/** * Copyright 2022-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those of the * authors and should not be interpreted as representing official policies, either expressed * or implied, of JogAmp Community. */ package com.jogamp.math; /** * 3D Vector based upon three float components. * * Implementation borrowed from [gfxbox2](https://jausoft.com/cgit/cs_class/gfxbox2.git/tree/include/pixel/pixel3f.hpp#n29) * and its data layout from JOAL's Vec3f. */ public final class Vec3f { public static final Vec3f ONE = new Vec3f(1f, 1f, 1f); public static final Vec3f UNIT_X = new Vec3f(1f, 0f, 0f); public static final Vec3f UNIT_X_NEG = new Vec3f(-1f, 0f, 0f); public static final Vec3f UNIT_Y = new Vec3f(0f, 1f, 0f); public static final Vec3f UNIT_Y_NEG = new Vec3f(0f, -1f, 0f); public static final Vec3f UNIT_Z = new Vec3f(0f, 0f, 1f); public static final Vec3f UNIT_Z_NEG = new Vec3f(0f, 0f, -1f); private float x; private float y; private float z; public Vec3f() {} public Vec3f(final Vec3f o) { set(o); } /** Creating new Vec3f using Vec4f, dropping w. */ public Vec3f(final Vec4f o) { set(o); } /** Creating new Vec3f using { Vec2f, z}. */ public Vec3f(final Vec2f o, final float z) { set(o, z); } public Vec3f copy() { return new Vec3f(this); } public Vec3f(final float[/*3*/] xyz) { set(xyz); } public Vec3f(final float x, final float y, final float z) { set(x, y, z); } /** this = o, returns this. */ public Vec3f set(final Vec3f o) { this.x = o.x; this.y = o.y; this.z = o.z; return this; } /** this = { o, z }, returns this. */ public Vec3f set(final Vec2f o, final float z) { this.x = o.x(); this.y = o.y(); this.z = z; return this; } /** this = o while dropping w, returns this. */ public Vec3f set(final Vec4f o) { this.x = o.x(); this.y = o.y(); this.z = o.z(); return this; } /** this = { x, y, z }, returns this. */ public Vec3f set(final float x, final float y, final float z) { this.x = x; this.y = y; this.z = z; return this; } /** this = xyz, returns this. */ public Vec3f set(final float[/*3*/] xyz) { this.x = xyz[0]; this.y = xyz[1]; this.z = xyz[2]; return this; } /** Sets the ith component, 0 <= i < 3 */ public void set(final int i, final float val) { switch (i) { case 0: x = val; break; case 1: y = val; break; case 2: z = val; break; default: throw new IndexOutOfBoundsException(); } } /** xyz = this, returns xyz. */ public float[] get(final float[/*3*/] xyz) { xyz[0] = this.x; xyz[1] = this.y; xyz[2] = this.z; return xyz; } /** Gets the ith component, 0 <= i < 3 */ public float get(final int i) { switch (i) { case 0: return x; case 1: return y; case 2: return z; default: throw new IndexOutOfBoundsException(); } } public float x() { return x; } public float y() { return y; } public float z() { return z; } public void setX(final float x) { this.x = x; } public void setY(final float y) { this.y = y; } public void setZ(final float z) { this.z = z; } /** this = max(this, m), returns this. */ public Vec3f max(final Vec3f m) { this.x = Math.max(this.x, m.x); this.y = Math.max(this.y, m.y); this.z = Math.max(this.z, m.z); return this; } /** this = min(this, m), returns this. */ public Vec3f min(final Vec3f m) { this.x = Math.min(this.x, m.x); this.y = Math.min(this.y, m.y); this.z = Math.min(this.z, m.z); return this; } /** Returns this * val; creates new vector */ public Vec3f mul(final float val) { return new Vec3f(this).scale(val); } /** this = a * b, returns this. */ public Vec3f mul(final Vec3f a, final Vec3f b) { x = a.x * b.x; y = a.y * b.y; z = a.z * b.z; return this; } /** this = this * s, returns this. */ public Vec3f scale(final float s) { x *= s; y *= s; z *= s; return this; } /** this = this * { sx, sy, sz }, returns this. */ public Vec3f scale(final float sx, final float sy, final float sz) { x *= sx; y *= sy; z *= sz; return this; } /** this = this * { s.x, s.y, s.z }, returns this. */ public Vec3f scale(final Vec3f s) { return scale(s.x, s.y, s.z); } /** Returns this + arg; creates new vector */ public Vec3f plus(final Vec3f arg) { return new Vec3f(this).add(arg); } /** this = a + b, returns this. */ public Vec3f plus(final Vec3f a, final Vec3f b) { x = a.x + b.x; y = a.y + b.y; z = a.z + b.z; return this; } /** this = this + { dx, dy, dz }, returns this. */ public Vec3f add(final float dx, final float dy, final float dz) { x += dx; y += dy; z += dz; return this; } /** this = this + b, returns this. */ public Vec3f add(final Vec3f b) { x += b.x; y += b.y; z += b.z; return this; } /** Returns this - arg; creates new vector */ public Vec3f minus(final Vec3f arg) { return new Vec3f(this).sub(arg); } /** this = a - b, returns this. */ public Vec3f minus(final Vec3f a, final Vec3f b) { x = a.x - b.x; y = a.y - b.y; z = a.z - b.z; return this; } /** this = this - b, returns this. */ public Vec3f sub(final Vec3f b) { x -= b.x; y -= b.y; z -= b.z; return this; } /** Return true if all components are zero, i.e. it's absolute value < {@link #EPSILON}. */ public boolean isZero() { return FloatUtil.isZero(x) && FloatUtil.isZero(y) && FloatUtil.isZero(z); } /** * Return the length of this vector, a.k.a the norm or magnitude */ public float length() { return (float) Math.sqrt(lengthSq()); } /** * Return the squared length of this vector, a.k.a the squared norm or squared magnitude */ public float lengthSq() { return x*x + y*y + z*z; } /** * Normalize this vector in place */ public Vec3f normalize() { final float lengthSq = lengthSq(); if ( FloatUtil.isZero( lengthSq ) ) { x = 0.0f; y = 0.0f; z = 0.0f; } else { final float invSqr = 1.0f / (float)Math.sqrt(lengthSq); x *= invSqr; y *= invSqr; z *= invSqr; } return this; } /** * Return the squared distance between this vector and the given one. *
* When comparing the relative distance between two points it is usually sufficient to compare the squared * distances, thus avoiding an expensive square root operation. *
*/ public float distSq(final Vec3f o) { final float dx = x - o.x; final float dy = y - o.y; final float dz = z - o.z; return dx*dx + dy*dy + dz*dz; } /** * Return the distance between this vector and the given one. */ public float dist(final Vec3f o) { return (float)Math.sqrt(distSq(o)); } /** * Return the dot product of this vector and the given one * @return the dot product as float */ public float dot(final Vec3f o) { return x*o.x + y*o.y + z*o.z; } /** Returns this cross arg; creates new vector */ public Vec3f cross(final Vec3f arg) { return new Vec3f().cross(this, arg); } /** this = a cross b. NOTE: "this" must be a different vector than both a and b. */ public Vec3f cross(final Vec3f a, final Vec3f b) { x = a.y * b.z - a.z * b.y; y = a.z * b.x - a.x * b.z; z = a.x * b.y - a.y * b.x; return this; } /** * Return the cosine of the angle between two vectors using {@link #dot(Vec3f)} */ public float cosAngle(final Vec3f o) { return dot(o) / ( length() * o.length() ) ; } /** * Return the angle between two vectors in radians using {@link Math#acos(double)} on {@link #cosAngle(Vec3f)}. */ public float angle(final Vec3f o) { return (float) Math.acos( cosAngle(o) ); } /** * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. ** Implementation considers following corner cases: *
* Implementation considers following corner cases: *