/** * Copyright 2010-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those of the * authors and should not be interpreted as representing official policies, either expressed * or implied, of JogAmp Community. */ package com.jogamp.math; /** * Quaternion implementation supporting * Gimbal-Lock free rotations. *

* All matrix operation provided are in column-major order, * as specified in the OpenGL fixed function pipeline, i.e. compatibility profile. * See {@link FloatUtil}. *

*

* See Matrix-FAQ *

*

* See euclideanspace.com-Quaternion *

*/ public class Quaternion { private float x, y, z, w; /** * Quaternion Epsilon, used with equals method to determine if two Quaternions are close enough to be considered equal. *

* Using {@value}, which is ~10 times {@link FloatUtil#EPSILON}. *

*/ public static final float ALLOWED_DEVIANCE = 1.0E-6f; // FloatUtil.EPSILON == 1.1920929E-7f; double ALLOWED_DEVIANCE: 1.0E-8f public Quaternion() { x = y = z = 0; w = 1; } public Quaternion(final Quaternion q) { set(q); } public Quaternion(final float x, final float y, final float z, final float w) { set(x, y, z, w); } public Quaternion copy() { return new Quaternion(this); } /** * See {@link #magnitude()} for special handling of {@link FloatUtil#EPSILON epsilon}, * which is not applied here. * @return the squared magnitude of this quaternion. */ public final float magnitudeSquared() { return w*w + x*x + y*y + z*z; } /** * Return the magnitude of this quaternion, i.e. sqrt({@link #magnitudeSquared()}) *

* A magnitude of zero shall equal {@link #isIdentity() identity}, * as performed by {@link #normalize()}. *

*

* Implementation Details: *

*

*/ public final float magnitude() { final float magnitudeSQ = magnitudeSquared(); if ( FloatUtil.isZero(magnitudeSQ) ) { return 0f; } if ( FloatUtil.isEqual(1f, magnitudeSQ) ) { return 1f; } return FloatUtil.sqrt(magnitudeSQ); } public final float w() { return w; } public final void setW(final float w) { this.w = w; } public final float x() { return x; } public final void setX(final float x) { this.x = x; } public final float y() { return y; } public final void setY(final float y) { this.y = y; } public final float z() { return z; } public final void setZ(final float z) { this.z = z; } /** * Returns the dot product of this quaternion with the given x,y,z and w components. */ public final float dot(final float x, final float y, final float z, final float w) { return this.x * x + this.y * y + this.z * z + this.w * w; } /** * Returns the dot product of this quaternion with the given quaternion */ public final float dot(final Quaternion quat) { return dot(quat.x(), quat.y(), quat.z(), quat.w()); } /** * Returns true if this quaternion has identity. *

* Implementation uses {@link FloatUtil#EPSILON epsilon} to compare * {@link #w() W} {@link FloatUtil#isEqual(float, float) against 1f} and * {@link #x() X}, {@link #y() Y} and {@link #z() Z} * {@link FloatUtil#isZero(float) against zero}. *

*/ public final boolean isIdentity() { return FloatUtil.isEqual(1f, w) && VectorUtil.isZero(x, y, z); // return w == 1f && x == 0f && y == 0f && z == 0f; } /*** * Set this quaternion to identity (x=0,y=0,z=0,w=1) * @return this quaternion for chaining. */ public final Quaternion setIdentity() { x = y = z = 0f; w = 1f; return this; } /** * Normalize a quaternion required if to be used as a rotational quaternion. *

* Implementation Details: *

*

* @return this quaternion for chaining. */ public final Quaternion normalize() { final float norm = magnitude(); if ( FloatUtil.isZero(norm) ) { setIdentity(); } else { final float invNorm = 1f/norm; w *= invNorm; x *= invNorm; y *= invNorm; z *= invNorm; } return this; } /** * Conjugates this quaternion [-x, -y, -z, w]. * @return this quaternion for chaining. * @see Matrix-FAQ Q49 */ public Quaternion conjugate() { x = -x; y = -y; z = -z; return this; } /** * Invert the quaternion If rotational, will produce a the inverse rotation *

* Implementation Details: *

*

* @return this quaternion for chaining. * @see Matrix-FAQ Q50 */ public final Quaternion invert() { final float magnitudeSQ = magnitudeSquared(); if ( FloatUtil.isEqual(1.0f, magnitudeSQ) ) { conjugate(); } else { final float invmsq = 1f/magnitudeSQ; w *= invmsq; x = -x * invmsq; y = -y * invmsq; z = -z * invmsq; } return this; } /** * Set all values of this quaternion using the given src. * @return this quaternion for chaining. */ public final Quaternion set(final Quaternion src) { this.x = src.x; this.y = src.y; this.z = src.z; this.w = src.w; return this; } /** * Set all values of this quaternion using the given components. * @return this quaternion for chaining. */ public final Quaternion set(final float x, final float y, final float z, final float w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** * Add a quaternion * * @param q quaternion * @return this quaternion for chaining. * @see euclideanspace.com-QuaternionAdd */ public final Quaternion add(final Quaternion q) { x += q.x; y += q.y; z += q.z; w += q.w; return this; } /** * Subtract a quaternion * * @param q quaternion * @return this quaternion for chaining. * @see euclideanspace.com-QuaternionAdd */ public final Quaternion subtract(final Quaternion q) { x -= q.x; y -= q.y; z -= q.z; w -= q.w; return this; } /** * Multiply this quaternion by the param quaternion * * @param q a quaternion to multiply with * @return this quaternion for chaining. * @see Matrix-FAQ Q53 * @see euclideanspace.com-QuaternionMul */ public final Quaternion mult(final Quaternion q) { return set( w * q.x + x * q.w + y * q.z - z * q.y, w * q.y - x * q.z + y * q.w + z * q.x, w * q.z + x * q.y - y * q.x + z * q.w, w * q.w - x * q.x - y * q.y - z * q.z ); } /** * Scale this quaternion by a constant * * @param n a float constant * @return this quaternion for chaining. * @see euclideanspace.com-QuaternionScale */ public final Quaternion scale(final float n) { x *= n; y *= n; z *= n; w *= n; return this; } /** * Rotate this quaternion by the given angle and axis. *

* The axis must be a normalized vector. *

*

* A rotational quaternion is made from the given angle and axis. *

* * @param angle in radians * @param axisX x-coord of rotation axis * @param axisY y-coord of rotation axis * @param axisZ z-coord of rotation axis * @return this quaternion for chaining. */ public Quaternion rotateByAngleNormalAxis(final float angle, final float axisX, final float axisY, final float axisZ) { if( VectorUtil.isZero(axisX, axisY, axisZ) ) { // no change return this; } final float halfAngle = 0.5f * angle; final float sin = FloatUtil.sin(halfAngle); final float qw = FloatUtil.cos(halfAngle); final float qx = sin * axisX; final float qy = sin * axisY; final float qz = sin * axisZ; return set( x * qw + y * qz - z * qy + w * qx, -x * qz + y * qw + z * qx + w * qy, x * qy - y * qx + z * qw + w * qz, -x * qx - y * qy - z * qz + w * qw); } /** * Rotate this quaternion by the given angle and axis. *

* The axis must be a normalized vector. *

*

* A rotational quaternion is made from the given angle and axis. *

* * @param angle in radians * @param axis Vec3f coord of rotation axis * @return this quaternion for chaining. */ public Quaternion rotateByAngleNormalAxis(final float angle, final Vec3f axis) { return rotateByAngleNormalAxis(angle, axis.x(), axis.y(), axis.z()); } /** * Rotate this quaternion around X axis with the given angle in radians * * @param angle in radians * @return this quaternion for chaining. */ public Quaternion rotateByAngleX(final float angle) { final float halfAngle = 0.5f * angle; final float sin = FloatUtil.sin(halfAngle); final float cos = FloatUtil.cos(halfAngle); return set( x * cos + w * sin, y * cos + z * sin, -y * sin + z * cos, -x * sin + w * cos); } /** * Rotate this quaternion around Y axis with the given angle in radians * * @param angle in radians * @return this quaternion for chaining. */ public Quaternion rotateByAngleY(final float angle) { final float halfAngle = 0.5f * angle; final float sin = FloatUtil.sin(halfAngle); final float cos = FloatUtil.cos(halfAngle); return set( x * cos - z * sin, y * cos + w * sin, x * sin + z * cos, -y * sin + w * cos); } /** * Rotate this quaternion around Z axis with the given angle in radians * * @param angle in radians * @return this quaternion for chaining. */ public Quaternion rotateByAngleZ(final float angle) { final float halfAngle = 0.5f * angle; final float sin = FloatUtil.sin(halfAngle); final float cos = FloatUtil.cos(halfAngle); return set( x * cos + y * sin, -x * sin + y * cos, z * cos + w * sin, -z * sin + w * cos); } /** * Rotates this quaternion from the given Euler rotation array angradXYZ in radians. *

* The angradXYZ array is laid out in natural order: *

*

* For details see {@link #rotateByEuler(float, float, float)}. * @param angradXYZ euler angle array in radians * @return this quaternion for chaining. * @see #rotateByEuler(float, float, float) */ public final Quaternion rotateByEuler(final Vec3f angradXYZ) { return rotateByEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z()); } /** * Rotates this quaternion from the given Euler rotation angles in radians. *

* The rotations are applied in the given order and using chained rotation per axis: *

*

*

* Implementation Details: *

*

* @param bankX the Euler pitch angle in radians. (rotation about the X axis) * @param headingY the Euler yaw angle in radians. (rotation about the Y axis) * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis) * @return this quaternion for chaining. * @see #rotateByAngleY(float) * @see #rotateByAngleZ(float) * @see #rotateByAngleX(float) * @see #setFromEuler(float, float, float) */ public final Quaternion rotateByEuler(final float bankX, final float headingY, final float attitudeZ) { if ( VectorUtil.isZero(bankX, headingY, attitudeZ) ) { return this; } else { // setFromEuler muls: ( 8 + 4 ) , + quat muls 24 = 36 // this: 8 + 8 + 8 + 4 = 28 muls return rotateByAngleY(headingY).rotateByAngleZ(attitudeZ).rotateByAngleX(bankX).normalize(); } } /*** * Rotate the given vector by this quaternion * @param vecIn vector to be rotated * @param vecOut result storage for rotated vector, maybe equal to vecIn for in-place rotation * * @return the given vecOut store for chaining * @see Matrix-FAQ Q63 */ public final Vec3f rotateVector(final Vec3f vecIn, final Vec3f vecOut) { if( vecIn.isZero() ) { vecOut.set(0, 0, 0); } else { final float vecX = vecIn.x(); final float vecY = vecIn.y(); final float vecZ = vecIn.z(); final float x_x = x*x; final float y_y = y*y; final float z_z = z*z; final float w_w = w*w; vecOut.setX( w_w * vecX + x_x * vecX - z_z * vecX - y_y * vecX + 2f * ( y*w*vecZ - z*w*vecY + y*x*vecY + z*x*vecZ ) ); ; vecOut.setY( y_y * vecY - z_z * vecY + w_w * vecY - x_x * vecY + 2f * ( x*y*vecX + z*y*vecZ + w*z*vecX - x*w*vecZ ) );; vecOut.setZ( z_z * vecZ - y_y * vecZ - x_x * vecZ + w_w * vecZ + 2f * ( x*z*vecX + y*z*vecY - w*y*vecX + w*x*vecY ) ); } return vecOut; } /** * Set this quaternion to a spherical linear interpolation * between the given start and end quaternions by the given change amount. *

* Note: Method does not normalize this quaternion! *

* * @param a start quaternion * @param b end quaternion * @param changeAmnt float between 0 and 1 representing interpolation. * @return this quaternion for chaining. * @see euclideanspace.com-QuaternionSlerp */ public final Quaternion setSlerp(final Quaternion a, final Quaternion b, final float changeAmnt) { // System.err.println("Slerp.0: A "+a+", B "+b+", t "+changeAmnt); if (changeAmnt == 0.0f) { set(a); } else if (changeAmnt == 1.0f) { set(b); } else { float bx = b.x; float by = b.y; float bz = b.z; float bw = b.w; // Calculate angle between them (quat dot product) float cosHalfTheta = a.x * bx + a.y * by + a.z * bz + a.w * bw; final float scale0, scale1; if( cosHalfTheta >= 0.95f ) { // quaternions are close, just use linear interpolation scale0 = 1.0f - changeAmnt; scale1 = changeAmnt; // System.err.println("Slerp.1: Linear Interpol; cosHalfTheta "+cosHalfTheta); } else if ( cosHalfTheta <= -0.99f ) { // the quaternions are nearly opposite, // we can pick any axis normal to a,b to do the rotation scale0 = 0.5f; scale1 = 0.5f; // System.err.println("Slerp.2: Any; cosHalfTheta "+cosHalfTheta); } else { // System.err.println("Slerp.3: cosHalfTheta "+cosHalfTheta); if( cosHalfTheta <= -FloatUtil.EPSILON ) { // FIXME: .. or shall we use the upper bound 'cosHalfTheta < FloatUtil.EPSILON' ? // Negate the second quaternion and the result of the dot product (Inversion) bx *= -1f; by *= -1f; bz *= -1f; bw *= -1f; cosHalfTheta *= -1f; // System.err.println("Slerp.4: Inverted cosHalfTheta "+cosHalfTheta); } final float halfTheta = FloatUtil.acos(cosHalfTheta); final float sinHalfTheta = FloatUtil.sqrt(1.0f - cosHalfTheta*cosHalfTheta); // if theta = 180 degrees then result is not fully defined // we could rotate around any axis normal to qa or qb if ( Math.abs(sinHalfTheta) < 0.001f ){ // fabs is floating point absolute scale0 = 0.5f; scale1 = 0.5f; // throw new InternalError("XXX"); // FIXME should not be reached due to above inversion ? } else { // Calculate the scale for q1 and q2, according to the angle and // it's sine value scale0 = FloatUtil.sin((1f - changeAmnt) * halfTheta) / sinHalfTheta; scale1 = FloatUtil.sin(changeAmnt * halfTheta) / sinHalfTheta; } } x = a.x * scale0 + bx * scale1; y = a.y * scale0 + by * scale1; z = a.z * scale0 + bz * scale1; w = a.w * scale0 + bw * scale1; } // System.err.println("Slerp.X: Result "+this); return this; } /** * Set this quaternion to equal the rotation required * to point the z-axis at direction and the y-axis to up. *

* Implementation generates a 3x3 matrix * and is equal with ProjectFloat's lookAt(..).
*

* Implementation Details: * *

* @param directionIn where to look at * @param upIn a vector indicating the local up direction. * @param xAxisOut vector storing the orthogonal x-axis of the coordinate system. * @param yAxisOut vector storing the orthogonal y-axis of the coordinate system. * @param zAxisOut vector storing the orthogonal z-axis of the coordinate system. * @return this quaternion for chaining. * @see euclideanspace.com-LookUp */ public Quaternion setLookAt(final Vec3f directionIn, final Vec3f upIn, final Vec3f xAxisOut, final Vec3f yAxisOut, final Vec3f zAxisOut) { // Z = norm(dir) zAxisOut.set(directionIn).normalize(); // X = upIn x Z // (borrow yAxisOut for upNorm) yAxisOut.set(upIn).normalize(); xAxisOut.cross(yAxisOut, zAxisOut).normalize(); // Y = Z x X // yAxisOut.cross(zAxisOut, xAxisOut).normalize(); /** final float m00 = xAxisOut[0]; final float m01 = yAxisOut[0]; final float m02 = zAxisOut[0]; final float m10 = xAxisOut[1]; final float m11 = yAxisOut[1]; final float m12 = zAxisOut[1]; final float m20 = xAxisOut[2]; final float m21 = yAxisOut[2]; final float m22 = zAxisOut[2]; */ return setFromAxes(xAxisOut, yAxisOut, zAxisOut).normalize(); } // // Conversions // /** * Initialize this quaternion from two vectors *
     *   q = (s,v) = (v1•v2 , v1 × v2),
     *     angle = angle(v1, v2) = v1•v2
     *      axis = normal(v1 x v2)
     * 
*

* Implementation Details: *

*

* @param v1 not normalized * @param v2 not normalized * @param tmpPivotVec temp storage for cross product * @param tmpNormalVec temp storage to normalize vector * @return this quaternion for chaining. */ public final Quaternion setFromVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec, final Vec3f tmpNormalVec) { final float factor = v1.length() * v2.length(); if ( FloatUtil.isZero(factor) ) { return setIdentity(); } else { final float dot = v1.dot(v2) / factor; // normalize final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1] tmpPivotVec.cross(v1, v2); if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length() ) ) { // Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector // perpendicular to this vector will rotate vector a onto vector b. // // The following guarantees the dot-product will be 0.0. int dominantIndex; if (Math.abs(v1.x()) > Math.abs(v1.y())) { if (Math.abs(v1.x()) > Math.abs(v1.z())) { dominantIndex = 0; } else { dominantIndex = 2; } } else { if (Math.abs(v1.y()) > Math.abs(v1.z())) { dominantIndex = 1; } else { dominantIndex = 2; } } tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) ); tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) ); tmpPivotVec.set( (dominantIndex + 2) % 3, 0f ); } return setFromAngleAxis(theta, tmpPivotVec, tmpNormalVec); } } /** * Initialize this quaternion from two normalized vectors *
     *   q = (s,v) = (v1•v2 , v1 × v2),
     *     angle = angle(v1, v2) = v1•v2
     *      axis = v1 x v2
     * 
*

* Implementation Details: *

*

* @param v1 normalized * @param v2 normalized * @param tmpPivotVec temp storage for cross product * @return this quaternion for chaining. */ public final Quaternion setFromNormalVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec) { final float factor = v1.length() * v2.length(); if ( FloatUtil.isZero(factor) ) { return setIdentity(); } else { final float dot = v1.dot(v2) / factor; // normalize final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1] tmpPivotVec.cross(v1, v2); if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length() ) ) { // Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector // perpendicular to this vector will rotate vector a onto vector b. // // The following guarantees the dot-product will be 0.0. int dominantIndex; if (Math.abs(v1.x()) > Math.abs(v1.y())) { if (Math.abs(v1.x()) > Math.abs(v1.z())) { dominantIndex = 0; } else { dominantIndex = 2; } } else { if (Math.abs(v1.y()) > Math.abs(v1.z())) { dominantIndex = 1; } else { dominantIndex = 2; } } tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) ); tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) ); tmpPivotVec.set( (dominantIndex + 2) % 3, 0f ); } return setFromAngleNormalAxis(theta, tmpPivotVec); } } /*** * Initialize this quaternion with given non-normalized axis vector and rotation angle *

* Implementation Details: *

*

* @param angle rotation angle (rads) * @param vector axis vector not normalized * @param tmpV3f temp storage to normalize vector * @return this quaternion for chaining. * * @see Matrix-FAQ Q56 * @see #toAngleAxis(Vec3f) */ public final Quaternion setFromAngleAxis(final float angle, final Vec3f vector, final Vec3f tmpV3f) { tmpV3f.set(vector).normalize(); return setFromAngleNormalAxis(angle, tmpV3f); } /*** * Initialize this quaternion with given normalized axis vector and rotation angle *

* Implementation Details: *

*

* @param angle rotation angle (rads) * @param vector axis vector normalized * @return this quaternion for chaining. * * @see Matrix-FAQ Q56 * @see #toAngleAxis(Vec3f) */ public final Quaternion setFromAngleNormalAxis(final float angle, final Vec3f vector) { if( vector.isZero() ) { setIdentity(); } else { final float halfangle = angle * 0.5f; final float sin = FloatUtil.sin(halfangle); x = vector.x() * sin; y = vector.y() * sin; z = vector.z() * sin; w = FloatUtil.cos(halfangle); } return this; } /** * Transform the rotational quaternion to axis based rotation angles * * @param axis storage for computed axis * @return the rotation angle in radians * @see #setFromAngleAxis(float, Vec3f, Vec3f) */ public final float toAngleAxis(final Vec3f axis) { final float sqrLength = x*x + y*y + z*z; float angle; if ( FloatUtil.isZero(sqrLength) ) { // length is ~0 angle = 0.0f; axis.set( 1.0f, 0.0f, 0.0f ); } else { angle = FloatUtil.acos(w) * 2.0f; final float invLength = 1.0f / FloatUtil.sqrt(sqrLength); axis.set( x * invLength, y * invLength, z * invLength ); } return angle; } /** * Initializes this quaternion from the given Euler rotation array angradXYZ in radians. *

* The angradXYZ vector is laid out in natural order: *

*

* For details see {@link #setFromEuler(float, float, float)}. * @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude * @return this quaternion for chaining. * @see #setFromEuler(float, float, float) */ public final Quaternion setFromEuler(final Vec3f angradXYZ) { return setFromEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z()); } /** * Initializes this quaternion from the given Euler rotation angles in radians. *

* The rotations are applied in the given order: *

*

*

* Implementation Details: *

*

* @param bankX the Euler pitch angle in radians. (rotation about the X axis) * @param headingY the Euler yaw angle in radians. (rotation about the Y axis) * @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis) * @return this quaternion for chaining. * * @see Matrix-FAQ Q60 * @see Gems * @see euclideanspace.com-eulerToQuaternion * @see #toEuler(Vec3f) */ public final Quaternion setFromEuler(final float bankX, final float headingY, final float attitudeZ) { if ( VectorUtil.isZero(bankX, headingY, attitudeZ) ) { return setIdentity(); } else { float angle = headingY * 0.5f; final float sinHeadingY = FloatUtil.sin(angle); final float cosHeadingY = FloatUtil.cos(angle); angle = attitudeZ * 0.5f; final float sinAttitudeZ = FloatUtil.sin(angle); final float cosAttitudeZ = FloatUtil.cos(angle); angle = bankX * 0.5f; final float sinBankX = FloatUtil.sin(angle); final float cosBankX = FloatUtil.cos(angle); // variables used to reduce multiplication calls. final float cosHeadingXcosAttitude = cosHeadingY * cosAttitudeZ; final float sinHeadingXsinAttitude = sinHeadingY * sinAttitudeZ; final float cosHeadingXsinAttitude = cosHeadingY * sinAttitudeZ; final float sinHeadingXcosAttitude = sinHeadingY * cosAttitudeZ; w = cosHeadingXcosAttitude * cosBankX - sinHeadingXsinAttitude * sinBankX; x = cosHeadingXcosAttitude * sinBankX + sinHeadingXsinAttitude * cosBankX; y = sinHeadingXcosAttitude * cosBankX + cosHeadingXsinAttitude * sinBankX; z = cosHeadingXsinAttitude * cosBankX - sinHeadingXcosAttitude * sinBankX; return normalize(); } } /** * Transform this quaternion to Euler rotation angles in radians (pitchX, yawY and rollZ). *

* The result array is laid out in natural order: *

*

* * @param result euler angle result vector for radians x-bank, y-heading and z-attitude * @return the Vec3f `result` filled with x-bank, y-heading and z-attitude * @see euclideanspace.com-quaternionToEuler * @see #setFromEuler(float, float, float) */ public Vec3f toEuler(final Vec3f result) { final float sqw = w*w; final float sqx = x*x; final float sqy = y*y; final float sqz = z*z; final float unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise, is correction factor final float test = x*y + z*w; if (test > 0.499f * unit) { // singularity at north pole result.set( 0f, // x-bank 2f * FloatUtil.atan2(x, w), // y-heading FloatUtil.HALF_PI ); // z-attitude } else if (test < -0.499f * unit) { // singularity at south pole result.set( 0f, // x-bank -2 * FloatUtil.atan2(x, w), // y-heading -FloatUtil.HALF_PI ); // z-attitude } else { result.set( FloatUtil.atan2(2f * x * w - 2 * y * z, -sqx + sqy - sqz + sqw), // x-bank FloatUtil.atan2(2f * y * w - 2 * x * z, sqx - sqy - sqz + sqw), // y-heading FloatUtil.asin( 2f * test / unit) ); // z-attitude } return result; } /** * Compute the quaternion from a 3x3 column rotation matrix *

* See Graphics Gems Code,
* MatrixTrace. *

*

* Buggy Matrix-FAQ Q55 *

* * @return this quaternion for chaining. * @see #setFromMatrix(Matrix4f) */ public Quaternion setFromMatrix(final float m00, final float m01, final float m02, final float m10, final float m11, final float m12, final float m20, final float m21, final float m22) { // Note: Other implementations uses 'T' w/o '+1f' and compares 'T >= 0' while adding missing 1f in sqrt expr. // However .. this causes setLookAt(..) to fail and actually violates the 'trace definition'. // The trace T is the sum of the diagonal elements; see // http://mathworld.wolfram.com/MatrixTrace.html final float T = m00 + m11 + m22 + 1f; // System.err.println("setFromMatrix.0 T "+T+", m00 "+m00+", m11 "+m11+", m22 "+m22); if ( T > 0f ) { // System.err.println("setFromMatrix.1"); final float S = 0.5f / FloatUtil.sqrt(T); // S = 1 / ( 2 t ) w = 0.25f / S; // w = 1 / ( 4 S ) = t / 2 x = ( m21 - m12 ) * S; y = ( m02 - m20 ) * S; z = ( m10 - m01 ) * S; } else if ( m00 > m11 && m00 > m22) { // System.err.println("setFromMatrix.2"); final float S = 0.5f / FloatUtil.sqrt(1.0f + m00 - m11 - m22); // S=4*qx w = ( m21 - m12 ) * S; x = 0.25f / S; y = ( m10 + m01 ) * S; z = ( m02 + m20 ) * S; } else if ( m11 > m22 ) { // System.err.println("setFromMatrix.3"); final float S = 0.5f / FloatUtil.sqrt(1.0f + m11 - m00 - m22); // S=4*qy w = ( m02 - m20 ) * S; x = ( m20 + m01 ) * S; y = 0.25f / S; z = ( m21 + m12 ) * S; } else { // System.err.println("setFromMatrix.3"); final float S = 0.5f / FloatUtil.sqrt(1.0f + m22 - m00 - m11); // S=4*qz w = ( m10 - m01 ) * S; x = ( m02 + m20 ) * S; y = ( m21 + m12 ) * S; z = 0.25f / S; } return this; } /** * Compute the quaternion from a 3x3 column rotation matrix *

* See Graphics Gems Code,
* MatrixTrace. *

*

* Buggy Matrix-FAQ Q55 *

* * @return this quaternion for chaining. * @see Matrix4f#getRotation(Quaternion) * @see #setFromMatrix(float, float, float, float, float, float, float, float, float) */ public Quaternion setFromMatrix(final Matrix4f m) { return m.getRotation(this); } /** * Transform this quaternion to a normalized 4x4 column matrix representing the rotation. *

* Implementation Details: *

*

* * @param matrix float[16] store for the resulting normalized column matrix 4x4 * @return the given matrix store * @see Matrix-FAQ Q54 * @see #setFromMatrix(Matrix4f) * @see #setFromMatrix(float, float, float, float, float, float, float, float, float) */ public final float[] toMatrix(final float[] matrix) { // pre-multiply scaled-reciprocal-magnitude to reduce multiplications final float norm = magnitudeSquared(); if ( FloatUtil.isZero(norm) ) { // identity matrix -> srecip = 0f return FloatUtil.makeIdentity(matrix); } final float srecip; if ( FloatUtil.isEqual(1f, norm) ) { srecip = 2f; } else { srecip = 2.0f / norm; } final float xs = srecip * x; final float ys = srecip * y; final float zs = srecip * z; final float xx = x * xs; final float xy = x * ys; final float xz = x * zs; final float xw = xs * w; final float yy = y * ys; final float yz = y * zs; final float yw = ys * w; final float zz = z * zs; final float zw = zs * w; matrix[0+0*4] = 1f - ( yy + zz ); matrix[0+1*4] = ( xy - zw ); matrix[0+2*4] = ( xz + yw ); matrix[0+3*4] = 0f; matrix[1+0*4] = ( xy + zw ); matrix[1+1*4] = 1f - ( xx + zz ); matrix[1+2*4] = ( yz - xw ); matrix[1+3*4] = 0f; matrix[2+0*4] = ( xz - yw ); matrix[2+1*4] = ( yz + xw ); matrix[2+2*4] = 1f - ( xx + yy ); matrix[2+3*4] = 0f; matrix[3+0*4] = 0f; matrix[3+1*4] = 0f; matrix[3+2*4] = 0f; matrix[3+3*4] = 1f; return matrix; } /** * Transform this quaternion to a normalized 4x4 column matrix representing the rotation. *

* Implementation Details: *

*

* * @param matrix store for the resulting normalized column matrix 4x4 * @return the given matrix store * @see Matrix-FAQ Q54 * @see #setFromMatrix(float, float, float, float, float, float, float, float, float) * @see Matrix4f#setToRotation(Quaternion) */ public final Matrix4f toMatrix(final Matrix4f matrix) { return matrix.setToRotation(this); } /** * Initializes this quaternion to represent a rotation formed by the given three orthogonal axes. *

* No validation whether the axes are orthogonal is performed. *

* * @param xAxis vector representing the orthogonal x-axis of the coordinate system. * @param yAxis vector representing the orthogonal y-axis of the coordinate system. * @param zAxis vector representing the orthogonal z-axis of the coordinate system. * @return this quaternion for chaining. */ public final Quaternion setFromAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis) { return setFromMatrix(xAxis.x(), yAxis.x(), zAxis.x(), xAxis.y(), yAxis.y(), zAxis.y(), xAxis.z(), yAxis.z(), zAxis.z()); } /** * Extracts this quaternion's orthogonal rotation axes. * * @param xAxis vector representing the orthogonal x-axis of the coordinate system. * @param yAxis vector representing the orthogonal y-axis of the coordinate system. * @param zAxis vector representing the orthogonal z-axis of the coordinate system. * @param tmpMat4 temporary float[4] matrix, used to transform this quaternion to a matrix. */ public void toAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis, final Matrix4f tmpMat4) { tmpMat4.setToRotation(this); tmpMat4.getColumn(2, zAxis); tmpMat4.getColumn(1, yAxis); tmpMat4.getColumn(0, xAxis); } /** * Check if the the 3x3 matrix (param) is in fact an affine rotational * matrix * * @param m 3x3 column matrix * @return true if representing a rotational matrix, false otherwise */ @Deprecated public final boolean isRotationMatrix3f(final float[] m) { final float epsilon = 0.01f; // margin to allow for rounding errors if (Math.abs(m[0] * m[3] + m[3] * m[4] + m[6] * m[7]) > epsilon) return false; if (Math.abs(m[0] * m[2] + m[3] * m[5] + m[6] * m[8]) > epsilon) return false; if (Math.abs(m[1] * m[2] + m[4] * m[5] + m[7] * m[8]) > epsilon) return false; if (Math.abs(m[0] * m[0] + m[3] * m[3] + m[6] * m[6] - 1) > epsilon) return false; if (Math.abs(m[1] * m[1] + m[4] * m[4] + m[7] * m[7] - 1) > epsilon) return false; if (Math.abs(m[2] * m[2] + m[5] * m[5] + m[8] * m[8] - 1) > epsilon) return false; return (Math.abs(determinant3f(m) - 1) < epsilon); } @Deprecated private final float determinant3f(final float[] m) { return m[0] * m[4] * m[8] + m[3] * m[7] * m[2] + m[6] * m[1] * m[5] - m[0] * m[7] * m[5] - m[3] * m[1] * m[8] - m[6] * m[4] * m[2]; } // // std java overrides // /** * @param o the object to compare for equality * @return true if this quaternion and the provided quaternion have roughly the same x, y, z and w values. */ @Override public boolean equals(final Object o) { if (this == o) { return true; } if (!(o instanceof Quaternion)) { return false; } final Quaternion comp = (Quaternion) o; return Math.abs(x - comp.x()) <= ALLOWED_DEVIANCE && Math.abs(y - comp.y()) <= ALLOWED_DEVIANCE && Math.abs(z - comp.z()) <= ALLOWED_DEVIANCE && Math.abs(w - comp.w()) <= ALLOWED_DEVIANCE; } @Override public final int hashCode() { throw new InternalError("hashCode not designed"); } @Override public String toString() { return "Quat[x "+x+", y "+y+", z "+z+", w "+w+"]"; } }