/**
* Copyright 2010-2023 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.math;
/**
* Quaternion implementation supporting
* Gimbal-Lock free rotations.
*
* All matrix operation provided are in column-major order,
* as specified in the OpenGL fixed function pipeline, i.e. compatibility profile.
* See {@link FloatUtil}.
*
*
* See Matrix-FAQ
*
*
* See euclideanspace.com-Quaternion
*
*/
public class Quaternion {
private float x, y, z, w;
/**
* Quaternion Epsilon, used with equals method to determine if two Quaternions are close enough to be considered equal.
*
* Using {@value}, which is ~10 times {@link FloatUtil#EPSILON}.
*
*/
public static final float ALLOWED_DEVIANCE = 1.0E-6f; // FloatUtil.EPSILON == 1.1920929E-7f; double ALLOWED_DEVIANCE: 1.0E-8f
public Quaternion() {
x = y = z = 0; w = 1;
}
public Quaternion(final Quaternion q) {
set(q);
}
public Quaternion(final float x, final float y, final float z, final float w) {
set(x, y, z, w);
}
/**
* See {@link #magnitude()} for special handling of {@link FloatUtil#EPSILON epsilon},
* which is not applied here.
* @return the squared magnitude of this quaternion.
*/
public final float magnitudeSquared() {
return w*w + x*x + y*y + z*z;
}
/**
* Return the magnitude of this quaternion, i.e. sqrt({@link #magnitudeSquared()})
*
* A magnitude of zero shall equal {@link #isIdentity() identity},
* as performed by {@link #normalize()}.
*
*
* Implementation Details:
*
* - returns 0f if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
* - returns 1f if {@link #magnitudeSquared()} is {@link FloatUtil#isEqual(float, float, float) equals 1f} using {@link FloatUtil#EPSILON epsilon}
*
*
*/
public final float magnitude() {
final float magnitudeSQ = magnitudeSquared();
if ( FloatUtil.isZero(magnitudeSQ) ) {
return 0f;
}
if ( FloatUtil.isEqual(1f, magnitudeSQ) ) {
return 1f;
}
return FloatUtil.sqrt(magnitudeSQ);
}
public final float w() {
return w;
}
public final void setW(final float w) {
this.w = w;
}
public final float x() {
return x;
}
public final void setX(final float x) {
this.x = x;
}
public final float y() {
return y;
}
public final void setY(final float y) {
this.y = y;
}
public final float z() {
return z;
}
public final void setZ(final float z) {
this.z = z;
}
/**
* Returns the dot product of this quaternion with the given x,y,z and w components.
*/
public final float dot(final float x, final float y, final float z, final float w) {
return this.x * x + this.y * y + this.z * z + this.w * w;
}
/**
* Returns the dot product of this quaternion with the given quaternion
*/
public final float dot(final Quaternion quat) {
return dot(quat.x(), quat.y(), quat.z(), quat.w());
}
/**
* Returns true
if this quaternion has identity.
*
* Implementation uses {@link FloatUtil#EPSILON epsilon} to compare
* {@link #w() W} {@link FloatUtil#isEqual(float, float) against 1f} and
* {@link #x() X}, {@link #y() Y} and {@link #z() Z}
* {@link FloatUtil#isZero(float) against zero}.
*
*/
public final boolean isIdentity() {
return FloatUtil.isEqual(1f, w) && VectorUtil.isZero(x, y, z);
// return w == 1f && x == 0f && y == 0f && z == 0f;
}
/***
* Set this quaternion to identity (x=0,y=0,z=0,w=1)
* @return this quaternion for chaining.
*/
public final Quaternion setIdentity() {
x = y = z = 0f; w = 1f;
return this;
}
/**
* Normalize a quaternion required if to be used as a rotational quaternion.
*
* Implementation Details:
*
* - {@link #setIdentity()} if {@link #magnitude()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
* @return this quaternion for chaining.
*/
public final Quaternion normalize() {
final float norm = magnitude();
if ( FloatUtil.isZero(norm, FloatUtil.EPSILON) ) {
setIdentity();
} else {
final float invNorm = 1f/norm;
w *= invNorm;
x *= invNorm;
y *= invNorm;
z *= invNorm;
}
return this;
}
/**
* Conjugates this quaternion [-x, -y, -z, w]
.
* @return this quaternion for chaining.
* @see Matrix-FAQ Q49
*/
public Quaternion conjugate() {
x = -x;
y = -y;
z = -z;
return this;
}
/**
* Invert the quaternion If rotational, will produce a the inverse rotation
*
* Implementation Details:
*
* - {@link #conjugate() conjugates} if {@link #magnitudeSquared()} is is {@link FloatUtil#isEqual(float, float, float) equals 1f} using {@link FloatUtil#EPSILON epsilon}
*
*
* @return this quaternion for chaining.
* @see Matrix-FAQ Q50
*/
public final Quaternion invert() {
final float magnitudeSQ = magnitudeSquared();
if ( FloatUtil.isEqual(1.0f, magnitudeSQ) ) {
conjugate();
} else {
final float invmsq = 1f/magnitudeSQ;
w *= invmsq;
x = -x * invmsq;
y = -y * invmsq;
z = -z * invmsq;
}
return this;
}
/**
* Set all values of this quaternion using the given src.
* @return this quaternion for chaining.
*/
public final Quaternion set(final Quaternion src) {
this.x = src.x;
this.y = src.y;
this.z = src.z;
this.w = src.w;
return this;
}
/**
* Set all values of this quaternion using the given components.
* @return this quaternion for chaining.
*/
public final Quaternion set(final float x, final float y, final float z, final float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
/**
* Add a quaternion
*
* @param q quaternion
* @return this quaternion for chaining.
* @see euclideanspace.com-QuaternionAdd
*/
public final Quaternion add(final Quaternion q) {
x += q.x;
y += q.y;
z += q.z;
w += q.w;
return this;
}
/**
* Subtract a quaternion
*
* @param q quaternion
* @return this quaternion for chaining.
* @see euclideanspace.com-QuaternionAdd
*/
public final Quaternion subtract(final Quaternion q) {
x -= q.x;
y -= q.y;
z -= q.z;
w -= q.w;
return this;
}
/**
* Multiply this quaternion by the param quaternion
*
* @param q a quaternion to multiply with
* @return this quaternion for chaining.
* @see Matrix-FAQ Q53
* @see euclideanspace.com-QuaternionMul
*/
public final Quaternion mult(final Quaternion q) {
return set( w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y - x * q.z + y * q.w + z * q.x,
w * q.z + x * q.y - y * q.x + z * q.w,
w * q.w - x * q.x - y * q.y - z * q.z );
}
/**
* Scale this quaternion by a constant
*
* @param n a float constant
* @return this quaternion for chaining.
* @see euclideanspace.com-QuaternionScale
*/
public final Quaternion scale(final float n) {
x *= n;
y *= n;
z *= n;
w *= n;
return this;
}
/**
* Rotate this quaternion by the given angle and axis.
*
* The axis must be a normalized vector.
*
*
* A rotational quaternion is made from the given angle and axis.
*
*
* @param angle in radians
* @param axisX x-coord of rotation axis
* @param axisY y-coord of rotation axis
* @param axisZ z-coord of rotation axis
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleNormalAxis(final float angle, final float axisX, final float axisY, final float axisZ) {
if( VectorUtil.isZero(axisX, axisY, axisZ, FloatUtil.EPSILON) ) {
// no change
return this;
}
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float qw = FloatUtil.cos(halfAngle);
final float qx = sin * axisX;
final float qy = sin * axisY;
final float qz = sin * axisZ;
return set( x * qw + y * qz - z * qy + w * qx,
-x * qz + y * qw + z * qx + w * qy,
x * qy - y * qx + z * qw + w * qz,
-x * qx - y * qy - z * qz + w * qw);
}
/**
* Rotate this quaternion by the given angle and axis.
*
* The axis must be a normalized vector.
*
*
* A rotational quaternion is made from the given angle and axis.
*
*
* @param angle in radians
* @param axis Vec3f coord of rotation axis
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleNormalAxis(final float angle, final Vec3f axis) {
return rotateByAngleNormalAxis(angle, axis.x(), axis.y(), axis.z());
}
/**
* Rotate this quaternion around X axis with the given angle in radians
*
* @param angle in radians
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleX(final float angle) {
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float cos = FloatUtil.cos(halfAngle);
return set( x * cos + w * sin,
y * cos + z * sin,
-y * sin + z * cos,
-x * sin + w * cos);
}
/**
* Rotate this quaternion around Y axis with the given angle in radians
*
* @param angle in radians
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleY(final float angle) {
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float cos = FloatUtil.cos(halfAngle);
return set( x * cos - z * sin,
y * cos + w * sin,
x * sin + z * cos,
-y * sin + w * cos);
}
/**
* Rotate this quaternion around Z axis with the given angle in radians
*
* @param angle in radians
* @return this quaternion for chaining.
*/
public Quaternion rotateByAngleZ(final float angle) {
final float halfAngle = 0.5f * angle;
final float sin = FloatUtil.sin(halfAngle);
final float cos = FloatUtil.cos(halfAngle);
return set( x * cos + y * sin,
-x * sin + y * cos,
z * cos + w * sin,
-z * sin + w * cos);
}
/**
* Rotates this quaternion from the given Euler rotation array angradXYZ
in radians.
*
* The angradXYZ
array is laid out in natural order:
*
* - x - bank
* - y - heading
* - z - attitude
*
*
* For details see {@link #rotateByEuler(float, float, float)}.
* @param angradXYZ euler angle array in radians
* @return this quaternion for chaining.
* @see #rotateByEuler(float, float, float)
*/
public final Quaternion rotateByEuler(final Vec3f angradXYZ) {
return rotateByEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z());
}
/**
* Rotates this quaternion from the given Euler rotation angles in radians.
*
* The rotations are applied in the given order and using chained rotation per axis:
*
* - y - heading - {@link #rotateByAngleY(float)}
* - z - attitude - {@link #rotateByAngleZ(float)}
* - x - bank - {@link #rotateByAngleX(float)}
*
*
*
* Implementation Details:
*
* - NOP if all angles are {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
* - result is {@link #normalize()}ed
*
*
* @param bankX the Euler pitch angle in radians. (rotation about the X axis)
* @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
* @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
* @return this quaternion for chaining.
* @see #rotateByAngleY(float)
* @see #rotateByAngleZ(float)
* @see #rotateByAngleX(float)
* @see #setFromEuler(float, float, float)
*/
public final Quaternion rotateByEuler(final float bankX, final float headingY, final float attitudeZ) {
if ( VectorUtil.isZero(bankX, headingY, attitudeZ, FloatUtil.EPSILON) ) {
return this;
} else {
// setFromEuler muls: ( 8 + 4 ) , + quat muls 24 = 36
// this: 8 + 8 + 8 + 4 = 28 muls
return rotateByAngleY(headingY).rotateByAngleZ(attitudeZ).rotateByAngleX(bankX).normalize();
}
}
/***
* Rotate the given vector by this quaternion
* @param vecIn vector to be rotated
* @param vecOut result storage for rotated vector, maybe equal to vecIn for in-place rotation
*
* @return the given vecOut store for chaining
* @see Matrix-FAQ Q63
*/
public final Vec3f rotateVector(final Vec3f vecIn, final Vec3f vecOut) {
if( vecIn.isZero() ) {
vecOut.set(0, 0, 0);
} else {
final float vecX = vecIn.x();
final float vecY = vecIn.y();
final float vecZ = vecIn.z();
final float x_x = x*x;
final float y_y = y*y;
final float z_z = z*z;
final float w_w = w*w;
vecOut.setX( w_w * vecX
+ x_x * vecX
- z_z * vecX
- y_y * vecX
+ 2f * ( y*w*vecZ - z*w*vecY + y*x*vecY + z*x*vecZ ) );
;
vecOut.setY( y_y * vecY
- z_z * vecY
+ w_w * vecY
- x_x * vecY
+ 2f * ( x*y*vecX + z*y*vecZ + w*z*vecX - x*w*vecZ ) );;
vecOut.setZ( z_z * vecZ
- y_y * vecZ
- x_x * vecZ
+ w_w * vecZ
+ 2f * ( x*z*vecX + y*z*vecY - w*y*vecX + w*x*vecY ) );
}
return vecOut;
}
/**
* Set this quaternion to a spherical linear interpolation
* between the given start and end quaternions by the given change amount.
*
* Note: Method does not normalize this quaternion!
*
*
* @param a start quaternion
* @param b end quaternion
* @param changeAmnt float between 0 and 1 representing interpolation.
* @return this quaternion for chaining.
* @see euclideanspace.com-QuaternionSlerp
*/
public final Quaternion setSlerp(final Quaternion a, final Quaternion b, final float changeAmnt) {
// System.err.println("Slerp.0: A "+a+", B "+b+", t "+changeAmnt);
if (changeAmnt == 0.0f) {
set(a);
} else if (changeAmnt == 1.0f) {
set(b);
} else {
float bx = b.x;
float by = b.y;
float bz = b.z;
float bw = b.w;
// Calculate angle between them (quat dot product)
float cosHalfTheta = a.x * bx + a.y * by + a.z * bz + a.w * bw;
final float scale0, scale1;
if( cosHalfTheta >= 0.95f ) {
// quaternions are close, just use linear interpolation
scale0 = 1.0f - changeAmnt;
scale1 = changeAmnt;
// System.err.println("Slerp.1: Linear Interpol; cosHalfTheta "+cosHalfTheta);
} else if ( cosHalfTheta <= -0.99f ) {
// the quaternions are nearly opposite,
// we can pick any axis normal to a,b to do the rotation
scale0 = 0.5f;
scale1 = 0.5f;
// System.err.println("Slerp.2: Any; cosHalfTheta "+cosHalfTheta);
} else {
// System.err.println("Slerp.3: cosHalfTheta "+cosHalfTheta);
if( cosHalfTheta <= -FloatUtil.EPSILON ) { // FIXME: .. or shall we use the upper bound 'cosHalfTheta < FloatUtil.EPSILON' ?
// Negate the second quaternion and the result of the dot product (Inversion)
bx *= -1f;
by *= -1f;
bz *= -1f;
bw *= -1f;
cosHalfTheta *= -1f;
// System.err.println("Slerp.4: Inverted cosHalfTheta "+cosHalfTheta);
}
final float halfTheta = FloatUtil.acos(cosHalfTheta);
final float sinHalfTheta = FloatUtil.sqrt(1.0f - cosHalfTheta*cosHalfTheta);
// if theta = 180 degrees then result is not fully defined
// we could rotate around any axis normal to qa or qb
if ( Math.abs(sinHalfTheta) < 0.001f ){ // fabs is floating point absolute
scale0 = 0.5f;
scale1 = 0.5f;
// throw new InternalError("XXX"); // FIXME should not be reached due to above inversion ?
} else {
// Calculate the scale for q1 and q2, according to the angle and
// it's sine value
scale0 = FloatUtil.sin((1f - changeAmnt) * halfTheta) / sinHalfTheta;
scale1 = FloatUtil.sin(changeAmnt * halfTheta) / sinHalfTheta;
}
}
x = a.x * scale0 + bx * scale1;
y = a.y * scale0 + by * scale1;
z = a.z * scale0 + bz * scale1;
w = a.w * scale0 + bw * scale1;
}
// System.err.println("Slerp.X: Result "+this);
return this;
}
/**
* Set this quaternion to equal the rotation required
* to point the z-axis at direction and the y-axis to up.
*
* Implementation generates a 3x3 matrix
* and is equal with ProjectFloat's lookAt(..).
*
* Implementation Details:
*
* - result is {@link #normalize()}ed
*
*
* @param directionIn where to look at
* @param upIn a vector indicating the local up direction.
* @param xAxisOut vector storing the orthogonal x-axis of the coordinate system.
* @param yAxisOut vector storing the orthogonal y-axis of the coordinate system.
* @param zAxisOut vector storing the orthogonal z-axis of the coordinate system.
* @return this quaternion for chaining.
* @see euclideanspace.com-LookUp
*/
public Quaternion setLookAt(final Vec3f directionIn, final Vec3f upIn,
final Vec3f xAxisOut, final Vec3f yAxisOut, final Vec3f zAxisOut) {
// Z = norm(dir)
zAxisOut.set(directionIn).normalize();
// X = upIn x Z
// (borrow yAxisOut for upNorm)
yAxisOut.set(upIn).normalize();
xAxisOut.cross(yAxisOut, zAxisOut).normalize();
// Y = Z x X
//
yAxisOut.cross(zAxisOut, xAxisOut).normalize();
/**
final float m00 = xAxisOut[0];
final float m01 = yAxisOut[0];
final float m02 = zAxisOut[0];
final float m10 = xAxisOut[1];
final float m11 = yAxisOut[1];
final float m12 = zAxisOut[1];
final float m20 = xAxisOut[2];
final float m21 = yAxisOut[2];
final float m22 = zAxisOut[2];
*/
return setFromAxes(xAxisOut, yAxisOut, zAxisOut).normalize();
}
//
// Conversions
//
/**
* Initialize this quaternion from two vectors
*
* q = (s,v) = (v1•v2 , v1 × v2),
* angle = angle(v1, v2) = v1•v2
* axis = normal(v1 x v2)
*
*
* Implementation Details:
*
* - {@link #setIdentity()} if square vector-length is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
* @param v1 not normalized
* @param v2 not normalized
* @param tmpPivotVec temp storage for cross product
* @param tmpNormalVec temp storage to normalize vector
* @return this quaternion for chaining.
*/
public final Quaternion setFromVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec, final Vec3f tmpNormalVec) {
final float factor = v1.length() * v2.length();
if ( FloatUtil.isZero(factor, FloatUtil.EPSILON ) ) {
return setIdentity();
} else {
final float dot = v1.dot(v2) / factor; // normalize
final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1]
tmpPivotVec.cross(v1, v2);
if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length(), FloatUtil.EPSILON ) ) {
// Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector
// perpendicular to this vector will rotate vector a onto vector b.
//
// The following guarantees the dot-product will be 0.0.
int dominantIndex;
if (Math.abs(v1.x()) > Math.abs(v1.y())) {
if (Math.abs(v1.x()) > Math.abs(v1.z())) {
dominantIndex = 0;
} else {
dominantIndex = 2;
}
} else {
if (Math.abs(v1.y()) > Math.abs(v1.z())) {
dominantIndex = 1;
} else {
dominantIndex = 2;
}
}
tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) );
tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) );
tmpPivotVec.set( (dominantIndex + 2) % 3, 0f );
}
return setFromAngleAxis(theta, tmpPivotVec, tmpNormalVec);
}
}
/**
* Initialize this quaternion from two normalized vectors
*
* q = (s,v) = (v1•v2 , v1 × v2),
* angle = angle(v1, v2) = v1•v2
* axis = v1 x v2
*
*
* Implementation Details:
*
* - {@link #setIdentity()} if square vector-length is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
* @param v1 normalized
* @param v2 normalized
* @param tmpPivotVec temp storage for cross product
* @return this quaternion for chaining.
*/
public final Quaternion setFromNormalVectors(final Vec3f v1, final Vec3f v2, final Vec3f tmpPivotVec) {
final float factor = v1.length() * v2.length();
if ( FloatUtil.isZero(factor, FloatUtil.EPSILON ) ) {
return setIdentity();
} else {
final float dot = v1.dot(v2) / factor; // normalize
final float theta = FloatUtil.acos(Math.max(-1.0f, Math.min(dot, 1.0f))); // clipping [-1..1]
tmpPivotVec.cross(v1, v2);
if ( dot < 0.0f && FloatUtil.isZero( tmpPivotVec.length(), FloatUtil.EPSILON ) ) {
// Vectors parallel and opposite direction, therefore a rotation of 180 degrees about any vector
// perpendicular to this vector will rotate vector a onto vector b.
//
// The following guarantees the dot-product will be 0.0.
int dominantIndex;
if (Math.abs(v1.x()) > Math.abs(v1.y())) {
if (Math.abs(v1.x()) > Math.abs(v1.z())) {
dominantIndex = 0;
} else {
dominantIndex = 2;
}
} else {
if (Math.abs(v1.y()) > Math.abs(v1.z())) {
dominantIndex = 1;
} else {
dominantIndex = 2;
}
}
tmpPivotVec.set( dominantIndex, -v1.get( (dominantIndex + 1) % 3 ) );
tmpPivotVec.set( (dominantIndex + 1) % 3, v1.get( dominantIndex ) );
tmpPivotVec.set( (dominantIndex + 2) % 3, 0f );
}
return setFromAngleNormalAxis(theta, tmpPivotVec);
}
}
/***
* Initialize this quaternion with given non-normalized axis vector and rotation angle
*
* Implementation Details:
*
* - {@link #setIdentity()} if axis is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
* @param angle rotation angle (rads)
* @param vector axis vector not normalized
* @param tmpV3f temp storage to normalize vector
* @return this quaternion for chaining.
*
* @see Matrix-FAQ Q56
* @see #toAngleAxis(Vec3f)
*/
public final Quaternion setFromAngleAxis(final float angle, final Vec3f vector, final Vec3f tmpV3f) {
tmpV3f.set(vector).normalize();
return setFromAngleNormalAxis(angle, tmpV3f);
}
/***
* Initialize this quaternion with given normalized axis vector and rotation angle
*
* Implementation Details:
*
* - {@link #setIdentity()} if axis is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
* @param angle rotation angle (rads)
* @param vector axis vector normalized
* @return this quaternion for chaining.
*
* @see Matrix-FAQ Q56
* @see #toAngleAxis(Vec3f)
*/
public final Quaternion setFromAngleNormalAxis(final float angle, final Vec3f vector) {
if( vector.isZero() ) {
setIdentity();
} else {
final float halfangle = angle * 0.5f;
final float sin = FloatUtil.sin(halfangle);
x = vector.x() * sin;
y = vector.y() * sin;
z = vector.z() * sin;
w = FloatUtil.cos(halfangle);
}
return this;
}
/**
* Transform the rotational quaternion to axis based rotation angles
*
* @param axis storage for computed axis
* @return the rotation angle in radians
* @see #setFromAngleAxis(float, Vec3f, Vec3f)
*/
public final float toAngleAxis(final Vec3f axis) {
final float sqrLength = x*x + y*y + z*z;
float angle;
if ( FloatUtil.isZero(sqrLength, FloatUtil.EPSILON) ) { // length is ~0
angle = 0.0f;
axis.set( 1.0f, 0.0f, 0.0f );
} else {
angle = FloatUtil.acos(w) * 2.0f;
final float invLength = 1.0f / FloatUtil.sqrt(sqrLength);
axis.set( x * invLength,
y * invLength,
z * invLength );
}
return angle;
}
/**
* Initializes this quaternion from the given Euler rotation array angradXYZ
in radians.
*
* The angradXYZ
vector is laid out in natural order:
*
* - x - bank
* - y - heading
* - z - attitude
*
*
* For details see {@link #setFromEuler(float, float, float)}.
* @param angradXYZ euler angle vector in radians holding x-bank, y-heading and z-attitude
* @return this quaternion for chaining.
* @see #setFromEuler(float, float, float)
*/
public final Quaternion setFromEuler(final Vec3f angradXYZ) {
return setFromEuler(angradXYZ.x(), angradXYZ.y(), angradXYZ.z());
}
/**
* Initializes this quaternion from the given Euler rotation angles in radians.
*
* The rotations are applied in the given order:
*
* - y - heading
* - z - attitude
* - x - bank
*
*
*
* Implementation Details:
*
* - {@link #setIdentity()} if all angles are {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
* - result is {@link #normalize()}ed
*
*
* @param bankX the Euler pitch angle in radians. (rotation about the X axis)
* @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
* @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
* @return this quaternion for chaining.
*
* @see Matrix-FAQ Q60
* @see Gems
* @see euclideanspace.com-eulerToQuaternion
* @see #toEuler(Vec3f)
*/
public final Quaternion setFromEuler(final float bankX, final float headingY, final float attitudeZ) {
if ( VectorUtil.isZero(bankX, headingY, attitudeZ, FloatUtil.EPSILON) ) {
return setIdentity();
} else {
float angle = headingY * 0.5f;
final float sinHeadingY = FloatUtil.sin(angle);
final float cosHeadingY = FloatUtil.cos(angle);
angle = attitudeZ * 0.5f;
final float sinAttitudeZ = FloatUtil.sin(angle);
final float cosAttitudeZ = FloatUtil.cos(angle);
angle = bankX * 0.5f;
final float sinBankX = FloatUtil.sin(angle);
final float cosBankX = FloatUtil.cos(angle);
// variables used to reduce multiplication calls.
final float cosHeadingXcosAttitude = cosHeadingY * cosAttitudeZ;
final float sinHeadingXsinAttitude = sinHeadingY * sinAttitudeZ;
final float cosHeadingXsinAttitude = cosHeadingY * sinAttitudeZ;
final float sinHeadingXcosAttitude = sinHeadingY * cosAttitudeZ;
w = cosHeadingXcosAttitude * cosBankX - sinHeadingXsinAttitude * sinBankX;
x = cosHeadingXcosAttitude * sinBankX + sinHeadingXsinAttitude * cosBankX;
y = sinHeadingXcosAttitude * cosBankX + cosHeadingXsinAttitude * sinBankX;
z = cosHeadingXsinAttitude * cosBankX - sinHeadingXcosAttitude * sinBankX;
return normalize();
}
}
/**
* Transform this quaternion to Euler rotation angles in radians (pitchX, yawY and rollZ).
*
* The result
array is laid out in natural order:
*
* - x - bank
* - y - heading
* - z - attitude
*
*
*
* @param result euler angle result vector for radians x-bank, y-heading and z-attitude
* @return the Vec3f `result` filled with x-bank, y-heading and z-attitude
* @see euclideanspace.com-quaternionToEuler
* @see #setFromEuler(float, float, float)
*/
public Vec3f toEuler(final Vec3f result) {
final float sqw = w*w;
final float sqx = x*x;
final float sqy = y*y;
final float sqz = z*z;
final float unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise, is correction factor
final float test = x*y + z*w;
if (test > 0.499f * unit) { // singularity at north pole
result.set( 0f, // x-bank
2f * FloatUtil.atan2(x, w), // y-heading
FloatUtil.HALF_PI ); // z-attitude
} else if (test < -0.499f * unit) { // singularity at south pole
result.set( 0f, // x-bank
-2 * FloatUtil.atan2(x, w), // y-heading
-FloatUtil.HALF_PI ); // z-attitude
} else {
result.set( FloatUtil.atan2(2f * x * w - 2 * y * z, -sqx + sqy - sqz + sqw), // x-bank
FloatUtil.atan2(2f * y * w - 2 * x * z, sqx - sqy - sqz + sqw), // y-heading
FloatUtil.asin( 2f * test / unit) ); // z-attitude
}
return result;
}
/**
* Compute the quaternion from a 3x3 column rotation matrix
*
* See Graphics Gems Code,
* MatrixTrace.
*
*
* Buggy Matrix-FAQ Q55
*
*
* @return this quaternion for chaining.
* @see #setFromMatrix(Matrix4f)
*/
public Quaternion setFromMatrix(final float m00, final float m01, final float m02,
final float m10, final float m11, final float m12,
final float m20, final float m21, final float m22) {
// Note: Other implementations uses 'T' w/o '+1f' and compares 'T >= 0' while adding missing 1f in sqrt expr.
// However .. this causes setLookAt(..) to fail and actually violates the 'trace definition'.
// The trace T is the sum of the diagonal elements; see
// http://mathworld.wolfram.com/MatrixTrace.html
final float T = m00 + m11 + m22 + 1f;
// System.err.println("setFromMatrix.0 T "+T+", m00 "+m00+", m11 "+m11+", m22 "+m22);
if ( T > 0f ) {
// System.err.println("setFromMatrix.1");
final float S = 0.5f / FloatUtil.sqrt(T); // S = 1 / ( 2 t )
w = 0.25f / S; // w = 1 / ( 4 S ) = t / 2
x = ( m21 - m12 ) * S;
y = ( m02 - m20 ) * S;
z = ( m10 - m01 ) * S;
} else if ( m00 > m11 && m00 > m22) {
// System.err.println("setFromMatrix.2");
final float S = 0.5f / FloatUtil.sqrt(1.0f + m00 - m11 - m22); // S=4*qx
w = ( m21 - m12 ) * S;
x = 0.25f / S;
y = ( m10 + m01 ) * S;
z = ( m02 + m20 ) * S;
} else if ( m11 > m22 ) {
// System.err.println("setFromMatrix.3");
final float S = 0.5f / FloatUtil.sqrt(1.0f + m11 - m00 - m22); // S=4*qy
w = ( m02 - m20 ) * S;
x = ( m20 + m01 ) * S;
y = 0.25f / S;
z = ( m21 + m12 ) * S;
} else {
// System.err.println("setFromMatrix.3");
final float S = 0.5f / FloatUtil.sqrt(1.0f + m22 - m00 - m11); // S=4*qz
w = ( m10 - m01 ) * S;
x = ( m02 + m20 ) * S;
y = ( m21 + m12 ) * S;
z = 0.25f / S;
}
return this;
}
/**
* Compute the quaternion from a 3x3 column rotation matrix
*
* See Graphics Gems Code,
* MatrixTrace.
*
*
* Buggy Matrix-FAQ Q55
*
*
* @return this quaternion for chaining.
* @see Matrix4f#getRotation(Quaternion)
* @see #setFromMatrix(float, float, float, float, float, float, float, float, float)
*/
public Quaternion setFromMatrix(final Matrix4f m) {
return m.getRotation(this);
}
/**
* Transform this quaternion to a normalized 4x4 column matrix representing the rotation.
*
* Implementation Details:
*
* - makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
*
* @param matrix float[16] store for the resulting normalized column matrix 4x4
* @return the given matrix store
* @see Matrix-FAQ Q54
* @see #setFromMatrix(Matrix4f)
* @see #setFromMatrix(float, float, float, float, float, float, float, float, float)
*/
public final float[] toMatrix(final float[] matrix) {
// pre-multiply scaled-reciprocal-magnitude to reduce multiplications
final float norm = magnitudeSquared();
if ( FloatUtil.isZero(norm) ) {
// identity matrix -> srecip = 0f
return FloatUtil.makeIdentity(matrix);
}
final float srecip;
if ( FloatUtil.isEqual(1f, norm) ) {
srecip = 2f;
} else {
srecip = 2.0f / norm;
}
final float xs = srecip * x;
final float ys = srecip * y;
final float zs = srecip * z;
final float xx = x * xs;
final float xy = x * ys;
final float xz = x * zs;
final float xw = xs * w;
final float yy = y * ys;
final float yz = y * zs;
final float yw = ys * w;
final float zz = z * zs;
final float zw = zs * w;
matrix[0+0*4] = 1f - ( yy + zz );
matrix[0+1*4] = ( xy - zw );
matrix[0+2*4] = ( xz + yw );
matrix[0+3*4] = 0f;
matrix[1+0*4] = ( xy + zw );
matrix[1+1*4] = 1f - ( xx + zz );
matrix[1+2*4] = ( yz - xw );
matrix[1+3*4] = 0f;
matrix[2+0*4] = ( xz - yw );
matrix[2+1*4] = ( yz + xw );
matrix[2+2*4] = 1f - ( xx + yy );
matrix[2+3*4] = 0f;
matrix[3+0*4] = 0f;
matrix[3+1*4] = 0f;
matrix[3+2*4] = 0f;
matrix[3+3*4] = 1f;
return matrix;
}
/**
* Transform this quaternion to a normalized 4x4 column matrix representing the rotation.
*
* Implementation Details:
*
* - makes identity matrix if {@link #magnitudeSquared()} is {@link FloatUtil#isZero(float, float) is zero} using {@link FloatUtil#EPSILON epsilon}
*
*
*
* @param matrix store for the resulting normalized column matrix 4x4
* @return the given matrix store
* @see Matrix-FAQ Q54
* @see #setFromMatrix(float, float, float, float, float, float, float, float, float)
* @see Matrix4f#setToRotation(Quaternion)
*/
public final Matrix4f toMatrix(final Matrix4f matrix) {
return matrix.setToRotation(this);
}
/**
* Initializes this quaternion to represent a rotation formed by the given three orthogonal axes.
*
* No validation whether the axes are orthogonal is performed.
*
*
* @param xAxis vector representing the orthogonal x-axis of the coordinate system.
* @param yAxis vector representing the orthogonal y-axis of the coordinate system.
* @param zAxis vector representing the orthogonal z-axis of the coordinate system.
* @return this quaternion for chaining.
*/
public final Quaternion setFromAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis) {
return setFromMatrix(xAxis.x(), yAxis.x(), zAxis.x(),
xAxis.y(), yAxis.y(), zAxis.y(),
xAxis.z(), yAxis.z(), zAxis.z());
}
/**
* Extracts this quaternion's orthogonal rotation axes.
*
* @param xAxis vector representing the orthogonal x-axis of the coordinate system.
* @param yAxis vector representing the orthogonal y-axis of the coordinate system.
* @param zAxis vector representing the orthogonal z-axis of the coordinate system.
* @param tmpMat4 temporary float[4] matrix, used to transform this quaternion to a matrix.
*/
public void toAxes(final Vec3f xAxis, final Vec3f yAxis, final Vec3f zAxis, final Matrix4f tmpMat4) {
tmpMat4.setToRotation(this);
tmpMat4.getColumn(2, zAxis);
tmpMat4.getColumn(1, yAxis);
tmpMat4.getColumn(0, xAxis);
}
/**
* Check if the the 3x3 matrix (param) is in fact an affine rotational
* matrix
*
* @param m 3x3 column matrix
* @return true if representing a rotational matrix, false otherwise
*/
@Deprecated
public final boolean isRotationMatrix3f(final float[] m) {
final float epsilon = 0.01f; // margin to allow for rounding errors
if (Math.abs(m[0] * m[3] + m[3] * m[4] + m[6] * m[7]) > epsilon)
return false;
if (Math.abs(m[0] * m[2] + m[3] * m[5] + m[6] * m[8]) > epsilon)
return false;
if (Math.abs(m[1] * m[2] + m[4] * m[5] + m[7] * m[8]) > epsilon)
return false;
if (Math.abs(m[0] * m[0] + m[3] * m[3] + m[6] * m[6] - 1) > epsilon)
return false;
if (Math.abs(m[1] * m[1] + m[4] * m[4] + m[7] * m[7] - 1) > epsilon)
return false;
if (Math.abs(m[2] * m[2] + m[5] * m[5] + m[8] * m[8] - 1) > epsilon)
return false;
return (Math.abs(determinant3f(m) - 1) < epsilon);
}
@Deprecated
private final float determinant3f(final float[] m) {
return m[0] * m[4] * m[8] + m[3] * m[7] * m[2] + m[6] * m[1] * m[5]
- m[0] * m[7] * m[5] - m[3] * m[1] * m[8] - m[6] * m[4] * m[2];
}
//
// std java overrides
//
/**
* @param o the object to compare for equality
* @return true if this quaternion and the provided quaternion have roughly the same x, y, z and w values.
*/
@Override
public boolean equals(final Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Quaternion)) {
return false;
}
final Quaternion comp = (Quaternion) o;
return Math.abs(x - comp.x()) <= ALLOWED_DEVIANCE &&
Math.abs(y - comp.y()) <= ALLOWED_DEVIANCE &&
Math.abs(z - comp.z()) <= ALLOWED_DEVIANCE &&
Math.abs(w - comp.w()) <= ALLOWED_DEVIANCE;
}
@Override
public final int hashCode() {
throw new InternalError("hashCode not designed");
}
@Override
public String toString() {
return "Quat[x "+x+", y "+y+", z "+z+", w "+w+"]";
}
}