/** * Copyright 2010 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those of the * authors and should not be interpreted as representing official policies, either expressed * or implied, of JogAmp Community. */ package com.jogamp.opengl.math.geom; import com.jogamp.common.os.Platform; /** * Providing frustum {@link #getPlanes() planes} derived by different inputs * ({@link #updateByPMV(float[], int) P*MV}, ..) * used to {@link #classifySphere(float[], float) classify objects} and to test * whether they are {@link #isOutside(AABBox) outside}. * *

* Extracting the world-frustum planes from the P*Mv: *

 * Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
 *   Gil Gribb 
 *   Klaus Hartmann 
 *   http://graphics.cs.ucf.edu/cap4720/fall2008/plane_extraction.pdf
 * 
* Classifying Point, Sphere and AABBox: *
 * Efficient View Frustum Culling
 *   Daniel Sýkora 
 *   Josef Jelínek 
 *   http://www.cg.tuwien.ac.at/hostings/cescg/CESCG-2002/DSykoraJJelinek/index.html
 * 
*
 * Lighthouse3d.com
 * http://www.lighthouse3d.com/tutorials/view-frustum-culling/
 * 
* * Fundamentals about Planes, Half-Spaces and Frustum-Culling:
*
 * Planes and Half-Spaces,  Max Wagner 
 * http://www.emeyex.com/site/tuts/PlanesHalfSpaces.pdf
 * 
*
 * Frustum Culling,  Max Wagner 
 * http://www.emeyex.com/site/tuts/FrustumCulling.pdf
 * 
*

*/ public class Frustum { /** Normalized planes[l, r, b, t, n, f] */ protected Plane[] planes = new Plane[6]; /** * Creates an undefined instance w/o calculating the frustum. *

* Use one of the update(..) methods to set the {@link #getPlanes() planes}. *

* @see #updateByPlanes(Plane[]) * @see #updateByPMV(float[], int) */ public Frustum() { for (int i = 0; i < 6; ++i) { planes[i] = new Plane(); } } /** * Plane equation := dot(n, x - p) = 0 -> ax + bc + cx + d == 0 *

* In order to work w/ {@link Frustum#isOutside(AABBox) isOutside(..)} methods, * the normals have to point to the inside of the frustum. *

*/ public static class Plane { /** Normal of the plane */ public final float[] n = new float[3]; /** Distance to origin */ public float d; /** * Return signed distance of plane to given point. * * A plane cuts 3D space into 2 half spaces. *

* Positive halfspace is where the plane’s normals vector points into. *

*

* Negative halfspace is the other side of the plane, i.e. *-1 *

**/ public final float distanceTo(float x, float y, float z) { return n[0] * x + n[1] * y + n[2] * z + d; } /** Return distance of plane to given point, see {@link #distanceTo(float, float, float)}. */ public final float distanceTo(float[] p) { return n[0] * p[0] + n[1] * p[1] + n[2] * p[2] + d; } @Override public String toString() { return "Plane[ [ " + n[0] + ", " + n[1] + ", " + n[2] + " ], " + d + "]"; } } /** Index for left plane: {@value} */ public static final int LEFT = 0; /** Index for right plane: {@value} */ public static final int RIGHT = 1; /** Index for bottom plane: {@value} */ public static final int BOTTOM = 2; /** Index for top plane: {@value} */ public static final int TOP = 3; /** Index for near plane: {@value} */ public static final int NEAR = 4; /** Index for far plane: {@value} */ public static final int FAR = 5; /** * {@link Plane}s are ordered in the returned array as follows: * *

* {@link Plane}'s normals are pointing to the inside of the frustum * in order to work w/ {@link #isOutside(AABBox) isOutside(..)} methods. *

* * @return array of normalized {@link Plane}s, order see above. */ public final Plane[] getPlanes() { return planes; } /** * Copy the given src planes into this this instance's planes. * @param src the 6 source planes */ public final void updateByPlanes(Plane[] src) { for (int i = 0; i < 6; ++i) { final Plane p0 = planes[i]; final float[] p0_n = p0.n; final Plane p1 = src[i]; final float[] p1_n = p1.n; p0_n[0] = p1_n[0]; p0_n[1] = p1_n[1]; p0_n[2] = p1_n[2]; p0.d = p1.d; } } /** * Calculate the frustum planes in world coordinates * using the passed float[16] as premultiplied P*MV (column major order). *

* Frustum plane's normals will point to the inside of the viewing frustum, * as required by this class. *

*/ public void updateByPMV(float[] pmv, int pmv_off) { // Left: a = m41 + m11, b = m42 + m12, c = m43 + m13, d = m44 + m14 - [1..4] row-major // Left: a = m30 + m00, b = m31 + m01, c = m32 + m02, d = m33 + m03 - [0..3] row-major { final Plane p = planes[LEFT]; final float[] p_n = p.n; p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] + pmv[ pmv_off + 0 + 0 * 4 ]; p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] + pmv[ pmv_off + 0 + 1 * 4 ]; p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] + pmv[ pmv_off + 0 + 2 * 4 ]; p.d = pmv[ pmv_off + 3 + 3 * 4 ] + pmv[ pmv_off + 0 + 3 * 4 ]; } // Right: a = m41 - m11, b = m42 - m12, c = m43 - m13, d = m44 - m14 - [1..4] row-major // Right: a = m30 - m00, b = m31 - m01, c = m32 - m02, d = m33 - m03 - [0..3] row-major { final Plane p = planes[RIGHT]; final float[] p_n = p.n; p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] - pmv[ pmv_off + 0 + 0 * 4 ]; p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] - pmv[ pmv_off + 0 + 1 * 4 ]; p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] - pmv[ pmv_off + 0 + 2 * 4 ]; p.d = pmv[ pmv_off + 3 + 3 * 4 ] - pmv[ pmv_off + 0 + 3 * 4 ]; } // Bottom: a = m41 + m21, b = m42 + m22, c = m43 + m23, d = m44 + m24 - [1..4] row-major // Bottom: a = m30 + m10, b = m31 + m11, c = m32 + m12, d = m33 + m13 - [0..3] row-major { final Plane p = planes[BOTTOM]; final float[] p_n = p.n; p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] + pmv[ pmv_off + 1 + 0 * 4 ]; p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] + pmv[ pmv_off + 1 + 1 * 4 ]; p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] + pmv[ pmv_off + 1 + 2 * 4 ]; p.d = pmv[ pmv_off + 3 + 3 * 4 ] + pmv[ pmv_off + 1 + 3 * 4 ]; } // Top: a = m41 - m21, b = m42 - m22, c = m43 - m23, d = m44 - m24 - [1..4] row-major // Top: a = m30 - m10, b = m31 - m11, c = m32 - m12, d = m33 - m13 - [0..3] row-major { final Plane p = planes[TOP]; final float[] p_n = p.n; p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] - pmv[ pmv_off + 1 + 0 * 4 ]; p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] - pmv[ pmv_off + 1 + 1 * 4 ]; p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] - pmv[ pmv_off + 1 + 2 * 4 ]; p.d = pmv[ pmv_off + 3 + 3 * 4 ] - pmv[ pmv_off + 1 + 3 * 4 ]; } // Near: a = m41 + m31, b = m42 + m32, c = m43 + m33, d = m44 + m34 - [1..4] row-major // Near: a = m30 + m20, b = m31 + m21, c = m32 + m22, d = m33 + m23 - [0..3] row-major { final Plane p = planes[NEAR]; final float[] p_n = p.n; p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] + pmv[ pmv_off + 2 + 0 * 4 ]; p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] + pmv[ pmv_off + 2 + 1 * 4 ]; p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] + pmv[ pmv_off + 2 + 2 * 4 ]; p.d = pmv[ pmv_off + 3 + 3 * 4 ] + pmv[ pmv_off + 2 + 3 * 4 ]; } // Far: a = m41 - m31, b = m42 - m32, c = m43 - m33, d = m44 - m34 - [1..4] row-major // Far: a = m30 - m20, b = m31 - m21, c = m32 + m22, d = m33 + m23 - [0..3] row-major { final Plane p = planes[FAR]; final float[] p_n = p.n; p_n[0] = pmv[ pmv_off + 3 + 0 * 4 ] - pmv[ pmv_off + 2 + 0 * 4 ]; p_n[1] = pmv[ pmv_off + 3 + 1 * 4 ] - pmv[ pmv_off + 2 + 1 * 4 ]; p_n[2] = pmv[ pmv_off + 3 + 2 * 4 ] - pmv[ pmv_off + 2 + 2 * 4 ]; p.d = pmv[ pmv_off + 3 + 3 * 4 ] - pmv[ pmv_off + 2 + 3 * 4 ]; } // Normalize all planes for (int i = 0; i < 6; ++i) { final Plane p = planes[i]; final float[] p_n = p.n; final double invl = Math.sqrt(p_n[0] * p_n[0] + p_n[1] * p_n[1] + p_n[2] * p_n[2]); p_n[0] /= invl; p_n[1] /= invl; p_n[2] /= invl; p.d /= invl; } } private static final boolean isOutsideImpl(Plane p, AABBox box) { final float[] low = box.getLow(); final float[] high = box.getHigh(); if ( p.distanceTo(low[0], low[1], low[2]) > 0.0f || p.distanceTo(high[0], low[1], low[2]) > 0.0f || p.distanceTo(low[0], high[1], low[2]) > 0.0f || p.distanceTo(high[0], high[1], low[2]) > 0.0f || p.distanceTo(low[0], low[1], high[2]) > 0.0f || p.distanceTo(high[0], low[1], high[2]) > 0.0f || p.distanceTo(low[0], high[1], high[2]) > 0.0f || p.distanceTo(high[0], high[1], high[2]) > 0.0f ) { return false; } return true; } /** * Check to see if an axis aligned bounding box is completely outside of the frustum. *

* Note: If method returns false, the box may only be partially inside. *

*/ public final boolean isAABBoxOutside(AABBox box) { for (int i = 0; i < 6; ++i) { if ( isOutsideImpl(planes[i], box) ) { // fully outside return true; } } // We make no attempt to determine whether it's fully inside or not. return false; } public static enum Location { OUTSIDE, INSIDE, INTERSECT }; /** * Check to see if a point is outside, inside or on a plane of the frustum. * * @param p the point * @return {@link Location} of point related to frustum planes */ public final Location classifyPoint(float[] p) { Location res = Location.INSIDE; for (int i = 0; i < 6; ++i) { final float d = planes[i].distanceTo(p); if ( d < 0.0f ) { return Location.OUTSIDE; } else if ( d == 0.0f ) { res = Location.INTERSECT; } } return res; } /** * Check to see if a point is outside of the frustum. * * @param p the point * @return true if outside of the frustum, otherwise inside or on a plane */ public final boolean isPointOutside(float[] p) { return Location.OUTSIDE == classifyPoint(p); } /** * Check to see if a sphere is outside, intersecting or inside of the frustum. * * @param p center of the sphere * @param radius radius of the sphere * @return {@link Location} of point related to frustum planes */ public final Location classifySphere(float[] p, float radius) { Location res = Location.INSIDE; // fully inside for (int i = 0; i < 6; ++i) { final float d = planes[i].distanceTo(p); if ( d < -radius ) { // fully outside return Location.OUTSIDE; } else if (d < radius ) { // intersecting res = Location.INTERSECT; } } return res; } /** * Check to see if a sphere is outside of the frustum. * * @param p center of the sphere * @param radius radius of the sphere * @return true if outside of the frustum, otherwise inside or intersecting */ public final boolean isSphereOutside(float[] p, float radius) { return Location.OUTSIDE == classifySphere(p, radius); } public StringBuilder toString(StringBuilder sb) { if( null == sb ) { sb = new StringBuilder(); } sb.append("Frustum[ Planes[ ").append(Platform.NEWLINE) .append(" L: ").append(planes[0]).append(", ").append(Platform.NEWLINE) .append(" R: ").append(planes[1]).append(", ").append(Platform.NEWLINE) .append(" B: ").append(planes[2]).append(", ").append(Platform.NEWLINE) .append(" T: ").append(planes[3]).append(", ").append(Platform.NEWLINE) .append(" N: ").append(planes[4]).append(", ").append(Platform.NEWLINE) .append(" F: ").append(planes[5]).append("], ").append(Platform.NEWLINE) .append("]"); return sb; } @Override public String toString() { return toString(null).toString(); } }