSequence)} * - {@Link Region#countOutlineShape(OutlineShape, int[])} * - {@link TextRegionUtil#countStringRegion(Font, CharSequence, int[])} */ /** * Default initial vertices count {@value}, assuming small sized shapes. */ public static final int defaultVerticesCount = 64; /** * Default initial indices count {@value}, assuming small sized shapes. */ public static final int defaultIndicesCount = 64; // private static final float growthFactor = 1.2f; // avg +5% size but 15% more overhead (34% total) protected static final float growthFactor = GLArrayDataClient.DEFAULT_GROWTH_FACTOR; // avg +20% size, but 15% less CPU overhead compared to 1.2 (19% total) private static final boolean DEBUG_BUFFER = Debug.debug("graph.curve.Buffer"); /** * Create a GLRegion using the passed render mode * * @param glp intended GLProfile to use. Instance may use higher OpenGL features if indicated by GLProfile. * @param renderModes bit-field of modes, e.g. {@link Region#VARWEIGHT_RENDERING_BIT}, {@link Region#VBAA_RENDERING_BIT} * @param colorTexSeq optional {@link TextureSequence} for {@link Region#COLORTEXTURE_RENDERING_BIT} rendering mode. * @param pass2TexUnit texture unit for 2nd pass rendering ({@link Region#VBAA_RENDERING_BIT}), default is {@link Region#DEFAULT_TWO_PASS_TEXTURE_UNIT}. * @param initialVerticesCount initial number of vertices in the render-buffer * @param initialIndicesCount initial number of indices in the render-buffer */ public static GLRegion create(final GLProfile glp, int renderModes, final TextureSequence colorTexSeq, final int pass2TexUnit, final int initialVerticesCount, final int initialIndicesCount) { if( null != colorTexSeq ) { renderModes |= Region.COLORTEXTURE_RENDERING_BIT; } else if( Region.hasColorTexture(renderModes) ) { throw new IllegalArgumentException("COLORTEXTURE_RENDERING_BIT set but null TextureSequence"); } if( isVBAA(renderModes) ) { return new VBORegion2PVBAAES2(glp, renderModes, colorTexSeq, pass2TexUnit, initialVerticesCount, initialIndicesCount); } else if( isMSAA(renderModes) ) { return new VBORegion2PMSAAES2(glp, renderModes, colorTexSeq, pass2TexUnit, initialVerticesCount, initialIndicesCount); } else { return new VBORegionSPES2(glp, renderModes, colorTexSeq, initialVerticesCount, initialIndicesCount); } } /** * Create a GLRegion using the passed render mode * *

In case {@link Region#VBAA_RENDERING_BIT} is being requested the default texture unit * {@link Region#DEFAULT_TWO_PASS_TEXTURE_UNIT} is being used.

* @param glp intended GLProfile to use. Instance may use higher OpenGL features if indicated by GLProfile. * @param renderModes bit-field of modes, e.g. {@link Region#VARWEIGHT_RENDERING_BIT}, {@link Region#VBAA_RENDERING_BIT} * @param colorTexSeq optional {@link TextureSequence} for {@link Region#COLORTEXTURE_RENDERING_BIT} rendering mode. * @param initialVerticesCount initial number of vertices in the render-buffer * @param initialIndicesCount initial number of indices in the render-buffer */ public static GLRegion create(final GLProfile glp, final int renderModes, final TextureSequence colorTexSeq, final int initialVerticesCount, final int initialIndicesCount) { return create(glp, renderModes, colorTexSeq, Region.DEFAULT_TWO_PASS_TEXTURE_UNIT, initialVerticesCount, initialIndicesCount); } /** * Create a GLRegion using the passed render mode and default initial buffer sizes {@link #defaultVerticesCount} and {@link #defaultIndicesCount}. * *

In case {@link Region#VBAA_RENDERING_BIT} is being requested the default texture unit * {@link Region#DEFAULT_TWO_PASS_TEXTURE_UNIT} is being used.

* @param glp intended GLProfile to use. Instance may use higher OpenGL features if indicated by GLProfile. * @param renderModes bit-field of modes, e.g. {@link Region#VARWEIGHT_RENDERING_BIT}, {@link Region#VBAA_RENDERING_BIT} * @param colorTexSeq optional {@link TextureSequence} for {@link Region#COLORTEXTURE_RENDERING_BIT} rendering mode. */ public static GLRegion create(final GLProfile glp, final int renderModes, final TextureSequence colorTexSeq) { return GLRegion.create(glp, renderModes, colorTexSeq, defaultVerticesCount, defaultIndicesCount); } /** * Create a GLRegion using the passed render mode and pre-calculating its buffer sizes * using {@link Region#countOutlineShape(OutlineShape, int[])}. * *

In case {@link Region#VBAA_RENDERING_BIT} is being requested the default texture unit * {@link Region#DEFAULT_TWO_PASS_TEXTURE_UNIT} is being used.

* @param glp intended GLProfile to use. Instance may use higher OpenGL features if indicated by GLProfile. * @param renderModes bit-field of modes, e.g. {@link Region#VARWEIGHT_RENDERING_BIT}, {@link Region#VBAA_RENDERING_BIT} * @param colorTexSeq optional {@link TextureSequence} for {@link Region#COLORTEXTURE_RENDERING_BIT} rendering mode. * @param shape the {@link OutlineShape} used to determine {@link GLRegion}'s buffer sizes via {@link Region#countOutlineShape(OutlineShape, int[])} */ public static GLRegion create(final GLProfile glp, final int renderModes, final TextureSequence colorTexSeq, final OutlineShape shape) { final int[/*2*/] vertIndexCount = Region.countOutlineShape(shape, new int[2]); return GLRegion.create(glp, renderModes, colorTexSeq, vertIndexCount[0], vertIndexCount[1]); } /** * Create a GLRegion using the passed render mode and pre-calculating its buffer sizes * using given font's {@link Font#processString(com.jogamp.graph.font.Font.GlyphVisitor2, CharSequence)} * to {@link #countOutlineShape(OutlineShape, int[])}. * *

In case {@link Region#VBAA_RENDERING_BIT} is being requested the default texture unit * {@link Region#DEFAULT_TWO_PASS_TEXTURE_UNIT} is being used.

* @param glp intended GLProfile to use. Instance may use higher OpenGL features if indicated by GLProfile. * @param renderModes bit-field of modes, e.g. {@link Region#VARWEIGHT_RENDERING_BIT}, {@link Region#VBAA_RENDERING_BIT} * @param colorTexSeq optional {@link TextureSequence} for {@link Region#COLORTEXTURE_RENDERING_BIT} rendering mode. * @param font Font used to {@link Font#processString(com.jogamp.graph.curve.OutlineShape.Visitor2, CharSequence)} to {@link #countOutlineShape(OutlineShape, int[]) to count initial number of vertices and indices} * @param str the string used to to {@link #countOutlineShape(OutlineShape, int[]) to count initial number of vertices and indices} */ public static GLRegion create(final GLProfile glp, final int renderModes, final TextureSequence colorTexSeq, final Font font, final CharSequence str) { final int[] vertIndexCount = { 0, 0 }; final Font.GlyphVisitor2 visitor = new Font.GlyphVisitor2() { @Override public final void visit(final Font.Glyph glyph) { if( !glyph.isNonContour() ) { Region.countOutlineShape(glyph.getShape(), vertIndexCount); } } }; font.processString(visitor, str); return GLRegion.create(glp, renderModes, colorTexSeq, vertIndexCount[0], vertIndexCount[1]); } private final int gl_idx_type; protected final TextureSequence colorTexSeq; // pass-1 common data protected int curVerticesCap = 0; protected int curIndicesCap = 0; protected int growCount = 0; /** Interleaved buffer for GLSL attributes: vectices, curveParams and optionally colors */ protected GLArrayDataServer vpc_ileave = null; protected GLArrayDataWrapper gca_VerticesAttr = null; protected GLArrayDataWrapper gca_CurveParamsAttr = null; protected GLArrayDataWrapper gca_ColorsAttr = null; protected GLArrayDataServer indicesBuffer = null; protected GLRegion(final GLProfile glp, final int renderModes, final TextureSequence colorTexSeq) { super(renderModes, glp.isGL2ES3() /* use_int32_idx */); this.gl_idx_type = usesI32Idx() ? GL.GL_UNSIGNED_INT : GL.GL_UNSIGNED_SHORT; this.colorTexSeq = colorTexSeq; } protected final int glIdxType() { return this.gl_idx_type; } public GLArrayDataServer createInterleaved(final boolean useMappedBuffers, final int comps, final int dataType, final boolean normalized, final int initialSize, final int vboUsage) { if( useMappedBuffers ) { return GLArrayDataServer.createGLSLInterleavedMapped(comps, dataType, normalized, initialSize, vboUsage); } else { return GLArrayDataServer.createGLSLInterleaved(comps, dataType, normalized, initialSize, vboUsage); } } public void addInterleavedVertexAndNormalArrays(final GLArrayDataServer array, final int components) { array.addGLSLSubArray("vertices", components, GL.GL_ARRAY_BUFFER); array.addGLSLSubArray("normals", components, GL.GL_ARRAY_BUFFER); } protected final void initBuffer(final int verticeCount, final int indexCount) { indicesBuffer = GLArrayDataServer.createData(3, glIdxType(), indexCount, GL.GL_STATIC_DRAW, GL.GL_ELEMENT_ARRAY_BUFFER); indicesBuffer.setGrowthFactor(growthFactor); curIndicesCap = indicesBuffer.getElemCapacity(); final boolean cc = hasColorChannel(); final int totalCompsPerElem = 3 + 3 + (cc ? 4 : 0); vpc_ileave = GLArrayDataServer.createGLSLInterleaved(totalCompsPerElem, GL.GL_FLOAT, false /* normalized */, verticeCount, GL.GL_STATIC_DRAW); vpc_ileave.setGrowthFactor(growthFactor); gca_VerticesAttr = vpc_ileave.addGLSLSubArray(AttributeNames.VERTEX_ATTR_NAME, 3, GL.GL_ARRAY_BUFFER); gca_CurveParamsAttr = vpc_ileave.addGLSLSubArray(AttributeNames.CURVEPARAMS_ATTR_NAME, 3, GL.GL_ARRAY_BUFFER); if( cc ) { gca_ColorsAttr = vpc_ileave.addGLSLSubArray(AttributeNames.COLOR_ATTR_NAME, 4, GL.GL_ARRAY_BUFFER); } curVerticesCap = vpc_ileave.getElemCapacity(); growCount = 0; } @Override public final boolean growBuffer(final int verticesCount, final int indicesCount) { boolean grown = false; if( !DEBUG_BUFFER ) { if( curIndicesCap < indicesBuffer.elemPosition() + indicesCount ) { indicesBuffer.growIfNeeded(indicesCount * indicesBuffer.getCompsPerElem()); curIndicesCap = indicesBuffer.getElemCapacity(); grown = true; } if( curVerticesCap < vpc_ileave.elemPosition() + verticesCount ) { vpc_ileave.growIfNeeded(verticesCount * vpc_ileave.getCompsPerElem()); curVerticesCap = vpc_ileave.getElemCapacity(); grown = true; } } else { if( curIndicesCap < indicesBuffer.elemPosition() + indicesCount ) { System.err.printf("GLRegion: Buffer grow - Indices: %d < ( %d = %d + %d ); Status: %s%n", curIndicesCap, indicesBuffer.elemPosition() + indicesCount, indicesBuffer.elemPosition(), indicesCount, indicesBuffer.elemStatsToString()); indicesBuffer.growIfNeeded(indicesCount * indicesBuffer.getCompsPerElem()); System.err.println("GLRegion: Grew Indices 0x"+Integer.toHexString(hashCode())+": "+curIndicesCap+" -> "+indicesBuffer.getElemCapacity()+", "+indicesBuffer.elemStatsToString()); Thread.dumpStack(); curIndicesCap = indicesBuffer.getElemCapacity(); grown = true; } if( curVerticesCap < vpc_ileave.elemPosition() + verticesCount ) { System.err.printf("GLRegion: Buffer grow - Vertices: %d < ( %d = %d + %d ); Status: %s%n", curVerticesCap, gca_VerticesAttr.elemPosition() + verticesCount, gca_VerticesAttr.elemPosition(), verticesCount, gca_VerticesAttr.elemStatsToString()); vpc_ileave.growIfNeeded(verticesCount * vpc_ileave.getCompsPerElem()); System.err.println("GLRegion: Grew Vertices 0x"+Integer.toHexString(hashCode())+": "+curVerticesCap+" -> "+gca_VerticesAttr.getElemCapacity()+", "+gca_VerticesAttr.elemStatsToString()); curVerticesCap = vpc_ileave.getElemCapacity(); grown = true; } } if( grown ) { ++growCount; return true; } else { return false; } } @Override public final boolean setBufferCapacity(final int verticesCount, final int indicesCount) { boolean grown = false; if( curIndicesCap < indicesCount ) { indicesBuffer.reserve(indicesCount); curIndicesCap = indicesBuffer.getElemCapacity(); grown = true; } if( curVerticesCap < verticesCount ) { vpc_ileave.reserve(verticesCount); curVerticesCap = vpc_ileave.getElemCapacity(); grown = true; } return grown; } @Override public final void printBufferStats(final PrintStream out) { final int[] size= { 0 }, capacity= { 0 }; out.println("GLRegion: idx32 "+usesI32Idx()+", obj 0x"+Integer.toHexString(hashCode())); printAndCount(out, " indices ", indicesBuffer, size, capacity); out.println(); printAndCount(out, " ileave ", vpc_ileave, size, capacity); out.println(); { print(out, " - vertices ", gca_VerticesAttr); out.println(); print(out, " - params ", gca_CurveParamsAttr); out.println(); print(out, " - color ", gca_ColorsAttr); out.println(); } final float filled = (float)size[0]/(float)capacity[0]; out.printf(" total [bytes %,d / %,d], filled[%.1f%%, left %.1f%%], grow-cnt %d, obj 0x%x%n", size[0], capacity[0], filled*100f, (1f-filled)*100f, growCount, hashCode()); // out.printf(" vpc_ileave: %s%n", vpc_ileave.toString()); // out.printf(" - vertices: %s%n", gca_VerticesAttr.toString()); } private static void printAndCount(final PrintStream out, final String name, final GLArrayData data, final int[] size, final int[] capacity) { out.print(name+"["); if( null != data ) { out.print(data.fillStatsToString()); size[0] += data.getByteCount(); capacity[0] += data.getByteCapacity(); out.print("]"); } else { out.print("null]"); } } private static void print(final PrintStream out, final String name, final GLArrayData data) { out.print(name+"["); if( null != data ) { out.print(data.fillStatsToString()); out.print("]"); } else { out.print("null]"); } } /** Set the 2nd pass texture unit. */ public abstract void setTextureUnit(final int pass2TexUnit); @Override protected final void pushVertex(final Vec3f coords, final Vec3f texParams, final Vec4f rgba) { // NIO array[3] is much slows than group/single // gca_VerticesAttr.putf(coords, 0, 3); // gca_CurveParamsAttr.putf(texParams, 0, 3); // gca_VerticesAttr.put3f(coords.x(), coords.y(), coords.z()); // System.err.println("GLRegion V: "+coords); put3f((FloatBuffer)vpc_ileave.getBuffer(), coords); put3f((FloatBuffer)vpc_ileave.getBuffer(), texParams); if( hasColorChannel() ) { if( null != rgba ) { put4f((FloatBuffer)vpc_ileave.getBuffer(), rgba); } else { throw new IllegalArgumentException("Null color given for COLOR_CHANNEL rendering mode"); } } } @Override protected final void pushVertices(final Vec3f coords1, final Vec3f coords2, final Vec3f coords3, final Vec3f texParams1, final Vec3f texParams2, final Vec3f texParams3, final Vec4f rgba) { final boolean cc = hasColorChannel(); if( cc && null == rgba ) { throw new IllegalArgumentException("Null color given for COLOR_CHANNEL rendering mode"); } // System.err.println("GLRegion V: "+coords1+", "+coords2+", "+coords3); put3f((FloatBuffer)vpc_ileave.getBuffer(), coords1); put3f((FloatBuffer)vpc_ileave.getBuffer(), texParams1); if( cc ) { put4f((FloatBuffer)vpc_ileave.getBuffer(), rgba); } put3f((FloatBuffer)vpc_ileave.getBuffer(), coords2); put3f((FloatBuffer)vpc_ileave.getBuffer(), texParams2); if( cc ) { put4f((FloatBuffer)vpc_ileave.getBuffer(), rgba); } put3f((FloatBuffer)vpc_ileave.getBuffer(), coords3); put3f((FloatBuffer)vpc_ileave.getBuffer(), texParams3); if( cc ) { put4f((FloatBuffer)vpc_ileave.getBuffer(), rgba); } } @Override protected final void pushIndex(final int idx) { if( usesI32Idx() ) { indicesBuffer.puti(idx); } else { indicesBuffer.puts((short)idx); } } @Override protected final void pushIndices(final int idx1, final int idx2, final int idx3) { if( usesI32Idx() ) { // indicesBuffer.put3i(idx1, idx2, idx3); put3i((IntBuffer)indicesBuffer.getBuffer(), idx1, idx2, idx3); } else { // indicesBuffer.put3s((short)idx1, (short)idx2, (short)idx3); put3s((ShortBuffer)indicesBuffer.getBuffer(), (short)idx1, (short)idx2, (short)idx3); } } /** * Clears all buffers, i.e. triangles, vertices etc and and resets states accordingly, see {@link GLArrayDataEditable#clear(GL)}. *

* This method does not actually erase the data in the buffer and will most often be used when erasing the underlying memory is suitable. *

* * @param gl the current {@link GL2ES2} object * @return this {@link GLRegion} for chaining. * @see GLArrayDataEditable#clear(GL) */ public final GLRegion clear(final GL2ES2 gl) { lastRenderModes = 0; if(DEBUG_INSTANCE) { System.err.println("GLRegion Clear: " + this); } if( null != indicesBuffer ) { indicesBuffer.clear(gl); } if( null != vpc_ileave ) { vpc_ileave.clear(gl); } clearImpl(gl); clearImpl(); return this; } protected abstract void clearImpl(final GL2ES2 gl); /** * Delete and clear the associated OGL objects. *

* The {@link ShaderProgram}s references are nullified but not {@link ShaderProgram#destroy(GL2ES2) destroyed} * as they are owned by {@link RegionRenderer}. *

*/ public final void destroy(final GL2ES2 gl) { clear(gl); if( null != vpc_ileave ) { vpc_ileave.destroy(gl); vpc_ileave = null; } if( null != gca_VerticesAttr ) { gca_VerticesAttr.destroy(gl); gca_VerticesAttr = null; } if( null != gca_CurveParamsAttr ) { gca_CurveParamsAttr.destroy(gl); gca_CurveParamsAttr = null; } if( null != gca_ColorsAttr ) { gca_ColorsAttr.destroy(gl); gca_ColorsAttr = null; } if(null != indicesBuffer) { indicesBuffer.destroy(gl); indicesBuffer = null; } curVerticesCap = 0; curIndicesCap = 0; growCount = 0; destroyImpl(gl); } protected abstract void destroyImpl(final GL2ES2 gl); /** * Renders the associated OGL objects specifying * current width/hight of window for optional multi pass rendering of the region. *

* User shall consider {@link RegionRenderer#enable(GL2ES2, boolean) enabling} * the renderer beforehand and {@link RegionRenderer#enable(GL2ES2, boolean) disabling} * it afterwards when used in conjunction with other renderer. *

*

* Users shall also consider setting the {@link GL#glClearColor(float, float, float, float) clear-color} * appropriately: *

* The alpha component shall be set to zero. * Note: If {@link GL#GL_BLEND blending} is enabled, the * {@link RegionRenderer} might need to be * {@link RegionRenderer#create(Vertex.Factory, RenderState, com.jogamp.graph.curve.opengl.RegionRenderer.GLCallback, com.jogamp.graph.curve.opengl.RegionRenderer.GLCallback) created} * with the appropriate {@link RegionRenderer.GLCallback callbacks}. *

* @param gl current {@link GL2ES2}. * @param renderer the {@link RegionRenderer} to be used * @see RegionRenderer#enable(GL2ES2, boolean) * @see RegionRenderer#setAAQuality(int) * @see RegionRenderer#setSampleCount(int) * @see RegionRenderer#setClipBBox(com.jogamp.math.geom.AABBox) */ public final void draw(final GL2ES2 gl, final RegionRenderer renderer) { final int pass2Quality = renderer.getAAQuality(); final int pass2SampleCount = renderer.getSampleCount(); final int curRenderModes; if( 0 == pass2SampleCount ) { // no sampling, reduce to pass1 curRenderModes = getRenderModes() & ~( VBAA_RENDERING_BIT | MSAA_RENDERING_BIT ); } else if( 0 > pass2SampleCount ) { // negative sampling, hint we perform glSelect: pass1 w/o any color texture nor channel, use static select color only curRenderModes = getRenderModes() & ~( VBAA_RENDERING_BIT | MSAA_RENDERING_BIT | COLORCHANNEL_RENDERING_BIT | COLORTEXTURE_RENDERING_BIT ); } else { // normal 2-pass sampling curRenderModes = getRenderModes(); } // System.err.println("XXX.0 "+Region.getRenderModeString(getRenderModes(), sampleCount[0], 0)+": "+ // Region.getRenderModeString(lastRenderModes, sampleCount[0], 0)+" -> "+Region.getRenderModeString(curRenderModes, sampleCount[0], 0)); if( lastRenderModes != curRenderModes ) { markShapeDirty(); markStateDirty(); } else if( Region.isGraphAA(curRenderModes) && ( lastPass2Quality != pass2Quality || lastPass2SampleCount != pass2SampleCount ) ) { markStateDirty(); } if( isShapeDirty() ) { updateImpl(gl, renderer, curRenderModes); } drawImpl(gl, renderer, curRenderModes); clearDirtyBits(DIRTY_SHAPE|DIRTY_STATE); lastRenderModes = curRenderModes; lastPass2Quality = pass2Quality; lastPass2SampleCount = pass2SampleCount; } /** Perform glSelect false color rendering: pass1 w/o any color texture nor channel, use static select color only */ public final void drawToSelect(final GL2ES2 gl, final RegionRenderer renderer) { final int curRenderModes = getRenderModes() & ~( VBAA_RENDERING_BIT | MSAA_RENDERING_BIT | COLORCHANNEL_RENDERING_BIT | COLORTEXTURE_RENDERING_BIT ); if( lastRenderModes != curRenderModes ) { markShapeDirty(); markStateDirty(); } if( isShapeDirty() ) { updateImpl(gl, renderer, curRenderModes); } drawImpl(gl, renderer, curRenderModes); clearDirtyBits(DIRTY_SHAPE|DIRTY_STATE); lastRenderModes = curRenderModes; } private int lastRenderModes = 0; private int lastPass2Quality = -1; private int lastPass2SampleCount = -1; /** * Updates a graph region by updating the ogl related * objects for use in rendering if {@link #isShapeDirty()}. *

Allocates the ogl related data and initializes it the 1st time.

*

Called by {@link #draw(GL2ES2, RenderState, int, int, int)}.

*/ protected abstract void updateImpl(final GL2ES2 gl, final RegionRenderer renderer, final int curRenderModes); protected abstract void drawImpl(final GL2ES2 gl, final RegionRenderer renderer, final int curRenderModes); }