/**
* Copyright 2010 JogAmp Community. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are those of the
* authors and should not be interpreted as representing official policies, either expressed
* or implied, of JogAmp Community.
*/
package com.jogamp.opengl.math;
import java.nio.FloatBuffer;
import com.jogamp.opengl.GLException;
import jogamp.opengl.Debug;
import com.jogamp.common.os.Platform;
import com.jogamp.opengl.math.geom.AABBox;
/**
* Basic Float math utility functions.
*
* Implementation assumes linear matrix layout in column-major order
* matching OpenGL's implementation, illustration:
*
Row-Major Column-Major (OpenGL):
| 0 1 2 3 | | 0 4 8 12 |
| | | |
| 4 5 6 7 | | 1 5 9 13 |
M = | | M = | |
| 8 9 10 11 | | 2 6 10 14 |
| | | |
| 12 13 14 15 | | 3 7 11 15 |
C R C R
m[0*4+3] = tx; m[0+4*3] = tx;
m[1*4+3] = ty; m[1+4*3] = ty;
m[2*4+3] = tz; m[2+4*3] = tz;
*
*
*
*
*
*
* Implementation utilizes unrolling of small vertices and matrices wherever possible
* while trying to access memory in a linear fashion for performance reasons, see:
*
*
*/
public final class FloatUtil {
public static final boolean DEBUG = Debug.debug("Math");
//
// Matrix Ops
//
/**
* Make matrix an identity matrix
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @return given matrix for chaining
*/
public static float[] makeIdentity(final float[] m, final int m_offset) {
m[m_offset+0+4*0] = 1f;
m[m_offset+1+4*0] = 0f;
m[m_offset+2+4*0] = 0f;
m[m_offset+3+4*0] = 0f;
m[m_offset+0+4*1] = 0f;
m[m_offset+1+4*1] = 1f;
m[m_offset+2+4*1] = 0f;
m[m_offset+3+4*1] = 0f;
m[m_offset+0+4*2] = 0f;
m[m_offset+1+4*2] = 0f;
m[m_offset+2+4*2] = 1f;
m[m_offset+3+4*2] = 0f;
m[m_offset+0+4*3] = 0f;
m[m_offset+1+4*3] = 0f;
m[m_offset+2+4*3] = 0f;
m[m_offset+3+4*3] = 1f;
return m;
}
/**
* Make matrix an identity matrix
* @param m 4x4 matrix in column-major order (also result)
* @return given matrix for chaining
*/
public static float[] makeIdentity(final float[] m) {
m[0+4*0] = 1f;
m[1+4*0] = 0f;
m[2+4*0] = 0f;
m[3+4*0] = 0f;
m[0+4*1] = 0f;
m[1+4*1] = 1f;
m[2+4*1] = 0f;
m[3+4*1] = 0f;
m[0+4*2] = 0f;
m[1+4*2] = 0f;
m[2+4*2] = 1f;
m[3+4*2] = 0f;
m[0+4*3] = 0f;
m[1+4*3] = 0f;
m[2+4*3] = 0f;
m[3+4*3] = 1f;
return m;
}
/**
* Make a translation matrix in column-major order from the given axis deltas
*
Translation matrix (Column Order):
1 0 0 0
0 1 0 0
0 0 1 0
x y z 1
*
*
* All matrix fields are only set if initM
is true
.
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the diagonal and last-row is set.
* The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix
* for {@link #makeScale(float[], int, boolean, float, float, float) scaling}
* and {@link #makeTranslation(float[], int, boolean, float, float, float) translation},
* while leaving the other fields untouched for performance reasons.
* @return given matrix for chaining
*/
public static float[] makeTranslation(final float[] m, final int m_offset, final boolean initM, final float tx, final float ty, final float tz) {
if( initM ) {
makeIdentity(m, m_offset);
} else {
m[m_offset+0+4*0] = 1;
m[m_offset+1+4*1] = 1;
m[m_offset+2+4*2] = 1;
m[m_offset+3+4*3] = 1;
}
m[m_offset+0+4*3] = tx;
m[m_offset+1+4*3] = ty;
m[m_offset+2+4*3] = tz;
return m;
}
/**
* Make a translation matrix in column-major order from the given axis deltas
*
Translation matrix (Column Order):
1 0 0 0
0 1 0 0
0 0 1 0
x y z 1
*
*
* All matrix fields are only set if initM
is true
.
*
* @param m 4x4 matrix in column-major order (also result)
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the diagonal and last-row is set.
* The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix
* for {@link #makeScale(float[], int, boolean, float, float, float) scaling}
* and {@link #makeTranslation(float[], int, boolean, float, float, float) translation},
* while leaving the other fields untouched for performance reasons.
* @return given matrix for chaining
*/
public static float[] makeTranslation(final float[] m, final boolean initM, final float tx, final float ty, final float tz) {
if( initM ) {
makeIdentity(m);
} else {
m[0+4*0] = 1;
m[1+4*1] = 1;
m[2+4*2] = 1;
m[3+4*3] = 1;
}
m[0+4*3] = tx;
m[1+4*3] = ty;
m[2+4*3] = tz;
return m;
}
/**
* Make a scale matrix in column-major order from the given axis factors
*
Scale matrix (Any Order):
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1
*
*
* All matrix fields are only set if initM
is true
.
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the diagonal and last-row is set.
* The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix
* for {@link #makeScale(float[], int, boolean, float, float, float) scaling}
* and {@link #makeTranslation(float[], int, boolean, float, float, float) translation},
* while leaving the other fields untouched for performance reasons.
* @return given matrix for chaining
*/
public static float[] makeScale(final float[] m, final int m_offset, final boolean initM, final float sx, final float sy, final float sz) {
if( initM ) {
makeIdentity(m, m_offset);
} else {
m[m_offset+0+4*3] = 0;
m[m_offset+1+4*3] = 0;
m[m_offset+2+4*3] = 0;
m[m_offset+3+4*3] = 1;
}
m[m_offset+0+4*0] = sx;
m[m_offset+1+4*1] = sy;
m[m_offset+2+4*2] = sz;
return m;
}
/**
* Make a scale matrix in column-major order from the given axis factors
*
Scale matrix (Any Order):
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1
*
*
* All matrix fields are only set if initM
is true
.
*
* @param m 4x4 matrix in column-major order (also result)
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the diagonal and last-row is set.
* The latter can be utilized to share a once {@link #makeIdentity(float[], int) identity set} matrix
* for {@link #makeScale(float[], int, boolean, float, float, float) scaling}
* and {@link #makeTranslation(float[], int, boolean, float, float, float) translation},
* while leaving the other fields untouched for performance reasons.
* @return given matrix for chaining
*/
public static float[] makeScale(final float[] m, final boolean initM, final float sx, final float sy, final float sz) {
if( initM ) {
makeIdentity(m);
} else {
m[0+4*3] = 0;
m[1+4*3] = 0;
m[2+4*3] = 0;
m[3+4*3] = 1;
}
m[0+4*0] = sx;
m[1+4*1] = sy;
m[2+4*2] = sz;
return m;
}
/**
* Make a rotation matrix from the given axis and angle in radians.
*
Rotation matrix (Column Order):
xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0
xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0
xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0
0 0 0 1
*
*
* All matrix fields are set.
*
* @see Matrix-FAQ Q38
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @return given matrix for chaining
*/
public static float[] makeRotationAxis(final float[] m, final int m_offset, final float angrad, float x, float y, float z, final float[] tmpVec3f) {
final float c = cos(angrad);
final float ic= 1.0f - c;
final float s = sin(angrad);
tmpVec3f[0]=x; tmpVec3f[1]=y; tmpVec3f[2]=z;
VectorUtil.normalizeVec3(tmpVec3f);
x = tmpVec3f[0]; y = tmpVec3f[1]; z = tmpVec3f[2];
final float xy = x*y;
final float xz = x*z;
final float xs = x*s;
final float ys = y*s;
final float yz = y*z;
final float zs = z*s;
m[0+0*4+m_offset] = x*x*ic+c;
m[1+0*4+m_offset] = xy*ic+zs;
m[2+0*4+m_offset] = xz*ic-ys;
m[3+0*4+m_offset] = 0;
m[0+1*4+m_offset] = xy*ic-zs;
m[1+1*4+m_offset] = y*y*ic+c;
m[2+1*4+m_offset] = yz*ic+xs;
m[3+1*4+m_offset] = 0;
m[0+2*4+m_offset] = xz*ic+ys;
m[1+2*4+m_offset] = yz*ic-xs;
m[2+2*4+m_offset] = z*z*ic+c;
m[3+2*4+m_offset] = 0;
m[0+3*4+m_offset] = 0f;
m[1+3*4+m_offset] = 0f;
m[2+3*4+m_offset] = 0f;
m[3+3*4+m_offset] = 1f;
return m;
}
/**
* Make a concatenated rotation matrix in column-major order from the given Euler rotation angles in radians.
*
* The rotations are applied in the given order:
*
* - y - heading
* - z - attitude
* - x - bank
*
*
*
* All matrix fields are set.
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param bankX the Euler pitch angle in radians. (rotation about the X axis)
* @param headingY the Euler yaw angle in radians. (rotation about the Y axis)
* @param attitudeZ the Euler roll angle in radians. (rotation about the Z axis)
* @return given matrix for chaining
*
* Implementation does not use Quaternion and hence is exposed to
* Gimbal-Lock
*
* @see Matrix-FAQ Q36
* @see euclideanspace.com-eulerToMatrix
*/
public static float[] makeRotationEuler(final float[] m, final int m_offset, final float bankX, final float headingY, final float attitudeZ) {
// Assuming the angles are in radians.
final float ch = cos(headingY);
final float sh = sin(headingY);
final float ca = cos(attitudeZ);
final float sa = sin(attitudeZ);
final float cb = cos(bankX);
final float sb = sin(bankX);
m[0+0*4+m_offset] = ch*ca;
m[1+0*4+m_offset] = sa;
m[2+0*4+m_offset] = -sh*ca;
m[3+0*4+m_offset] = 0;
m[0+1*4+m_offset] = sh*sb - ch*sa*cb;
m[1+1*4+m_offset] = ca*cb;
m[2+1*4+m_offset] = sh*sa*cb + ch*sb;
m[3+1*4+m_offset] = 0;
m[0+2*4+m_offset] = ch*sa*sb + sh*cb;
m[1+2*4+m_offset] = -ca*sb;
m[2+2*4+m_offset] = -sh*sa*sb + ch*cb;
m[3+2*4+m_offset] = 0;
m[0+3*4+m_offset] = 0;
m[1+3*4+m_offset] = 0;
m[2+3*4+m_offset] = 0;
m[3+3*4+m_offset] = 1;
return m;
}
/**
* Make given matrix the orthogonal matrix based on given parameters.
*
Ortho matrix (Column Order):
2/dx 0 0 0
0 2/dy 0 0
0 0 2/dz 0
tx ty tz 1
*
*
* All matrix fields are only set if initM
is true
.
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the orthogonal fields are set.
* @param left
* @param right
* @param bottom
* @param top
* @param zNear
* @param zFar
* @return given matrix for chaining
*/
public static float[] makeOrtho(final float[] m, final int m_offset, final boolean initM,
final float left, final float right,
final float bottom, final float top,
final float zNear, final float zFar) {
if( initM ) {
// m[m_offset+0+4*0] = 1f;
m[m_offset+1+4*0] = 0f;
m[m_offset+2+4*0] = 0f;
m[m_offset+3+4*0] = 0f;
m[m_offset+0+4*1] = 0f;
// m[m_offset+1+4*1] = 1f;
m[m_offset+2+4*1] = 0f;
m[m_offset+3+4*1] = 0f;
m[m_offset+0+4*2] = 0f;
m[m_offset+1+4*2] = 0f;
// m[m_offset+2+4*2] = 1f;
m[m_offset+3+4*2] = 0f;
// m[m_offset+0+4*3] = 0f;
// m[m_offset+1+4*3] = 0f;
// m[m_offset+2+4*3] = 0f;
// m[m_offset+3+4*3] = 1f;
}
final float dx=right-left;
final float dy=top-bottom;
final float dz=zFar-zNear;
final float tx=-1.0f*(right+left)/dx;
final float ty=-1.0f*(top+bottom)/dy;
final float tz=-1.0f*(zFar+zNear)/dz;
m[m_offset+0+4*0] = 2.0f/dx;
m[m_offset+1+4*1] = 2.0f/dy;
m[m_offset+2+4*2] = -2.0f/dz;
m[m_offset+0+4*3] = tx;
m[m_offset+1+4*3] = ty;
m[m_offset+2+4*3] = tz;
m[m_offset+3+4*3] = 1f;
return m;
}
/**
* Make given matrix the frustum matrix based on given parameters.
*
Frustum matrix (Column Order):
2*zNear/dx 0 0 0
0 2*zNear/dy 0 0
A B C -1
0 0 D 0
*
*
* All matrix fields are only set if initM
is true
.
*
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the frustum fields are set.
* @param left
* @param right
* @param bottom
* @param top
* @param zNear
* @param zFar
* @return given matrix for chaining
* @throws GLException with GL_INVALID_VALUE if zNear is <= 0, or zFar < 0,
* or if left == right, or bottom == top, or zNear == zFar.
*/
public static float[] makeFrustum(final float[] m, final int m_offset, final boolean initM,
final float left, final float right,
final float bottom, final float top,
final float zNear, final float zFar) throws GLException {
if( zNear <= 0.0f || zFar < 0.0f ) {
throw new GLException("GL_INVALID_VALUE: zNear and zFar must be positive, and zNear>0");
}
if( left == right || top == bottom || zNear == zFar ) {
throw new GLException("GL_INVALID_VALUE: top,bottom and left,right and zNear,zFar must not be equal");
}
if( initM ) {
// m[m_offset+0+4*0] = 1f;
m[m_offset+1+4*0] = 0f;
m[m_offset+2+4*0] = 0f;
m[m_offset+3+4*0] = 0f;
m[m_offset+0+4*1] = 0f;
// m[m_offset+1+4*1] = 1f;
m[m_offset+2+4*1] = 0f;
m[m_offset+3+4*1] = 0f;
// m[m_offset+0+4*2] = 0f;
// m[m_offset+1+4*2] = 0f;
// m[m_offset+2+4*2] = 1f;
// m[m_offset+3+4*2] = 0f;
m[m_offset+0+4*3] = 0f;
m[m_offset+1+4*3] = 0f;
// m[m_offset+2+4*3] = 0f;
// m[m_offset+3+4*3] = 1f;
}
final float zNear2 = 2.0f*zNear;
final float dx=right-left;
final float dy=top-bottom;
final float dz=zFar-zNear;
final float A=(right+left)/dx;
final float B=(top+bottom)/dy;
final float C=-1.0f*(zFar+zNear)/dz;
final float D=-2.0f*(zFar*zNear)/dz;
m[m_offset+0+4*0] = zNear2/dx;
m[m_offset+1+4*1] = zNear2/dy;
m[m_offset+0+4*2] = A;
m[m_offset+1+4*2] = B;
m[m_offset+2+4*2] = C;
m[m_offset+3+4*2] = -1.0f;
m[m_offset+2+4*3] = D;
m[m_offset+3+4*3] = 0f;
return m;
}
/**
* Make given matrix the perspective {@link #makeFrustum(float[], int, boolean, float, float, float, float, float, float) frustum}
* matrix based on given parameters.
*
* All matrix fields are only set if initM
is true
.
*
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the frustum fields are set.
* @param fovy_rad angle in radians
* @param aspect aspect ratio width / height
* @param zNear
* @param zFar
* @return given matrix for chaining
* @throws GLException with GL_INVALID_VALUE if zNear is <= 0, or zFar < 0, or if zNear == zFar.
*/
public static float[] makePerspective(final float[] m, final int m_off, final boolean initM,
final float fovy_rad, final float aspect, final float zNear, final float zFar) throws GLException {
final float top = tan(fovy_rad/2f) * zNear; // use tangent of half-fov !
final float bottom = -1.0f * top;
final float left = aspect * bottom;
final float right = aspect * top;
return makeFrustum(m, m_off, initM, left, right, bottom, top, zNear, zFar);
}
/**
* Make given matrix the perspective {@link #makeFrustum(float[], int, boolean, float, float, float, float, float, float) frustum}
* matrix based on given parameters.
*
* All matrix fields are only set if initM
is true
.
*
*
* @param m 4x4 matrix in column-major order (also result)
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param initM if true, given matrix will be initialized w/ identity matrix,
* otherwise only the frustum fields are set.
* @param fovhv {@link FovHVHalves} field of view in both directions, may not be centered, either in radians or tangent
* @param zNear
* @param zFar
* @return given matrix for chaining
* @throws GLException with GL_INVALID_VALUE if zNear is <= 0, or zFar < 0, or if zNear == zFar.
*/
public static float[] makePerspective(final float[] m, final int m_offset, final boolean initM,
final FovHVHalves fovhv, final float zNear, final float zFar) throws GLException {
final FovHVHalves fovhvTan = fovhv.toTangents(); // use tangent of half-fov !
final float top = fovhvTan.top * zNear;
final float bottom = -1.0f * fovhvTan.bottom * zNear;
final float left = -1.0f * fovhvTan.left * zNear;
final float right = fovhvTan.right * zNear;
return makeFrustum(m, m_offset, initM, left, right, bottom, top, zNear, zFar);
}
/**
* Make given matrix the look-at matrix based on given parameters.
*
* Consist out of two matrix multiplications:
*
* R = L x T,
* with L for look-at matrix and
* T for eye translation.
*
* Result R can be utilized for modelview multiplication, i.e.
* M = M x R,
* with M being the modelview matrix.
*
*
*
* All matrix fields are set.
*
* @param m 4x4 matrix in column-major order, result only
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param eye 3 component eye vector
* @param eye_offset
* @param center 3 component center vector
* @param center_offset
* @param up 3 component up vector
* @param up_offset
* @param mat4Tmp temp float[16] storage
* @return given matrix m
for chaining
*/
public static float[] makeLookAt(final float[] m, final int m_offset,
final float[] eye, final int eye_offset,
final float[] center, final int center_offset,
final float[] up, final int up_offset,
final float[] mat4Tmp) {
final int forward_off = 0;
final int side_off = 3;
final int up2_off = 6;
// forward!
mat4Tmp[0] = center[0+center_offset] - eye[0+eye_offset];
mat4Tmp[1] = center[1+center_offset] - eye[1+eye_offset];
mat4Tmp[2] = center[2+center_offset] - eye[2+eye_offset];
VectorUtil.normalizeVec3(mat4Tmp); // normalize forward
/* Side = forward x up */
VectorUtil.crossVec3(mat4Tmp, side_off, mat4Tmp, forward_off, up, up_offset);
VectorUtil.normalizeVec3(mat4Tmp, side_off); // normalize side
/* Recompute up as: up = side x forward */
VectorUtil.crossVec3(mat4Tmp, up2_off, mat4Tmp, side_off, mat4Tmp, forward_off);
m[m_offset + 0 * 4 + 0] = mat4Tmp[0+side_off]; // side
m[m_offset + 0 * 4 + 1] = mat4Tmp[0+up2_off]; // up2
m[m_offset + 0 * 4 + 2] = -mat4Tmp[0]; // forward
m[m_offset + 0 * 4 + 3] = 0;
m[m_offset + 1 * 4 + 0] = mat4Tmp[1+side_off]; // side
m[m_offset + 1 * 4 + 1] = mat4Tmp[1+up2_off]; // up2
m[m_offset + 1 * 4 + 2] = -mat4Tmp[1]; // forward
m[m_offset + 1 * 4 + 3] = 0;
m[m_offset + 2 * 4 + 0] = mat4Tmp[2+side_off]; // side
m[m_offset + 2 * 4 + 1] = mat4Tmp[2+up2_off]; // up2
m[m_offset + 2 * 4 + 2] = -mat4Tmp[2]; // forward
m[m_offset + 2 * 4 + 3] = 0;
m[m_offset + 3 * 4 + 0] = 0;
m[m_offset + 3 * 4 + 1] = 0;
m[m_offset + 3 * 4 + 2] = 0;
m[m_offset + 3 * 4 + 3] = 1;
makeTranslation(mat4Tmp, true, -eye[0+eye_offset], -eye[1+eye_offset], -eye[2+eye_offset]);
multMatrix(m, m_offset, mat4Tmp, 0);
return m;
}
/**
* Make given matrix the pick matrix based on given parameters.
*
* Traditional gluPickMatrix
implementation.
*
*
* Consist out of two matrix multiplications:
*
* R = T x S,
* with T for viewport translation matrix and
* S for viewport scale matrix.
*
* Result R can be utilized for projection multiplication, i.e.
* P = P x R,
* with P being the projection matrix.
*
*
*
* To effectively use the generated pick matrix for picking,
* call {@link #makePick(float[], int, float, float, float, float, int[], int, float[]) makePick}
* and multiply a {@link #makePerspective(float[], int, boolean, float, float, float, float) custom perspective matrix}
* by this pick matrix. Then you may load the result onto the perspective matrix stack.
*
*
* All matrix fields are set.
*
* @param m 4x4 matrix in column-major order, result only
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @param x the center x-component of a picking region in window coordinates
* @param y the center y-component of a picking region in window coordinates
* @param deltaX the width of the picking region in window coordinates.
* @param deltaY the height of the picking region in window coordinates.
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param mat4Tmp temp float[16] storage
* @return given matrix m
for chaining or null
if either delta value is <= zero.
*/
public static float[] makePick(final float[] m, final int m_offset,
final float x, final float y,
final float deltaX, final float deltaY,
final int[] viewport, final int viewport_offset,
final float[] mat4Tmp) {
if (deltaX <= 0 || deltaY <= 0) {
return null;
}
/* Translate and scale the picked region to the entire window */
makeTranslation(m, m_offset, true,
(viewport[2+viewport_offset] - 2 * (x - viewport[0+viewport_offset])) / deltaX,
(viewport[3+viewport_offset] - 2 * (y - viewport[1+viewport_offset])) / deltaY,
0);
makeScale(mat4Tmp, true,
viewport[2+viewport_offset] / deltaX, viewport[3+viewport_offset] / deltaY, 1.0f);
multMatrix(m, m_offset, mat4Tmp, 0);
return m;
}
/**
* Transpose the given matrix.
*
* @param msrc 4x4 matrix in column-major order, the source
* @param msrc_offset offset in given array msrc, i.e. start of the 4x4 matrix
* @param mres 4x4 matrix in column-major order, the result
* @param mres_offset offset in given array mres, i.e. start of the 4x4 matrix
* @return given result matrix mres for chaining
*/
public static float[] transposeMatrix(final float[] msrc, final int msrc_offset, final float[] mres, final int mres_offset) {
mres[mres_offset+0] = msrc[msrc_offset+0*4];
mres[mres_offset+1] = msrc[msrc_offset+1*4];
mres[mres_offset+2] = msrc[msrc_offset+2*4];
mres[mres_offset+3] = msrc[msrc_offset+3*4];
final int i4_1 = 1*4;
mres[mres_offset+0+i4_1] = msrc[msrc_offset+1+0*4];
mres[mres_offset+1+i4_1] = msrc[msrc_offset+1+1*4];
mres[mres_offset+2+i4_1] = msrc[msrc_offset+1+2*4];
mres[mres_offset+3+i4_1] = msrc[msrc_offset+1+3*4];
final int i4_2 = 2*4;
mres[mres_offset+0+i4_2] = msrc[msrc_offset+2+0*4];
mres[mres_offset+1+i4_2] = msrc[msrc_offset+2+1*4];
mres[mres_offset+2+i4_2] = msrc[msrc_offset+2+2*4];
mres[mres_offset+3+i4_2] = msrc[msrc_offset+2+3*4];
final int i4_3 = 3*4;
mres[mres_offset+0+i4_3] = msrc[msrc_offset+3+0*4];
mres[mres_offset+1+i4_3] = msrc[msrc_offset+3+1*4];
mres[mres_offset+2+i4_3] = msrc[msrc_offset+3+2*4];
mres[mres_offset+3+i4_3] = msrc[msrc_offset+3+3*4];
return mres;
}
/**
* Transpose the given matrix.
*
* @param msrc 4x4 matrix in column-major order, the source
* @param mres 4x4 matrix in column-major order, the result
* @return given result matrix mres for chaining
*/
public static float[] transposeMatrix(final float[] msrc, final float[] mres) {
mres[0] = msrc[0*4];
mres[1] = msrc[1*4];
mres[2] = msrc[2*4];
mres[3] = msrc[3*4];
final int i4_1 = 1*4;
mres[0+i4_1] = msrc[1+0*4];
mres[1+i4_1] = msrc[1+1*4];
mres[2+i4_1] = msrc[1+2*4];
mres[3+i4_1] = msrc[1+3*4];
final int i4_2 = 2*4;
mres[0+i4_2] = msrc[2+0*4];
mres[1+i4_2] = msrc[2+1*4];
mres[2+i4_2] = msrc[2+2*4];
mres[3+i4_2] = msrc[2+3*4];
final int i4_3 = 3*4;
mres[0+i4_3] = msrc[3+0*4];
mres[1+i4_3] = msrc[3+1*4];
mres[2+i4_3] = msrc[3+2*4];
mres[3+i4_3] = msrc[3+3*4];
return mres;
}
/**
* Returns the determinant of the given matrix
* @param m 4x4 matrix in column-major order, the source
* @param m_offset offset in given array m, i.e. start of the 4x4 matrix
* @return the matrix determinant
*/
public static float matrixDeterminant(final float[] m, final int m_offset) {
float a11 = m[ 1+4*1 + m_offset ];
float a21 = m[ 2+4*1 + m_offset ];
float a31 = m[ 3+4*1 + m_offset ];
float a12 = m[ 1+4*2 + m_offset ];
float a22 = m[ 2+4*2 + m_offset ];
float a32 = m[ 3+4*2 + m_offset ];
float a13 = m[ 1+4*3 + m_offset ];
float a23 = m[ 2+4*3 + m_offset ];
float a33 = m[ 3+4*3 + m_offset ];
float ret = 0;
ret += m[ 0 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
a11 = m[ 1+4*0 + m_offset ];
a21 = m[ 2+4*0 + m_offset ];
a31 = m[ 3+4*0 + m_offset ];
ret -= m[ 0+4*1 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
a12 = m[ 1+4*1 + m_offset ];
a22 = m[ 2+4*1 + m_offset ];
a32 = m[ 3+4*1 + m_offset ];
ret += m[ 0+4*2 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
a13 = m[ 1+4*2 + m_offset ];
a23 = m[ 2+4*2 + m_offset ];
a33 = m[ 3+4*2 + m_offset ];
ret -= m[ 0+4*3 + m_offset ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
return ret;
}
/**
* Returns the determinant of the given matrix
* @param m 4x4 matrix in column-major order, the source
* @return the matrix determinant
*/
public static float matrixDeterminant(final float[] m) {
float a11 = m[ 1+4*1 ];
float a21 = m[ 2+4*1 ];
float a31 = m[ 3+4*1 ];
float a12 = m[ 1+4*2 ];
float a22 = m[ 2+4*2 ];
float a32 = m[ 3+4*2 ];
float a13 = m[ 1+4*3 ];
float a23 = m[ 2+4*3 ];
float a33 = m[ 3+4*3 ];
float ret = 0;
ret += m[ 0 ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
a11 = m[ 1+4*0 ];
a21 = m[ 2+4*0 ];
a31 = m[ 3+4*0 ];
ret -= m[ 0+4*1 ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
a12 = m[ 1+4*1 ];
a22 = m[ 2+4*1 ];
a32 = m[ 3+4*1 ];
ret += m[ 0+4*2 ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
a13 = m[ 1+4*2 ];
a23 = m[ 2+4*2 ];
a33 = m[ 3+4*2 ];
ret -= m[ 0+4*3 ] * ( + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31));
return ret;
}
/**
* Invert the given matrix.
*
* Returns null
if inversion is not possible,
* e.g. matrix is singular due to a bad matrix.
*
*
* @param msrc 4x4 matrix in column-major order, the source
* @param msrc_offset offset in given array msrc, i.e. start of the 4x4 matrix
* @param mres 4x4 matrix in column-major order, the result - may be msrc
(in-place)
* @param mres_offset offset in given array mres, i.e. start of the 4x4 matrix - may be msrc_offset
(in-place)
* @return given result matrix mres for chaining if successful, otherwise null
. See above.
*/
public static float[] invertMatrix(final float[] msrc, final int msrc_offset, final float[] mres, final int mres_offset) {
final float scale;
{
float max = Math.abs(msrc[0]);
for( int i = 1; i < 16; i++ ) {
final float a = Math.abs(msrc[i]);
if( a > max ) max = a;
}
if( 0 == max ) {
return null;
}
scale = 1.0f/max;
}
final float a11 = msrc[0+4*0+msrc_offset]*scale;
final float a21 = msrc[1+4*0+msrc_offset]*scale;
final float a31 = msrc[2+4*0+msrc_offset]*scale;
final float a41 = msrc[3+4*0+msrc_offset]*scale;
final float a12 = msrc[0+4*1+msrc_offset]*scale;
final float a22 = msrc[1+4*1+msrc_offset]*scale;
final float a32 = msrc[2+4*1+msrc_offset]*scale;
final float a42 = msrc[3+4*1+msrc_offset]*scale;
final float a13 = msrc[0+4*2+msrc_offset]*scale;
final float a23 = msrc[1+4*2+msrc_offset]*scale;
final float a33 = msrc[2+4*2+msrc_offset]*scale;
final float a43 = msrc[3+4*2+msrc_offset]*scale;
final float a14 = msrc[0+4*3+msrc_offset]*scale;
final float a24 = msrc[1+4*3+msrc_offset]*scale;
final float a34 = msrc[2+4*3+msrc_offset]*scale;
final float a44 = msrc[3+4*3+msrc_offset]*scale;
final float m11 = + a22*(a33*a44 - a34*a43) - a23*(a32*a44 - a34*a42) + a24*(a32*a43 - a33*a42);
final float m12 = -( + a21*(a33*a44 - a34*a43) - a23*(a31*a44 - a34*a41) + a24*(a31*a43 - a33*a41));
final float m13 = + a21*(a32*a44 - a34*a42) - a22*(a31*a44 - a34*a41) + a24*(a31*a42 - a32*a41);
final float m14 = -( + a21*(a32*a43 - a33*a42) - a22*(a31*a43 - a33*a41) + a23*(a31*a42 - a32*a41));
final float m21 = -( + a12*(a33*a44 - a34*a43) - a13*(a32*a44 - a34*a42) + a14*(a32*a43 - a33*a42));
final float m22 = + a11*(a33*a44 - a34*a43) - a13*(a31*a44 - a34*a41) + a14*(a31*a43 - a33*a41);
final float m23 = -( + a11*(a32*a44 - a34*a42) - a12*(a31*a44 - a34*a41) + a14*(a31*a42 - a32*a41));
final float m24 = + a11*(a32*a43 - a33*a42) - a12*(a31*a43 - a33*a41) + a13*(a31*a42 - a32*a41);
final float m31 = + a12*(a23*a44 - a24*a43) - a13*(a22*a44 - a24*a42) + a14*(a22*a43 - a23*a42);
final float m32 = -( + a11*(a23*a44 - a24*a43) - a13*(a21*a44 - a24*a41) + a14*(a21*a43 - a23*a41));
final float m33 = + a11*(a22*a44 - a24*a42) - a12*(a21*a44 - a24*a41) + a14*(a21*a42 - a22*a41);
final float m34 = -( + a11*(a22*a43 - a23*a42) - a12*(a21*a43 - a23*a41) + a13*(a21*a42 - a22*a41));
final float m41 = -( + a12*(a23*a34 - a24*a33) - a13*(a22*a34 - a24*a32) + a14*(a22*a33 - a23*a32));
final float m42 = + a11*(a23*a34 - a24*a33) - a13*(a21*a34 - a24*a31) + a14*(a21*a33 - a23*a31);
final float m43 = -( + a11*(a22*a34 - a24*a32) - a12*(a21*a34 - a24*a31) + a14*(a21*a32 - a22*a31));
final float m44 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31);
final float det = (a11*m11 + a12*m12 + a13*m13 + a14*m14)/scale;
if( 0 == det ) {
return null;
}
mres[0+4*0+mres_offset] = m11 / det;
mres[1+4*0+mres_offset] = m12 / det;
mres[2+4*0+mres_offset] = m13 / det;
mres[3+4*0+mres_offset] = m14 / det;
mres[0+4*1+mres_offset] = m21 / det;
mres[1+4*1+mres_offset] = m22 / det;
mres[2+4*1+mres_offset] = m23 / det;
mres[3+4*1+mres_offset] = m24 / det;
mres[0+4*2+mres_offset] = m31 / det;
mres[1+4*2+mres_offset] = m32 / det;
mres[2+4*2+mres_offset] = m33 / det;
mres[3+4*2+mres_offset] = m34 / det;
mres[0+4*3+mres_offset] = m41 / det;
mres[1+4*3+mres_offset] = m42 / det;
mres[2+4*3+mres_offset] = m43 / det;
mres[3+4*3+mres_offset] = m44 / det;
return mres;
}
/**
* Invert the given matrix.
*
* Returns null
if inversion is not possible,
* e.g. matrix is singular due to a bad matrix.
*
*
* @param msrc 4x4 matrix in column-major order, the source
* @param mres 4x4 matrix in column-major order, the result - may be msrc
(in-place)
* @return given result matrix mres for chaining if successful, otherwise null
. See above.
*/
public static float[] invertMatrix(final float[] msrc, final float[] mres) {
final float scale;
{
float max = Math.abs(msrc[0]);
for( int i = 1; i < 16; i++ ) {
final float a = Math.abs(msrc[i]);
if( a > max ) max = a;
}
if( 0 == max ) {
return null;
}
scale = 1.0f/max;
}
final float a11 = msrc[0+4*0]*scale;
final float a21 = msrc[1+4*0]*scale;
final float a31 = msrc[2+4*0]*scale;
final float a41 = msrc[3+4*0]*scale;
final float a12 = msrc[0+4*1]*scale;
final float a22 = msrc[1+4*1]*scale;
final float a32 = msrc[2+4*1]*scale;
final float a42 = msrc[3+4*1]*scale;
final float a13 = msrc[0+4*2]*scale;
final float a23 = msrc[1+4*2]*scale;
final float a33 = msrc[2+4*2]*scale;
final float a43 = msrc[3+4*2]*scale;
final float a14 = msrc[0+4*3]*scale;
final float a24 = msrc[1+4*3]*scale;
final float a34 = msrc[2+4*3]*scale;
final float a44 = msrc[3+4*3]*scale;
final float m11 = + a22*(a33*a44 - a34*a43) - a23*(a32*a44 - a34*a42) + a24*(a32*a43 - a33*a42);
final float m12 = -( + a21*(a33*a44 - a34*a43) - a23*(a31*a44 - a34*a41) + a24*(a31*a43 - a33*a41));
final float m13 = + a21*(a32*a44 - a34*a42) - a22*(a31*a44 - a34*a41) + a24*(a31*a42 - a32*a41);
final float m14 = -( + a21*(a32*a43 - a33*a42) - a22*(a31*a43 - a33*a41) + a23*(a31*a42 - a32*a41));
final float m21 = -( + a12*(a33*a44 - a34*a43) - a13*(a32*a44 - a34*a42) + a14*(a32*a43 - a33*a42));
final float m22 = + a11*(a33*a44 - a34*a43) - a13*(a31*a44 - a34*a41) + a14*(a31*a43 - a33*a41);
final float m23 = -( + a11*(a32*a44 - a34*a42) - a12*(a31*a44 - a34*a41) + a14*(a31*a42 - a32*a41));
final float m24 = + a11*(a32*a43 - a33*a42) - a12*(a31*a43 - a33*a41) + a13*(a31*a42 - a32*a41);
final float m31 = + a12*(a23*a44 - a24*a43) - a13*(a22*a44 - a24*a42) + a14*(a22*a43 - a23*a42);
final float m32 = -( + a11*(a23*a44 - a24*a43) - a13*(a21*a44 - a24*a41) + a14*(a21*a43 - a23*a41));
final float m33 = + a11*(a22*a44 - a24*a42) - a12*(a21*a44 - a24*a41) + a14*(a21*a42 - a22*a41);
final float m34 = -( + a11*(a22*a43 - a23*a42) - a12*(a21*a43 - a23*a41) + a13*(a21*a42 - a22*a41));
final float m41 = -( + a12*(a23*a34 - a24*a33) - a13*(a22*a34 - a24*a32) + a14*(a22*a33 - a23*a32));
final float m42 = + a11*(a23*a34 - a24*a33) - a13*(a21*a34 - a24*a31) + a14*(a21*a33 - a23*a31);
final float m43 = -( + a11*(a22*a34 - a24*a32) - a12*(a21*a34 - a24*a31) + a14*(a21*a32 - a22*a31));
final float m44 = + a11*(a22*a33 - a23*a32) - a12*(a21*a33 - a23*a31) + a13*(a21*a32 - a22*a31);
final float det = (a11*m11 + a12*m12 + a13*m13 + a14*m14)/scale;
if( 0 == det ) {
return null;
}
mres[0+4*0] = m11 / det;
mres[1+4*0] = m12 / det;
mres[2+4*0] = m13 / det;
mres[3+4*0] = m14 / det;
mres[0+4*1] = m21 / det;
mres[1+4*1] = m22 / det;
mres[2+4*1] = m23 / det;
mres[3+4*1] = m24 / det;
mres[0+4*2] = m31 / det;
mres[1+4*2] = m32 / det;
mres[2+4*2] = m33 / det;
mres[3+4*2] = m34 / det;
mres[0+4*3] = m41 / det;
mres[1+4*3] = m42 / det;
mres[2+4*3] = m43 / det;
mres[3+4*3] = m44 / det;
return mres;
}
/**
* Map object coordinates to window coordinates.
*
* Traditional gluProject
implementation.
*
*
* @param objx
* @param objy
* @param objz
* @param modelMatrix 4x4 modelview matrix
* @param modelMatrix_offset
* @param projMatrix 4x4 projection matrix
* @param projMatrix_offset
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param win_pos 3 component window coordinate, the result
* @param win_pos_offset
* @param vec4Tmp1 4 component vector for temp storage
* @param vec4Tmp2 4 component vector for temp storage
* @return true if successful, otherwise false (z is 1)
*/
public static boolean mapObjToWinCoords(final float objx, final float objy, final float objz,
final float[] modelMatrix, final int modelMatrix_offset,
final float[] projMatrix, final int projMatrix_offset,
final int[] viewport, final int viewport_offset,
final float[] win_pos, final int win_pos_offset,
final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) {
vec4Tmp1[0] = objx;
vec4Tmp1[1] = objy;
vec4Tmp1[2] = objz;
vec4Tmp1[3] = 1.0f;
// vec4Tmp2 = Mv * o
// vec4Tmp1 = P * vec4Tmp2
// vec4Tmp1 = P * ( Mv * o )
// vec4Tmp1 = P * Mv * o
multMatrixVec(modelMatrix, modelMatrix_offset, vec4Tmp1, 0, vec4Tmp2, 0);
multMatrixVec(projMatrix, projMatrix_offset, vec4Tmp2, 0, vec4Tmp1, 0);
if (vec4Tmp1[3] == 0.0f) {
return false;
}
vec4Tmp1[3] = (1.0f / vec4Tmp1[3]) * 0.5f;
// Map x, y and z to range 0-1
vec4Tmp1[0] = vec4Tmp1[0] * vec4Tmp1[3] + 0.5f;
vec4Tmp1[1] = vec4Tmp1[1] * vec4Tmp1[3] + 0.5f;
vec4Tmp1[2] = vec4Tmp1[2] * vec4Tmp1[3] + 0.5f;
// Map x,y to viewport
win_pos[0+win_pos_offset] = vec4Tmp1[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset];
win_pos[1+win_pos_offset] = vec4Tmp1[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset];
win_pos[2+win_pos_offset] = vec4Tmp1[2];
return true;
}
/**
* Map object coordinates to window coordinates.
*
* Traditional gluProject
implementation.
*
*
* @param objx
* @param objy
* @param objz
* @param mat4PMv [projection] x [modelview] matrix, i.e. P x Mv
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param win_pos 3 component window coordinate, the result
* @param win_pos_offset
* @param vec4Tmp1 4 component vector for temp storage
* @param vec4Tmp2 4 component vector for temp storage
* @return true if successful, otherwise false (z is 1)
*/
public static boolean mapObjToWinCoords(final float objx, final float objy, final float objz,
final float[/*16*/] mat4PMv,
final int[] viewport, final int viewport_offset,
final float[] win_pos, final int win_pos_offset,
final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) {
vec4Tmp2[0] = objx;
vec4Tmp2[1] = objy;
vec4Tmp2[2] = objz;
vec4Tmp2[3] = 1.0f;
// vec4Tmp1 = P * Mv * o
multMatrixVec(mat4PMv, vec4Tmp2, vec4Tmp1);
if (vec4Tmp1[3] == 0.0f) {
return false;
}
vec4Tmp1[3] = (1.0f / vec4Tmp1[3]) * 0.5f;
// Map x, y and z to range 0-1
vec4Tmp1[0] = vec4Tmp1[0] * vec4Tmp1[3] + 0.5f;
vec4Tmp1[1] = vec4Tmp1[1] * vec4Tmp1[3] + 0.5f;
vec4Tmp1[2] = vec4Tmp1[2] * vec4Tmp1[3] + 0.5f;
// Map x,y to viewport
win_pos[0+win_pos_offset] = vec4Tmp1[0] * viewport[2+viewport_offset] + viewport[0+viewport_offset];
win_pos[1+win_pos_offset] = vec4Tmp1[1] * viewport[3+viewport_offset] + viewport[1+viewport_offset];
win_pos[2+win_pos_offset] = vec4Tmp1[2];
return true;
}
/**
* Map window coordinates to object coordinates.
*
* Traditional gluUnProject
implementation.
*
*
* @param winx
* @param winy
* @param winz
* @param modelMatrix 4x4 modelview matrix
* @param modelMatrix_offset
* @param projMatrix 4x4 projection matrix
* @param projMatrix_offset
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param obj_pos 3 component object coordinate, the result
* @param obj_pos_offset
* @param mat4Tmp1 16 component matrix for temp storage
* @param mat4Tmp2 16 component matrix for temp storage
* @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
*/
public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz,
final float[] modelMatrix, final int modelMatrix_offset,
final float[] projMatrix, final int projMatrix_offset,
final int[] viewport, final int viewport_offset,
final float[] obj_pos, final int obj_pos_offset,
final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2) {
// mat4Tmp1 = P x Mv
multMatrix(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, mat4Tmp1, 0);
// mat4Tmp1 = Inv(P x Mv)
if ( null == invertMatrix(mat4Tmp1, mat4Tmp1) ) {
return false;
}
mat4Tmp2[0] = winx;
mat4Tmp2[1] = winy;
mat4Tmp2[2] = winz;
mat4Tmp2[3] = 1.0f;
// Map x and y from window coordinates
mat4Tmp2[0] = (mat4Tmp2[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset];
mat4Tmp2[1] = (mat4Tmp2[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset];
// Map to range -1 to 1
mat4Tmp2[0] = mat4Tmp2[0] * 2 - 1;
mat4Tmp2[1] = mat4Tmp2[1] * 2 - 1;
mat4Tmp2[2] = mat4Tmp2[2] * 2 - 1;
final int raw_off = 4;
// object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2
multMatrixVec(mat4Tmp1, 0, mat4Tmp2, 0, mat4Tmp2, raw_off);
if (mat4Tmp2[3+raw_off] == 0.0) {
return false;
}
mat4Tmp2[3+raw_off] = 1.0f / mat4Tmp2[3+raw_off];
obj_pos[0+obj_pos_offset] = mat4Tmp2[0+raw_off] * mat4Tmp2[3+raw_off];
obj_pos[1+obj_pos_offset] = mat4Tmp2[1+raw_off] * mat4Tmp2[3+raw_off];
obj_pos[2+obj_pos_offset] = mat4Tmp2[2+raw_off] * mat4Tmp2[3+raw_off];
return true;
}
/**
* Map window coordinates to object coordinates.
*
* Traditional gluUnProject
implementation.
*
*
* @param winx
* @param winy
* @param winz
* @param mat4PMvI inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv)
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param obj_pos 3 component object coordinate, the result
* @param obj_pos_offset
* @param vec4Tmp1 4 component vector for temp storage
* @param vec4Tmp2 4 component vector for temp storage
* @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
*/
public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz,
final float[/*16*/] mat4PMvI,
final int[] viewport, final int viewport_offset,
final float[] obj_pos, final int obj_pos_offset,
final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) {
vec4Tmp1[0] = winx;
vec4Tmp1[1] = winy;
vec4Tmp1[2] = winz;
vec4Tmp1[3] = 1.0f;
// Map x and y from window coordinates
vec4Tmp1[0] = (vec4Tmp1[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset];
vec4Tmp1[1] = (vec4Tmp1[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset];
// Map to range -1 to 1
vec4Tmp1[0] = vec4Tmp1[0] * 2 - 1;
vec4Tmp1[1] = vec4Tmp1[1] * 2 - 1;
vec4Tmp1[2] = vec4Tmp1[2] * 2 - 1;
// object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2
multMatrixVec(mat4PMvI, vec4Tmp1, vec4Tmp2);
if (vec4Tmp2[3] == 0.0) {
return false;
}
vec4Tmp2[3] = 1.0f / vec4Tmp2[3];
obj_pos[0+obj_pos_offset] = vec4Tmp2[0] * vec4Tmp2[3];
obj_pos[1+obj_pos_offset] = vec4Tmp2[1] * vec4Tmp2[3];
obj_pos[2+obj_pos_offset] = vec4Tmp2[2] * vec4Tmp2[3];
return true;
}
/**
* Map two window coordinates to two object coordinates,
* distinguished by their z component.
*
* @param winx
* @param winy
* @param winz1
* @param winz2
* @param mat4PMvI inverse [projection] x [modelview] matrix, i.e. Inv(P x Mv)
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param obj1_pos 3 component object coordinate, the result for winz1
* @param obj1_pos_offset
* @param obj2_pos 3 component object coordinate, the result for winz2
* @param obj2_pos_offset
* @param vec4Tmp1 4 component vector for temp storage
* @param vec4Tmp2 4 component vector for temp storage
* @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
*/
public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz1, final float winz2,
final float[/*16*/] mat4PMvI,
final int[] viewport, final int viewport_offset,
final float[] obj1_pos, final int obj1_pos_offset,
final float[] obj2_pos, final int obj2_pos_offset,
final float[/*4*/] vec4Tmp1, final float[/*4*/] vec4Tmp2) {
vec4Tmp1[0] = winx;
vec4Tmp1[1] = winy;
vec4Tmp1[3] = 1.0f;
// Map x and y from window coordinates
vec4Tmp1[0] = (vec4Tmp1[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset];
vec4Tmp1[1] = (vec4Tmp1[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset];
// Map to range -1 to 1
vec4Tmp1[0] = vec4Tmp1[0] * 2 - 1;
vec4Tmp1[1] = vec4Tmp1[1] * 2 - 1;
//
// winz1
//
vec4Tmp1[2] = winz1;
vec4Tmp1[2] = vec4Tmp1[2] * 2 - 1;
// object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2
multMatrixVec(mat4PMvI, vec4Tmp1, vec4Tmp2);
if (vec4Tmp2[3] == 0.0) {
return false;
}
vec4Tmp2[3] = 1.0f / vec4Tmp2[3];
obj1_pos[0+obj1_pos_offset] = vec4Tmp2[0] * vec4Tmp2[3];
obj1_pos[1+obj1_pos_offset] = vec4Tmp2[1] * vec4Tmp2[3];
obj1_pos[2+obj1_pos_offset] = vec4Tmp2[2] * vec4Tmp2[3];
//
// winz2
//
vec4Tmp1[2] = winz2;
vec4Tmp1[2] = vec4Tmp1[2] * 2 - 1;
// object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2
multMatrixVec(mat4PMvI, vec4Tmp1, vec4Tmp2);
if (vec4Tmp2[3] == 0.0) {
return false;
}
vec4Tmp2[3] = 1.0f / vec4Tmp2[3];
obj2_pos[0+obj2_pos_offset] = vec4Tmp2[0] * vec4Tmp2[3];
obj2_pos[1+obj2_pos_offset] = vec4Tmp2[1] * vec4Tmp2[3];
obj2_pos[2+obj2_pos_offset] = vec4Tmp2[2] * vec4Tmp2[3];
return true;
}
/**
* Map window coordinates to object coordinates.
*
* Traditional gluUnProject4
implementation.
*
*
* @param winx
* @param winy
* @param winz
* @param clipw
* @param modelMatrix 4x4 modelview matrix
* @param modelMatrix_offset
* @param projMatrix 4x4 projection matrix
* @param projMatrix_offset
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param near
* @param far
* @param obj_pos 4 component object coordinate, the result
* @param obj_pos_offset
* @param mat4Tmp1 16 component matrix for temp storage
* @param mat4Tmp2 16 component matrix for temp storage
* @return true if successful, otherwise false (failed to invert matrix, or becomes infinity due to zero z)
*/
public static boolean mapWinToObjCoords(final float winx, final float winy, final float winz, final float clipw,
final float[] modelMatrix, final int modelMatrix_offset,
final float[] projMatrix, final int projMatrix_offset,
final int[] viewport, final int viewport_offset,
final float near, final float far,
final float[] obj_pos, final int obj_pos_offset,
final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2) {
// mat4Tmp1 = P x Mv
multMatrix(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, mat4Tmp1, 0);
// mat4Tmp1 = Inv(P x Mv)
if ( null == invertMatrix(mat4Tmp1, mat4Tmp1) ) {
return false;
}
mat4Tmp2[0] = winx;
mat4Tmp2[1] = winy;
mat4Tmp2[2] = winz;
mat4Tmp2[3] = 1.0f;
// Map x and y from window coordinates
mat4Tmp2[0] = (mat4Tmp2[0] - viewport[0+viewport_offset]) / viewport[2+viewport_offset];
mat4Tmp2[1] = (mat4Tmp2[1] - viewport[1+viewport_offset]) / viewport[3+viewport_offset];
mat4Tmp2[2] = (mat4Tmp2[2] - near) / (far - near);
// Map to range -1 to 1
mat4Tmp2[0] = mat4Tmp2[0] * 2 - 1;
mat4Tmp2[1] = mat4Tmp2[1] * 2 - 1;
mat4Tmp2[2] = mat4Tmp2[2] * 2 - 1;
final int raw_off = 4;
// object raw coords = Inv(P x Mv) * winPos -> mat4Tmp2
multMatrixVec(mat4Tmp1, 0, mat4Tmp2, 0, mat4Tmp2, raw_off);
if (mat4Tmp2[3+raw_off] == 0.0) {
return false;
}
mat4Tmp2[3+raw_off] = 1.0f / mat4Tmp2[3+raw_off];
obj_pos[0+obj_pos_offset] = mat4Tmp2[0+raw_off];
obj_pos[1+obj_pos_offset] = mat4Tmp2[1+raw_off];
obj_pos[2+obj_pos_offset] = mat4Tmp2[2+raw_off];
obj_pos[3+obj_pos_offset] = mat4Tmp2[3+raw_off];
return true;
}
/**
* Map two window coordinates w/ shared X/Y and distinctive Z
* to a {@link Ray}. The resulting {@link Ray} maybe used for picking
* using a {@link AABBox#getRayIntersection(Ray, float[]) bounding box}.
*
* Notes for picking winz0 and winz1:
*
* - see {@link #getZBufferEpsilon(int, float, float)}
* - see {@link #getZBufferValue(int, float, float, float)}
* - see {@link #getOrthoWinZ(float, float, float)}
*
*
* @param winx
* @param winy
* @param winz0
* @param winz1
* @param modelMatrix 4x4 modelview matrix
* @param modelMatrix_offset
* @param projMatrix 4x4 projection matrix
* @param projMatrix_offset
* @param viewport 4 component viewport vector
* @param viewport_offset
* @param ray storage for the resulting {@link Ray}
* @param mat4Tmp1 16 component matrix for temp storage
* @param mat4Tmp2 16 component matrix for temp storage
* @param vec4Tmp2 4 component vector for temp storage
* @return true if successful, otherwise false (failed to invert matrix, or becomes z is infinity)
*/
public static boolean mapWinToRay(final float winx, final float winy, final float winz0, final float winz1,
final float[] modelMatrix, final int modelMatrix_offset,
final float[] projMatrix, final int projMatrix_offset,
final int[] viewport, final int viewport_offset,
final Ray ray,
final float[/*16*/] mat4Tmp1, final float[/*16*/] mat4Tmp2, final float[/*4*/] vec4Tmp2) {
// mat4Tmp1 = P x Mv
multMatrix(projMatrix, projMatrix_offset, modelMatrix, modelMatrix_offset, mat4Tmp1, 0);
// mat4Tmp1 = Inv(P x Mv)
if ( null == invertMatrix(mat4Tmp1, mat4Tmp1) ) {
return false;
}
if( mapWinToObjCoords(winx, winy, winz0, winz1, mat4Tmp1,
viewport, viewport_offset,
ray.orig, 0, ray.dir, 0,
mat4Tmp2, vec4Tmp2) ) {
VectorUtil.normalizeVec3( VectorUtil.subVec3(ray.dir, ray.dir, ray.orig) );
return true;
} else {
return false;
}
}
/**
* Multiply matrix: [d] = [a] x [b]
* @param a 4x4 matrix in column-major order
* @param b 4x4 matrix in column-major order
* @param d result a*b in column-major order
* @return given result matrix d for chaining
*/
public static float[] multMatrix(final float[] a, final int a_off, final float[] b, final int b_off, final float[] d, final int d_off) {
final float b00 = b[b_off+0+0*4];
final float b10 = b[b_off+1+0*4];
final float b20 = b[b_off+2+0*4];
final float b30 = b[b_off+3+0*4];
final float b01 = b[b_off+0+1*4];
final float b11 = b[b_off+1+1*4];
final float b21 = b[b_off+2+1*4];
final float b31 = b[b_off+3+1*4];
final float b02 = b[b_off+0+2*4];
final float b12 = b[b_off+1+2*4];
final float b22 = b[b_off+2+2*4];
final float b32 = b[b_off+3+2*4];
final float b03 = b[b_off+0+3*4];
final float b13 = b[b_off+1+3*4];
final float b23 = b[b_off+2+3*4];
final float b33 = b[b_off+3+3*4];
float ai0=a[a_off+ 0*4]; // row-0 of a
float ai1=a[a_off+ 1*4];
float ai2=a[a_off+ 2*4];
float ai3=a[a_off+ 3*4];
d[d_off+ 0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[d_off+ 1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[d_off+ 2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[d_off+ 3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[a_off+1+0*4]; // row-1 of a
ai1=a[a_off+1+1*4];
ai2=a[a_off+1+2*4];
ai3=a[a_off+1+3*4];
d[d_off+1+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[d_off+1+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[d_off+1+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[d_off+1+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[a_off+2+0*4]; // row-2 of a
ai1=a[a_off+2+1*4];
ai2=a[a_off+2+2*4];
ai3=a[a_off+2+3*4];
d[d_off+2+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[d_off+2+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[d_off+2+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[d_off+2+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[a_off+3+0*4]; // row-3 of a
ai1=a[a_off+3+1*4];
ai2=a[a_off+3+2*4];
ai3=a[a_off+3+3*4];
d[d_off+3+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[d_off+3+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[d_off+3+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[d_off+3+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
return d;
}
/**
* Multiply matrix: [d] = [a] x [b]
* @param a 4x4 matrix in column-major order
* @param b 4x4 matrix in column-major order
* @param d result a*b in column-major order
* @return given result matrix d for chaining
*/
public static float[] multMatrix(final float[] a, final float[] b, final float[] d) {
final float b00 = b[0+0*4];
final float b10 = b[1+0*4];
final float b20 = b[2+0*4];
final float b30 = b[3+0*4];
final float b01 = b[0+1*4];
final float b11 = b[1+1*4];
final float b21 = b[2+1*4];
final float b31 = b[3+1*4];
final float b02 = b[0+2*4];
final float b12 = b[1+2*4];
final float b22 = b[2+2*4];
final float b32 = b[3+2*4];
final float b03 = b[0+3*4];
final float b13 = b[1+3*4];
final float b23 = b[2+3*4];
final float b33 = b[3+3*4];
float ai0=a[ 0*4]; // row-0 of a
float ai1=a[ 1*4];
float ai2=a[ 2*4];
float ai3=a[ 3*4];
d[ 0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[ 1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[ 2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[ 3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[1+0*4]; // row-1 of a
ai1=a[1+1*4];
ai2=a[1+2*4];
ai3=a[1+3*4];
d[1+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[1+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[1+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[1+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[2+0*4]; // row-2 of a
ai1=a[2+1*4];
ai2=a[2+2*4];
ai3=a[2+3*4];
d[2+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[2+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[2+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[2+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[3+0*4]; // row-3 of a
ai1=a[3+1*4];
ai2=a[3+2*4];
ai3=a[3+3*4];
d[3+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
d[3+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
d[3+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
d[3+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
return d;
}
/**
* Multiply matrix: [a] = [a] x [b]
* @param a 4x4 matrix in column-major order (also result)
* @param b 4x4 matrix in column-major order
* @return given result matrix a for chaining
*/
public static float[] multMatrix(final float[] a, final int a_off, final float[] b, final int b_off) {
final float b00 = b[b_off+0+0*4];
final float b10 = b[b_off+1+0*4];
final float b20 = b[b_off+2+0*4];
final float b30 = b[b_off+3+0*4];
final float b01 = b[b_off+0+1*4];
final float b11 = b[b_off+1+1*4];
final float b21 = b[b_off+2+1*4];
final float b31 = b[b_off+3+1*4];
final float b02 = b[b_off+0+2*4];
final float b12 = b[b_off+1+2*4];
final float b22 = b[b_off+2+2*4];
final float b32 = b[b_off+3+2*4];
final float b03 = b[b_off+0+3*4];
final float b13 = b[b_off+1+3*4];
final float b23 = b[b_off+2+3*4];
final float b33 = b[b_off+3+3*4];
float ai0=a[a_off+ 0*4]; // row-0 of a
float ai1=a[a_off+ 1*4];
float ai2=a[a_off+ 2*4];
float ai3=a[a_off+ 3*4];
a[a_off+ 0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[a_off+ 1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[a_off+ 2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[a_off+ 3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[a_off+1+0*4]; // row-1 of a
ai1=a[a_off+1+1*4];
ai2=a[a_off+1+2*4];
ai3=a[a_off+1+3*4];
a[a_off+1+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[a_off+1+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[a_off+1+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[a_off+1+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[a_off+2+0*4]; // row-2 of a
ai1=a[a_off+2+1*4];
ai2=a[a_off+2+2*4];
ai3=a[a_off+2+3*4];
a[a_off+2+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[a_off+2+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[a_off+2+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[a_off+2+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[a_off+3+0*4]; // row-3 of a
ai1=a[a_off+3+1*4];
ai2=a[a_off+3+2*4];
ai3=a[a_off+3+3*4];
a[a_off+3+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[a_off+3+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[a_off+3+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[a_off+3+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
return a;
}
/**
* Multiply matrix: [a] = [a] x [b]
* @param a 4x4 matrix in column-major order (also result)
* @param b 4x4 matrix in column-major order
* @return given result matrix a for chaining
*/
public static float[] multMatrix(final float[] a, final float[] b) {
final float b00 = b[0+0*4];
final float b10 = b[1+0*4];
final float b20 = b[2+0*4];
final float b30 = b[3+0*4];
final float b01 = b[0+1*4];
final float b11 = b[1+1*4];
final float b21 = b[2+1*4];
final float b31 = b[3+1*4];
final float b02 = b[0+2*4];
final float b12 = b[1+2*4];
final float b22 = b[2+2*4];
final float b32 = b[3+2*4];
final float b03 = b[0+3*4];
final float b13 = b[1+3*4];
final float b23 = b[2+3*4];
final float b33 = b[3+3*4];
float ai0=a[ 0*4]; // row-0 of a
float ai1=a[ 1*4];
float ai2=a[ 2*4];
float ai3=a[ 3*4];
a[ 0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[ 1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[ 2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[ 3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[1+0*4]; // row-1 of a
ai1=a[1+1*4];
ai2=a[1+2*4];
ai3=a[1+3*4];
a[1+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[1+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[1+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[1+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[2+0*4]; // row-2 of a
ai1=a[2+1*4];
ai2=a[2+2*4];
ai3=a[2+3*4];
a[2+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[2+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[2+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[2+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
ai0=a[3+0*4]; // row-3 of a
ai1=a[3+1*4];
ai2=a[3+2*4];
ai3=a[3+3*4];
a[3+0*4] = ai0 * b00 + ai1 * b10 + ai2 * b20 + ai3 * b30 ;
a[3+1*4] = ai0 * b01 + ai1 * b11 + ai2 * b21 + ai3 * b31 ;
a[3+2*4] = ai0 * b02 + ai1 * b12 + ai2 * b22 + ai3 * b32 ;
a[3+3*4] = ai0 * b03 + ai1 * b13 + ai2 * b23 + ai3 * b33 ;
return a;
}
/**
* Multiply matrix: [d] = [a] x [b]
* @param a 4x4 matrix in column-major order
* @param b 4x4 matrix in column-major order
* @param d result a*b in column-major order
* @deprecated use on of the float[] variants
*/
public static void multMatrix(final FloatBuffer a, final FloatBuffer b, final float[] d) {
final int a_off = a.position();
final int b_off = b.position();
for (int i = 0; i < 4; i++) {
// one row in column-major order
final int a_off_i = a_off+i;
final float ai0=a.get(a_off_i+0*4), ai1=a.get(a_off_i+1*4), ai2=a.get(a_off_i+2*4), ai3=a.get(a_off_i+3*4); // row-i of a
d[i+0*4] = ai0 * b.get(b_off+0+0*4) + ai1 * b.get(b_off+1+0*4) + ai2 * b.get(b_off+2+0*4) + ai3 * b.get(b_off+3+0*4) ;
d[i+1*4] = ai0 * b.get(b_off+0+1*4) + ai1 * b.get(b_off+1+1*4) + ai2 * b.get(b_off+2+1*4) + ai3 * b.get(b_off+3+1*4) ;
d[i+2*4] = ai0 * b.get(b_off+0+2*4) + ai1 * b.get(b_off+1+2*4) + ai2 * b.get(b_off+2+2*4) + ai3 * b.get(b_off+3+2*4) ;
d[i+3*4] = ai0 * b.get(b_off+0+3*4) + ai1 * b.get(b_off+1+3*4) + ai2 * b.get(b_off+2+3*4) + ai3 * b.get(b_off+3+3*4) ;
}
}
/**
* Multiply matrix: [a] = [a] x [b]
* @param a 4x4 matrix in column-major order (also result)
* @param b 4x4 matrix in column-major order
* @deprecated use on of the float[] variants
*/
public static void multMatrix(final FloatBuffer a, final FloatBuffer b) {
final int a_off = a.position();
final int b_off = b.position();
for (int i = 0; i < 4; i++) {
// one row in column-major order
final int a_off_i = a_off+i;
final float ai0=a.get(a_off_i+0*4), ai1=a.get(a_off_i+1*4), ai2=a.get(a_off_i+2*4), ai3=a.get(a_off_i+3*4); // row-i of a
a.put(a_off_i+0*4 , ai0 * b.get(b_off+0+0*4) + ai1 * b.get(b_off+1+0*4) + ai2 * b.get(b_off+2+0*4) + ai3 * b.get(b_off+3+0*4) );
a.put(a_off_i+1*4 , ai0 * b.get(b_off+0+1*4) + ai1 * b.get(b_off+1+1*4) + ai2 * b.get(b_off+2+1*4) + ai3 * b.get(b_off+3+1*4) );
a.put(a_off_i+2*4 , ai0 * b.get(b_off+0+2*4) + ai1 * b.get(b_off+1+2*4) + ai2 * b.get(b_off+2+2*4) + ai3 * b.get(b_off+3+2*4) );
a.put(a_off_i+3*4 , ai0 * b.get(b_off+0+3*4) + ai1 * b.get(b_off+1+3*4) + ai2 * b.get(b_off+2+3*4) + ai3 * b.get(b_off+3+3*4) );
}
}
/**
* @param m_in 4x4 matrix in column-major order
* @param m_in_off
* @param v_in 4-component column-vector
* @param v_out m_in * v_in
* @return given result vector v_out for chaining
*/
public static float[] multMatrixVec(final float[] m_in, final int m_in_off,
final float[] v_in, final int v_in_off,
final float[] v_out, final int v_out_off) {
// (one matrix row in column-major order) X (column vector)
v_out[0 + v_out_off] = v_in[0+v_in_off] * m_in[0*4+m_in_off ] + v_in[1+v_in_off] * m_in[1*4+m_in_off ] +
v_in[2+v_in_off] * m_in[2*4+m_in_off ] + v_in[3+v_in_off] * m_in[3*4+m_in_off ];
final int m_in_off_1 = 1+m_in_off;
v_out[1 + v_out_off] = v_in[0+v_in_off] * m_in[0*4+m_in_off_1] + v_in[1+v_in_off] * m_in[1*4+m_in_off_1] +
v_in[2+v_in_off] * m_in[2*4+m_in_off_1] + v_in[3+v_in_off] * m_in[3*4+m_in_off_1];
final int m_in_off_2 = 2+m_in_off;
v_out[2 + v_out_off] = v_in[0+v_in_off] * m_in[0*4+m_in_off_2] + v_in[1+v_in_off] * m_in[1*4+m_in_off_2] +
v_in[2+v_in_off] * m_in[2*4+m_in_off_2] + v_in[3+v_in_off] * m_in[3*4+m_in_off_2];
final int m_in_off_3 = 3+m_in_off;
v_out[3 + v_out_off] = v_in[0+v_in_off] * m_in[0*4+m_in_off_3] + v_in[1+v_in_off] * m_in[1*4+m_in_off_3] +
v_in[2+v_in_off] * m_in[2*4+m_in_off_3] + v_in[3+v_in_off] * m_in[3*4+m_in_off_3];
return v_out;
}
/**
* @param m_in 4x4 matrix in column-major order
* @param m_in_off
* @param v_in 4-component column-vector
* @param v_out m_in * v_in
* @return given result vector v_out for chaining
*/
public static float[] multMatrixVec(final float[] m_in, final float[] v_in, final float[] v_out) {
// (one matrix row in column-major order) X (column vector)
v_out[0] = v_in[0] * m_in[0*4 ] + v_in[1] * m_in[1*4 ] +
v_in[2] * m_in[2*4 ] + v_in[3] * m_in[3*4 ];
v_out[1] = v_in[0] * m_in[0*4+1] + v_in[1] * m_in[1*4+1] +
v_in[2] * m_in[2*4+1] + v_in[3] * m_in[3*4+1];
v_out[2] = v_in[0] * m_in[0*4+2] + v_in[1] * m_in[1*4+2] +
v_in[2] * m_in[2*4+2] + v_in[3] * m_in[3*4+2];
v_out[3] = v_in[0] * m_in[0*4+3] + v_in[1] * m_in[1*4+3] +
v_in[2] * m_in[2*4+3] + v_in[3] * m_in[3*4+3];
return v_out;
}
/**
* @param m_in 4x4 matrix in column-major order
* @param v_in 4-component column-vector
* @param v_out m_in * v_in
* @deprecated use on of the float[] variants
*/
public static void multMatrixVec(final FloatBuffer m_in, final float[] v_in, final float[] v_out) {
final int m_in_off = m_in.position();
for (int i = 0; i < 4; i++) {
// (one matrix row in column-major order) X (column vector)
final int i_m_in_off = i+m_in_off;
v_out[i] =
v_in[0] * m_in.get(0*4+i_m_in_off) +
v_in[1] * m_in.get(1*4+i_m_in_off) +
v_in[2] * m_in.get(2*4+i_m_in_off) +
v_in[3] * m_in.get(3*4+i_m_in_off);
}
}
/**
* Copy the named column of the given column-major matrix to v_out.
*
* v_out may be 3 or 4 components long, hence the 4th row may not be stored.
*
* @param m_in input column-major matrix
* @param m_in_off offset to input matrix
* @param column named column to copy
* @param v_out the column-vector storage, at least 3 components long
* @param v_out_off offset to storage
* @return given result vector v_out for chaining
*/
public static float[] copyMatrixColumn(final float[] m_in, final int m_in_off, final int column, final float[] v_out, final int v_out_off) {
v_out[0+v_out_off]=m_in[0+column*4+m_in_off];
v_out[1+v_out_off]=m_in[1+column*4+m_in_off];
v_out[2+v_out_off]=m_in[2+column*4+m_in_off];
if( v_out.length > 3+v_out_off ) {
v_out[3+v_out_off]=m_in[3+column*4+m_in_off];
}
return v_out;
}
/**
* Copy the named row of the given column-major matrix to v_out.
*
* v_out may be 3 or 4 components long, hence the 4th column may not be stored.
*
* @param m_in input column-major matrix
* @param m_in_off offset to input matrix
* @param row named row to copy
* @param v_out the row-vector storage, at least 3 components long
* @param v_out_off offset to storage
* @return given result vector v_out for chaining
*/
public static float[] copyMatrixRow(final float[] m_in, final int m_in_off, final int row, final float[] v_out, final int v_out_off) {
v_out[0+v_out_off]=m_in[row+0*4+m_in_off];
v_out[1+v_out_off]=m_in[row+1*4+m_in_off];
v_out[2+v_out_off]=m_in[row+2*4+m_in_off];
if( v_out.length > 3+v_out_off ) {
v_out[3+v_out_off]=m_in[row+3*4+m_in_off];
}
return v_out;
}
/**
* @param sb optional passed StringBuilder instance to be used
* @param f the format string of one floating point, i.e. "%10.5f", see {@link java.util.Formatter}
* @param a mxn matrix (rows x columns)
* @param aOffset offset to a
's current position
* @param rows
* @param columns
* @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
* @param row row number to print
* @return matrix row string representation
* @deprecated use on of the float[] variants
*/
public static StringBuilder matrixRowToString(StringBuilder sb, final String f,
final FloatBuffer a, final int aOffset,
final int rows, final int columns, final boolean rowMajorOrder, final int row) {
if(null == sb) {
sb = new StringBuilder();
}
final int a0 = aOffset + a.position();
if(rowMajorOrder) {
for(int c=0; ca's current position
* @param rows
* @param columns
* @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
* @param row row number to print
* @return matrix row string representation
*/
public static StringBuilder matrixRowToString(StringBuilder sb, final String f,
final float[] a, final int aOffset, final int rows, final int columns, final boolean rowMajorOrder, final int row) {
if(null == sb) {
sb = new StringBuilder();
}
if(rowMajorOrder) {
for(int c=0; ca's current position
* @param rows
* @param columns
* @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
* @return matrix string representation
* @deprecated use on of the float[] variants
*/
public static StringBuilder matrixToString(StringBuilder sb, final String rowPrefix, final String f,
final FloatBuffer a, final int aOffset, final int rows, final int columns, final boolean rowMajorOrder) {
if(null == sb) {
sb = new StringBuilder();
}
final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
for(int i=0; ia's current position
* @param rows
* @param columns
* @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
* @return matrix string representation
*/
public static StringBuilder matrixToString(StringBuilder sb, final String rowPrefix, final String f,
final float[] a, final int aOffset, final int rows, final int columns, final boolean rowMajorOrder) {
if(null == sb) {
sb = new StringBuilder();
}
final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
for(int i=0; ia's current position
* @param b 4x4 matrix in column major order (OpenGL)
* @param bOffset offset to a
's current position
* @param rows
* @param columns
* @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
* @return side by side representation
* @deprecated use on of the float[] variants
*/
public static StringBuilder matrixToString(StringBuilder sb, final String rowPrefix, final String f,
final FloatBuffer a, final int aOffset, final FloatBuffer b, final int bOffset,
final int rows, final int columns, final boolean rowMajorOrder) {
if(null == sb) {
sb = new StringBuilder();
}
final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
for(int i=0; ia's current position
* @param b 4x4 matrix in column major order (OpenGL)
* @param bOffset offset to a
's current position
* @param rows
* @param columns
* @param rowMajorOrder if true floats are layed out in row-major-order, otherwise column-major-order (OpenGL)
* @return side by side representation
*/
public static StringBuilder matrixToString(StringBuilder sb, final String rowPrefix, final String f,
final float[] a, final int aOffset, final float[] b, final int bOffset,
final int rows, final int columns, final boolean rowMajorOrder) {
if(null == sb) {
sb = new StringBuilder();
}
final String prefix = ( null == rowPrefix ) ? "" : rowPrefix;
for(int i=0; i
* The machine Epsilon value is computed once.
*
*
* On a reference machine the result was {@link #EPSILON} in 23 iterations.
*
* @see #EPSILON
*/
public static float getMachineEpsilon() {
if( !machEpsilonAvail ) {
synchronized(FloatUtil.class) {
if( !machEpsilonAvail ) {
machEpsilonAvail = true;
calculateMachineEpsilonFloat();
}
}
}
return machEpsilon;
}
public static final float E = 2.7182818284590452354f;
/** The value PI, i.e. 180 degrees in radians. */
public static final float PI = 3.14159265358979323846f;
/** The value 2PI, i.e. 360 degrees in radians. */
public static final float TWO_PI = 2f * PI;
/** The value PI/2, i.e. 90 degrees in radians. */
public static final float HALF_PI = PI / 2f;
/** The value PI/4, i.e. 45 degrees in radians. */
public static final float QUARTER_PI = PI / 4f;
/** The value PI^2. */
public final static float SQUARED_PI = PI * PI;
/**
* Epsilon for floating point {@value}, as once computed via {@link #getMachineEpsilon()} on an AMD-64 CPU.
*
* Definition of machine epsilon guarantees that:
*
* 1.0f + EPSILON != 1.0f
*
* In other words: machEps is the maximum relative error of the chosen rounding procedure.
*
*
* A number can be considered zero if it is in the range (or in the set):
*
* MaybeZeroSet e ]-machEps .. machEps[ (exclusive)
*
* While comparing floating point values, machEps allows to clip the relative error:
*
* boolean isZero = afloat < EPSILON;
* boolean isNotZero = afloat >= EPSILON;
*
* boolean isEqual = abs(bfloat - afloat) < EPSILON;
* boolean isNotEqual = abs(bfloat - afloat) >= EPSILON;
*
*
* @see #isEqual(float, float, float)
* @see #isZero(float, float)
*/
public static final float EPSILON = 1.1920929E-7f; // Float.MIN_VALUE == 1.4e-45f ; double EPSILON 2.220446049250313E-16d
/**
* Inversion Epsilon, used with equals method to determine if two inverted matrices are close enough to be considered equal.
*
* Using {@value}, which is ~100 times {@link FloatUtil#EPSILON}.
*
*/
public static final float INV_DEVIANCE = 1.0E-5f; // FloatUtil.EPSILON == 1.1920929E-7f; double ALLOWED_DEVIANCE: 1.0E-8f
/**
* Return true if both values are equal w/o regarding an epsilon.
*
* Implementation considers following corner cases:
*
* - NaN == NaN
* - +Inf == +Inf
* - -Inf == -Inf
*
*
* @see #isEqual(float, float, float)
*/
public static boolean isEqual(final float a, final float b) {
// Values are equal (Inf, Nan .. )
return Float.floatToIntBits(a) == Float.floatToIntBits(b);
}
/**
* Return true if both values are equal, i.e. their absolute delta < epsilon
.
*
* Implementation considers following corner cases:
*
* - NaN == NaN
* - +Inf == +Inf
* - -Inf == -Inf
*
*
* @see #EPSILON
*/
public static boolean isEqual(final float a, final float b, final float epsilon) {
if ( Math.abs(a - b) < epsilon ) {
return true;
} else {
// Values are equal (Inf, Nan .. )
return Float.floatToIntBits(a) == Float.floatToIntBits(b);
}
}
/**
* Return true if both values are equal w/o regarding an epsilon.
*
* Implementation considers following corner cases:
*
* - NaN == NaN
* - +Inf == +Inf
* - -Inf == -Inf
* - NaN > 0
* - +Inf > -Inf
*
*
* @see #compare(float, float, float)
*/
public static int compare(final float a, final float b) {
if (a < b) {
return -1; // Neither is NaN, a is smaller
}
if (a > b) {
return 1; // Neither is NaN, a is larger
}
final int aBits = Float.floatToIntBits(a);
final int bBits = Float.floatToIntBits(b);
if( aBits == bBits ) {
return 0; // Values are equal (Inf, Nan .. )
} else if( aBits < bBits ) {
return -1; // (-0.0, 0.0) or (!NaN, NaN)
} else {
return 1; // ( 0.0, -0.0) or ( NaN, !NaN)
}
}
/**
* Return true if both values are equal, i.e. their absolute delta < epsilon
.
*
* Implementation considers following corner cases:
*
* - NaN == NaN
* - +Inf == +Inf
* - -Inf == -Inf
* - NaN > 0
* - +Inf > -Inf
*
*
* @see #EPSILON
*/
public static int compare(final float a, final float b, final float epsilon) {
if ( Math.abs(a - b) < epsilon ) {
return 0;
} else {
return compare(a, b);
}
}
/**
* Return true if value is zero, i.e. it's absolute value < epsilon
.
* @see #EPSILON
*/
public static boolean isZero(final float a, final float epsilon) {
return Math.abs(a) < epsilon;
}
public static float abs(final float a) { return java.lang.Math.abs(a); }
public static float pow(final float a, final float b) { return (float) java.lang.Math.pow(a, b); }
public static float sin(final float a) { return (float) java.lang.Math.sin(a); }
public static float asin(final float a) { return (float) java.lang.Math.asin(a); }
public static float cos(final float a) { return (float) java.lang.Math.cos(a); }
public static float acos(final float a) { return (float) java.lang.Math.acos(a); }
public static float tan(final float a) { return (float) java.lang.Math.tan(a); }
public static float atan(final float a) { return (float) java.lang.Math.atan(a); }
public static float atan2(final float y, final float x) { return (float) java.lang.Math.atan2(y, x); }
public static float sqrt(final float a) { return (float) java.lang.Math.sqrt(a); }
/**
* Returns resolution of Z buffer of given parameter,
* see Love Your Z-Buffer.
*
* return z * z / ( zNear * (1<<zBits) - z )
*
* @param zBits number of bits of Z precision, i.e. z-buffer depth
* @param z distance from the eye to the object
* @param zNear distance from eye to near clip plane
* @return smallest resolvable Z separation at this range.
*/
public static float getZBufferEpsilon(final int zBits, final float z, final float zNear) {
return z * z / ( zNear * ( 1 << zBits ) - z );
}
/**
* Returns Z buffer value of given parameter,
* see Love Your Z-Buffer.
*
* float a = zFar / ( zFar - zNear )
* float b = zFar * zNear / ( zNear - zFar )
* return (int) ( (1<<zBits) * ( a + b / z ) )
*
* @param zBits number of bits of Z precision, i.e. z-buffer depth
* @param z distance from the eye to the object
* @param zNear distance from eye to near clip plane
* @param zFar distance from eye to far clip plane
* @return z buffer value
*/
public static int getZBufferValue(final int zBits, final float z, final float zNear, final float zFar) {
final float a = zFar / ( zFar - zNear );
final float b = zFar * zNear / ( zNear - zFar );
return (int) ( (1<