/** * Copyright 2022-2023 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those of the * authors and should not be interpreted as representing official policies, either expressed * or implied, of JogAmp Community. */ package com.jogamp.math; /** * 4D Vector based upon four float components. * * Implementation borrowed from [gfxbox2](https://jausoft.com/cgit/cs_class/gfxbox2.git/tree/include/pixel/pixel3f.hpp#n29) * and its data layout from JOAL's Vec3f. */ public final class Vec4f { private float x; private float y; private float z; private float w; public Vec4f() {} public Vec4f(final Vec4f o) { set(o); } /** Creating new Vec4f using { o, w }. */ public Vec4f(final Vec3f o, final float w) { set(o, w); } public Vec4f copy() { return new Vec4f(this); } public Vec4f(final float[/*4*/] xyzw) { set(xyzw); } public Vec4f(final float x, final float y, final float z, final float w) { set(x, y, z, w); } /** this = o, returns this. */ public Vec4f set(final Vec4f o) { this.x = o.x; this.y = o.y; this.z = o.z; this.w = o.w; return this; } /** this = { o, w }, returns this. */ public Vec4f set(final Vec3f o, final float w) { this.x = o.x(); this.y = o.y(); this.z = o.z(); this.w = w; return this; } /** this = { x, y, z, w }, returns this. */ public Vec4f set(final float x, final float y, final float z, final float w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** this = xyzw, returns this. */ public Vec4f set(final float[/*4*/] xyzw) { this.x = xyzw[0]; this.y = xyzw[1]; this.z = xyzw[2]; this.w = xyzw[3]; return this; } /** xyzw[0..3] = this.{x, y, z, w}, returns this. */ public Vec4f toArray(final float[/*4*/] xyzw) { xyzw[0] = this.x; xyzw[1] = this.y; xyzw[2] = this.z; xyzw[3] = this.w; return this; } /** Sets the ith component, 0 <= i < 4 */ public void set(final int i, final float val) { switch (i) { case 0: x = val; break; case 1: y = val; break; case 2: z = val; break; case 3: w = val; break; default: throw new IndexOutOfBoundsException(); } } /** xyzw = this, returns xyzw. */ public float[] get(final float[/*4*/] xyzw) { xyzw[0] = this.x; xyzw[1] = this.y; xyzw[2] = this.z; xyzw[3] = this.w; return xyzw; } /** Gets the ith component, 0 <= i < 4 */ public float get(final int i) { switch (i) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; default: throw new IndexOutOfBoundsException(); } } public float x() { return x; } public float y() { return y; } public float z() { return z; } public float w() { return w; } public void setX(final float x) { this.x = x; } public void setY(final float y) { this.y = y; } public void setZ(final float z) { this.z = z; } public void setW(final float w) { this.w = w; } /** this = max(this, m), returns this. */ public Vec4f max(final Vec4f m) { this.x = Math.max(this.x, m.x); this.y = Math.max(this.y, m.y); this.z = Math.max(this.z, m.z); this.w = Math.max(this.w, m.w); return this; } /** this = min(this, m), returns this. */ public Vec4f min(final Vec4f m) { this.x = Math.min(this.x, m.x); this.y = Math.min(this.y, m.y); this.z = Math.min(this.z, m.z); this.w = Math.min(this.w, m.w); return this; } /** Returns this * val; creates new vector */ public Vec4f mul(final float val) { return new Vec4f(this).scale(val); } /** this = a * b, returns this. */ public Vec4f mul(final Vec4f a, final Vec4f b) { x = a.x * b.x; y = a.y * b.y; z = a.z * b.z; w = a.w * b.w; return this; } /** this = this * s, returns this. */ public Vec4f mul(final Vec4f s) { return mul(s.x, s.y, s.z, s.w); } /** this = this * { sx, sy, sz, sw }, returns this. */ public Vec4f mul(final float sx, final float sy, final float sz, final float sw) { x *= sx; y *= sy; z *= sz; w *= sw; return this; } /** this = a / b, returns this. */ public Vec4f div(final Vec4f a, final Vec4f b) { x = a.x / b.x; y = a.y / b.y; z = a.z / b.z; w = a.w / b.w; return this; } /** this = this / a, returns this. */ public Vec4f div(final Vec4f a) { x /= a.x; y /= a.y; z /= a.z; w /= a.w; return this; } /** this = this * s, returns this. */ public Vec4f scale(final float s) { x *= s; y *= s; z *= s; w *= s; return this; } /** Returns this + arg; creates new vector */ public Vec4f plus(final Vec4f arg) { return new Vec4f(this).add(arg); } /** this = a + b, returns this. */ public Vec4f plus(final Vec4f a, final Vec4f b) { x = a.x + b.x; y = a.y + b.y; z = a.z + b.z; w = a.w + b.w; return this; } /** this = this + { dx, dy, dz, dw }, returns this. */ public Vec4f add(final float dx, final float dy, final float dz, final float dw) { x += dx; y += dy; z += dz; w += dw; return this; } /** this = this + b, returns this. */ public Vec4f add(final Vec4f b) { x += b.x; y += b.y; z += b.z; w += b.w; return this; } /** Returns this - arg; creates new vector */ public Vec4f minus(final Vec4f arg) { return new Vec4f(this).sub(arg); } /** this = a - b, returns this. */ public Vec4f minus(final Vec4f a, final Vec4f b) { x = a.x - b.x; y = a.y - b.y; z = a.z - b.z; w = a.w - b.w; return this; } /** this = this - b, returns this. */ public Vec4f sub(final Vec4f b) { x -= b.x; y -= b.y; z -= b.z; w -= b.w; return this; } /** Return true if all components are zero, i.e. it's absolute value < {@link #EPSILON}. */ public boolean isZero() { return FloatUtil.isZero(x) && FloatUtil.isZero(y) && FloatUtil.isZero(z) && FloatUtil.isZero(w); } /** * Return the length of this vector, a.k.a the norm or magnitude */ public float length() { return (float) Math.sqrt(lengthSq()); } /** * Return the squared length of this vector, a.k.a the squared norm or squared magnitude */ public float lengthSq() { return x*x + y*y + z*z + w*w; } /** * Normalize this vector in place */ public Vec4f normalize() { final float lengthSq = lengthSq(); if ( FloatUtil.isZero( lengthSq ) ) { x = 0.0f; y = 0.0f; z = 0.0f; w = 0.0f; } else { final float invSqr = 1.0f / (float)Math.sqrt(lengthSq); x *= invSqr; y *= invSqr; z *= invSqr; w *= invSqr; } return this; } /** * Return the squared distance between this vector and the given one. *

* When comparing the relative distance between two points it is usually sufficient to compare the squared * distances, thus avoiding an expensive square root operation. *

*/ public float distSq(final Vec4f o) { final float dx = x - o.x; final float dy = y - o.y; final float dz = z - o.z; final float dw = w - o.w; return dx*dx + dy*dy + dz*dz + dw*dw; } /** * Return the distance between this vector and the given one. */ public float dist(final Vec4f o) { return (float)Math.sqrt(distSq(o)); } /** * Return the dot product of this vector and the given one * @return the dot product as float */ public float dot(final Vec4f o) { return x*o.x + y*o.y + z*o.z + w*o.w; } /** * Return the cosines of the angle between two vectors */ public float cosAngle(final Vec4f o) { return dot(o) / ( length() * o.length() ) ; } /** * Return the angle between two vectors in radians */ public float angle(final Vec4f o) { return (float) Math.acos( cosAngle(o) ); } /** * Equals check using a given {@link FloatUtil#EPSILON} value and {@link FloatUtil#isEqual(float, float, float)}. *

* Implementation considers following corner cases: *

* @param o comparison value * @param epsilon consider using {@link FloatUtil#EPSILON} * @return true if all components differ less than {@code epsilon}, otherwise false. */ public boolean isEqual(final Vec4f o, final float epsilon) { if( this == o ) { return true; } else { return FloatUtil.isEqual(x, o.x, epsilon) && FloatUtil.isEqual(y, o.y, epsilon) && FloatUtil.isEqual(z, o.z, epsilon) && FloatUtil.isEqual(w, o.w, epsilon); } } /** * Equals check using {@link FloatUtil#EPSILON} in {@link FloatUtil#isEqual(float, float)}. *

* Implementation considers following corner cases: *

* @param o comparison value * @return true if all components differ less than {@link FloatUtil#EPSILON}, otherwise false. */ public boolean isEqual(final Vec4f o) { if( this == o ) { return true; } else { return FloatUtil.isEqual(x, o.x) && FloatUtil.isEqual(y, o.y) && FloatUtil.isEqual(z, o.z) && FloatUtil.isEqual(w, o.w); } } @Override public boolean equals(final Object o) { if( o instanceof Vec4f ) { return isEqual((Vec4f)o); } else { return false; } } @Override public String toString() { return x + " / " + y + " / " + z + " / " + w; } }