/* * Copyright (c) 2009 Sun Microsystems, Inc. All Rights Reserved. * Copyright (c) 2011 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN * MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR * ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR * DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, * ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF * SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * */ package com.jogamp.opengl.util; import java.nio.Buffer; import java.nio.FloatBuffer; import java.nio.IntBuffer; import java.util.ArrayList; import java.util.List; import javax.media.opengl.GL; import javax.media.opengl.GLException; import javax.media.opengl.fixedfunc.GLMatrixFunc; import jogamp.opengl.ProjectFloat; import com.jogamp.opengl.FloatUtil; import com.jogamp.common.nio.Buffers; public class PMVMatrix implements GLMatrixFunc { protected final float[] matrixBufferArray; /** * Creates an instance of PMVMatrix {@link #PMVMatrix(boolean) PMVMatrix(boolean useBackingArray)}, * with useBackingArray = true. */ public PMVMatrix() { this(true); } /** * Creates an instance of PMVMatrix. * * @param useBackingArray true for non direct NIO Buffers with guaranteed backing array, * which allows faster access in Java computation. *

false for direct NIO buffers w/o a guaranteed backing array. * In most Java implementations, direct NIO buffers have no backing array * and hence the Java computation will be throttled down by direct IO get/put * operations.

*

Depending on the application, ie. whether the Java computation or * JNI invocation and hence native data transfer part is heavier, * this flag shall be set to true or false

. */ public PMVMatrix(boolean useBackingArray) { this.usesBackingArray = useBackingArray; // I Identity // T Texture // P Projection // Mv ModelView // Mvi Modelview-Inverse // Mvit Modelview-Inverse-Transpose if(useBackingArray) { matrixBufferArray = new float[ 6*16 + ProjectFloat.getRequiredFloatBufferSize() ]; matrixBuffer = null; } else { matrixBufferArray = null; matrixBuffer = Buffers.newDirectByteBuffer( ( 6*16 + ProjectFloat.getRequiredFloatBufferSize() ) * Buffers.SIZEOF_FLOAT ); matrixBuffer.mark(); } matrixIdent = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 0*16, 1*16); // I matrixTex = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 1*16, 1*16); // T matrixPMvMvit = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 2*16, 4*16); // P + Mv + Mvi + Mvit matrixPMvMvi = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 2*16, 3*16); // P + Mv + Mvi matrixPMv = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 2*16, 2*16); // P + Mv matrixP = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 2*16, 1*16); // P matrixMv = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 3*16, 1*16); // Mv matrixMvi = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 4*16, 1*16); // Mvi matrixMvit = Buffers.slice2Float(matrixBuffer, matrixBufferArray, 5*16, 1*16); // Mvit projectFloat = new ProjectFloat(matrixBuffer, matrixBufferArray, 6*16); if(null != matrixBuffer) { matrixBuffer.reset(); } FloatUtil.makeIdentityf(matrixIdent); vec3f = new float[3]; matrixMult = new float[16]; matrixTrans = new float[16]; matrixRot = new float[16]; matrixScale = new float[16]; matrixOrtho = new float[16]; matrixFrustum = new float[16]; FloatUtil.makeIdentityf(matrixTrans, 0); FloatUtil.makeIdentityf(matrixRot, 0); FloatUtil.makeIdentityf(matrixScale, 0); FloatUtil.makeIdentityf(matrixOrtho, 0); FloatUtil.makeZero(matrixFrustum, 0); matrixPStack = new ArrayList(); matrixMvStack= new ArrayList(); // default values and mode glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glMatrixMode(GL.GL_TEXTURE); glLoadIdentity(); setDirty(); update(); } public final boolean usesBackingArray() { return usesBackingArray; } public void destroy() { if(null!=projectFloat) { projectFloat.destroy(); projectFloat=null; } matrixBuffer=null; matrixBuffer=null; matrixPMvMvit=null; matrixPMvMvi=null; matrixPMv=null; matrixP=null; matrixTex=null; matrixMv=null; matrixMvi=null; matrixMvit=null; vec3f = null; matrixMult = null; matrixTrans = null; matrixRot = null; matrixScale = null; matrixOrtho = null; matrixFrustum = null; if(null!=matrixPStack) { matrixPStack.clear(); matrixPStack=null; } if(null!=matrixMvStack) { matrixMvStack.clear(); matrixMvStack=null; } if(null!=matrixPStack) { matrixPStack.clear(); matrixPStack=null; } if(null!=matrixTStack) { matrixTStack.clear(); matrixTStack=null; } } public static final boolean isMatrixModeName(final int matrixModeName) { switch(matrixModeName) { case GL_MODELVIEW_MATRIX: case GL_PROJECTION_MATRIX: case GL_TEXTURE_MATRIX: return true; } return false; } public static final int matrixModeName2MatrixGetName(final int matrixModeName) { switch(matrixModeName) { case GL_MODELVIEW: return GL_MODELVIEW_MATRIX; case GL_PROJECTION: return GL_PROJECTION_MATRIX; case GL.GL_TEXTURE: return GL_TEXTURE_MATRIX; default: throw new GLException("unsupported matrixName: "+matrixModeName); } } public static final boolean isMatrixGetName(final int matrixGetName) { switch(matrixGetName) { case GL_MATRIX_MODE: case GL_MODELVIEW_MATRIX: case GL_PROJECTION_MATRIX: case GL_TEXTURE_MATRIX: return true; } return false; } public static final int matrixGetName2MatrixModeName(final int matrixGetName) { switch(matrixGetName) { case GL_MODELVIEW_MATRIX: return GL_MODELVIEW; case GL_PROJECTION_MATRIX: return GL_PROJECTION; case GL_TEXTURE_MATRIX: return GL.GL_TEXTURE; default: throw new GLException("unsupported matrixGetName: "+matrixGetName); } } public void setDirty() { modified = DIRTY_MODELVIEW | DIRTY_PROJECTION | DIRTY_TEXTURE ; matrixMode = GL_MODELVIEW; } public int getDirtyBits() { return modified; } public boolean isDirty(final int matrixName) { boolean res; switch(matrixName) { case GL_MODELVIEW: res = (modified&DIRTY_MODELVIEW)!=0 ; break; case GL_PROJECTION: res = (modified&DIRTY_PROJECTION)!=0 ; break; case GL.GL_TEXTURE: res = (modified&DIRTY_TEXTURE)!=0 ; break; default: throw new GLException("unsupported matrixName: "+matrixName); } return res; } public boolean isDirty() { return modified!=0; } /** * Update the derived Mvi, Mvit and Pmv matrices * in case Mv or P has changed. * * @return */ public boolean update() { if(0==modified) return false; final int res = modified; if( (res&DIRTY_MODELVIEW)!=0 ) { setMviMvit(); } modified=0; return res!=0; } public final int glGetMatrixMode() { return matrixMode; } public final FloatBuffer glGetTMatrixf() { return matrixTex; } public final FloatBuffer glGetPMatrixf() { return matrixP; } public final FloatBuffer glGetMvMatrixf() { return matrixMv; } public final FloatBuffer glGetPMvMviMatrixf() { usesMviMvit |= 1; return matrixPMvMvi; } public final FloatBuffer glGetPMvMatrixf() { return matrixPMv; } public final FloatBuffer glGetMviMatrixf() { usesMviMvit |= 1; return matrixMvi; } public final FloatBuffer glGetPMvMvitMatrixf() { usesMviMvit |= 1 | 2; return matrixPMvMvit; } public final FloatBuffer glGetMvitMatrixf() { usesMviMvit |= 1 | 2; return matrixMvit; } /* * @return the current matrix */ public final FloatBuffer glGetMatrixf() { return glGetMatrixf(matrixMode); } /** * @param matrixName GL_MODELVIEW, GL_PROJECTION or GL.GL_TEXTURE * @return the given matrix */ public final FloatBuffer glGetMatrixf(final int matrixName) { if(matrixName==GL_MODELVIEW) { return matrixMv; } else if(matrixName==GL_PROJECTION) { return matrixP; } else if(matrixName==GL.GL_TEXTURE) { return matrixTex; } else { throw new GLException("unsupported matrixName: "+matrixName); } } // // MatrixIf // public void glMatrixMode(final int matrixName) { switch(matrixName) { case GL_MODELVIEW: case GL_PROJECTION: case GL.GL_TEXTURE: break; default: throw new GLException("unsupported matrixName: "+matrixName); } matrixMode = matrixName; } public void glGetFloatv(int matrixGetName, FloatBuffer params) { int pos = params.position(); if(matrixGetName==GL_MATRIX_MODE) { params.put((float)matrixMode); } else { FloatBuffer matrix = glGetMatrixf(matrixGetName2MatrixModeName(matrixGetName)); params.put(matrix); // matrix -> params matrix.reset(); } params.position(pos); } public void glGetFloatv(int matrixGetName, float[] params, int params_offset) { if(matrixGetName==GL_MATRIX_MODE) { params[params_offset]=(float)matrixMode; } else { FloatBuffer matrix = glGetMatrixf(matrixGetName2MatrixModeName(matrixGetName)); matrix.get(params, params_offset, 16); // matrix -> params matrix.reset(); } } public void glGetIntegerv(int pname, IntBuffer params) { int pos = params.position(); if(pname==GL_MATRIX_MODE) { params.put(matrixMode); } else { throw new GLException("unsupported pname: "+pname); } params.position(pos); } public void glGetIntegerv(int pname, int[] params, int params_offset) { if(pname==GL_MATRIX_MODE) { params[params_offset]=matrixMode; } else { throw new GLException("unsupported pname: "+pname); } } public final void glLoadMatrixf(final float[] values, final int offset) { int len = values.length-offset; if(matrixMode==GL_MODELVIEW) { matrixMv.put(values, offset, len); matrixMv.reset(); modified |= DIRTY_MODELVIEW ; } else if(matrixMode==GL_PROJECTION) { matrixP.put(values, offset, len); matrixP.reset(); modified |= DIRTY_PROJECTION ; } else if(matrixMode==GL.GL_TEXTURE) { matrixTex.put(values, offset, len); matrixTex.reset(); modified |= DIRTY_TEXTURE ; } } public final void glLoadMatrixf(java.nio.FloatBuffer m) { int spos = m.position(); if(matrixMode==GL_MODELVIEW) { matrixMv.put(m); matrixMv.reset(); modified |= DIRTY_MODELVIEW ; } else if(matrixMode==GL_PROJECTION) { matrixP.put(m); matrixP.reset(); modified |= DIRTY_PROJECTION ; } else if(matrixMode==GL.GL_TEXTURE) { matrixTex.put(m); matrixTex.reset(); modified |= DIRTY_TEXTURE ; } m.position(spos); } public final void glPopMatrix() { float[] stackEntry=null; if(matrixMode==GL_MODELVIEW) { stackEntry = matrixMvStack.remove(0); } else if(matrixMode==GL_PROJECTION) { stackEntry = matrixPStack.remove(0); } else if(matrixMode==GL.GL_TEXTURE) { stackEntry = matrixTStack.remove(0); } glLoadMatrixf(stackEntry, 0); } public final void glPushMatrix() { float[] stackEntry = new float[1*16]; if(matrixMode==GL_MODELVIEW) { matrixMv.get(stackEntry); matrixMv.reset(); matrixMvStack.add(0, stackEntry); } else if(matrixMode==GL_PROJECTION) { matrixP.get(stackEntry); matrixP.reset(); matrixPStack.add(0, stackEntry); } else if(matrixMode==GL.GL_TEXTURE) { matrixTex.get(stackEntry); matrixTex.reset(); matrixTStack.add(0, stackEntry); } } public final void glLoadIdentity() { if(matrixMode==GL_MODELVIEW) { matrixMv.put(matrixIdent); matrixMv.reset(); modified |= DIRTY_MODELVIEW ; } else if(matrixMode==GL_PROJECTION) { matrixP.put(matrixIdent); matrixP.reset(); modified |= DIRTY_PROJECTION ; } else if(matrixMode==GL.GL_TEXTURE) { matrixTex.put(matrixIdent); matrixTex.reset(); modified |= DIRTY_TEXTURE ; } matrixIdent.reset(); } public final void glMultMatrixf(final FloatBuffer m) { if(matrixMode==GL_MODELVIEW) { FloatUtil.multMatrixf(matrixMv, m, matrixMv); modified |= DIRTY_MODELVIEW ; } else if(matrixMode==GL_PROJECTION) { FloatUtil.multMatrixf(matrixP, m, matrixP); modified |= DIRTY_PROJECTION ; } else if(matrixMode==GL.GL_TEXTURE) { FloatUtil.multMatrixf(matrixTex, m, matrixTex); modified |= DIRTY_TEXTURE ; } } public void glMultMatrixf(float[] m, int m_offset) { if(matrixMode==GL_MODELVIEW) { FloatUtil.multMatrixf(matrixMv, m, m_offset, matrixMv); modified |= DIRTY_MODELVIEW ; } else if(matrixMode==GL_PROJECTION) { FloatUtil.multMatrixf(matrixP, m, m_offset, matrixP); modified |= DIRTY_PROJECTION ; } else if(matrixMode==GL.GL_TEXTURE) { FloatUtil.multMatrixf(matrixTex, m, m_offset, matrixTex); modified |= DIRTY_TEXTURE ; } } public final void glTranslatef(final float x, final float y, final float z) { // Translation matrix: // 1 0 0 x // 0 1 0 y // 0 0 1 z // 0 0 0 1 matrixTrans[0+4*3] = x; matrixTrans[1+4*3] = y; matrixTrans[2+4*3] = z; glMultMatrixf(matrixTrans, 0); } public final void glRotatef(final float angdeg, float x, float y, float z) { final float angrad = angdeg * (float) Math.PI / 180.0f; final float c = (float)Math.cos(angrad); final float ic= 1.0f - c; final float s = (float)Math.sin(angrad); vec3f[0]=x; vec3f[1]=y; vec3f[2]=z; FloatUtil.normalize(vec3f); x = vec3f[0]; y = vec3f[1]; z = vec3f[2]; // Rotation matrix: // xx(1-c)+c xy(1-c)+zs xz(1-c)-ys 0 // xy(1-c)-zs yy(1-c)+c yz(1-c)+xs 0 // xz(1-c)+ys yz(1-c)-xs zz(1-c)+c 0 // 0 0 0 1 final float xy = x*y; final float xz = x*z; final float xs = x*s; final float ys = y*s; final float yz = y*z; final float zs = z*s; matrixRot[0*4+0] = x*x*ic+c; matrixRot[0*4+1] = xy*ic+zs; matrixRot[0*4+2] = xz*ic-ys; matrixRot[1*4+0] = xy*ic-zs; matrixRot[1*4+1] = y*y*ic+c; matrixRot[1*4+2] = yz*ic+xs; matrixRot[2*4+0] = xz*ic+ys; matrixRot[2*4+1] = yz*ic-xs; matrixRot[2*4+2] = z*z*ic+c; glMultMatrixf(matrixRot, 0); } public final void glScalef(final float x, final float y, final float z) { // Scale matrix: // x 0 0 0 // 0 y 0 0 // 0 0 z 0 // 0 0 0 1 matrixScale[0+4*0] = x; matrixScale[1+4*1] = y; matrixScale[2+4*2] = z; glMultMatrixf(matrixScale, 0); } public final void glOrthof(final float left, final float right, final float bottom, final float top, final float zNear, final float zFar) { // Ortho matrix: // 2/dx 0 0 tx // 0 2/dy 0 ty // 0 0 2/dz tz // 0 0 0 1 final float dx=right-left; final float dy=top-bottom; final float dz=zFar-zNear; final float tx=-1.0f*(right+left)/dx; final float ty=-1.0f*(top+bottom)/dy; final float tz=-1.0f*(zFar+zNear)/dz; matrixOrtho[0+4*0] = 2.0f/dx; matrixOrtho[1+4*1] = 2.0f/dy; matrixOrtho[2+4*2] = -2.0f/dz; matrixOrtho[0+4*3] = tx; matrixOrtho[1+4*3] = ty; matrixOrtho[2+4*3] = tz; glMultMatrixf(matrixOrtho, 0); } public final void gluPerspective(final float fovy, final float aspect, final float zNear, final float zFar) { float top=(float)Math.tan(fovy*((float)Math.PI)/360.0f)*zNear; float bottom=-1.0f*top; float left=aspect*bottom; float right=aspect*top; glFrustumf(left, right, bottom, top, zNear, zFar); } public final void glFrustumf(final float left, final float right, final float bottom, final float top, final float zNear, final float zFar) { if(zNear<=0.0f||zFar<0.0f) { throw new GLException("GL_INVALID_VALUE: zNear and zFar must be positive, and zNear>0"); } if(left==right || top==bottom) { throw new GLException("GL_INVALID_VALUE: top,bottom and left,right must not be equal"); } // Frustum matrix: // 2*zNear/dx 0 A 0 // 0 2*zNear/dy B 0 // 0 0 C D // 0 0 -1 0 final float zNear2 = 2.0f*zNear; final float dx=right-left; final float dy=top-bottom; final float dz=zFar-zNear; final float A=(right+left)/dx; final float B=(top+bottom)/dy; final float C=-1.0f*(zFar+zNear)/dz; final float D=-2.0f*(zFar*zNear)/dz; matrixFrustum[0+4*0] = zNear2/dx; matrixFrustum[1+4*1] = zNear2/dy; matrixFrustum[2+4*2] = C; matrixFrustum[0+4*2] = A; matrixFrustum[1+4*2] = B; matrixFrustum[2+4*3] = D; matrixFrustum[3+4*2] = -1.0f; glMultMatrixf(matrixFrustum, 0); } public void gluLookAt(float eyex, float eyey, float eyez, float centerx, float centery, float centerz, float upx, float upy, float upz) { projectFloat.gluLookAt(this, eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz); } /** * Uses this instance {@link #glGetMvMatrixf()} and {@link #glGetPMatrixf()} * * @param objx * @param objy * @param objz * @param viewport * @param viewport_offset * @param win_pos * @param win_pos_offset * @return */ public boolean gluProject(float objx, float objy, float objz, int[] viewport, int viewport_offset, float[] win_pos, int win_pos_offset ) { if(usesBackingArray) { return projectFloat.gluProject(objx, objy, objz, matrixMv.array(), 0, matrixP.array(), 0, viewport, viewport_offset, win_pos, win_pos_offset); } else { return projectFloat.gluProject(objx, objy, objz, matrixMv, matrixP, viewport, viewport_offset, win_pos, win_pos_offset); } } /** * Uses this instance {@link #glGetMvMatrixf()} and {@link #glGetPMatrixf()} * * @param winx * @param winy * @param winz * @param viewport * @param viewport_offset * @param obj_pos * @param obj_pos_offset * @return */ public boolean gluUnProject(float winx, float winy, float winz, int[] viewport, int viewport_offset, float[] obj_pos, int obj_pos_offset) { if(usesBackingArray) { return projectFloat.gluUnProject(winx, winy, winz, matrixMv.array(), 0, matrixP.array(), 0, viewport, viewport_offset, obj_pos, obj_pos_offset); } else { return projectFloat.gluUnProject(winx, winy, winz, matrixMv, matrixP, viewport, viewport_offset, obj_pos, obj_pos_offset); } } public void gluPickMatrix(float x, float y, float deltaX, float deltaY, int[] viewport, int viewport_offset) { projectFloat.gluPickMatrix(this, x, y, deltaX, deltaY, viewport, viewport_offset); } // // private // private int nioBackupArraySupported = 0; // -1 not supported, 0 - TBD, 1 - supported private final String msgCantComputeInverse = "Invalid source Mv matrix, can't compute inverse"; private final void setMviMvit() { if( 0 != (usesMviMvit & 1) ) { if(nioBackupArraySupported>=0) { try { setMviMvitNIOBackupArray(); nioBackupArraySupported = 1; return; } catch(UnsupportedOperationException uoe) { nioBackupArraySupported = -1; } } setMviMvitNIODirectAccess(); } } private final void setMviMvitNIOBackupArray() { final float[] _matrixMvi = matrixMvi.array(); final int _matrixMviOffset = matrixMvi.position(); if(!projectFloat.gluInvertMatrixf(matrixMv.array(), matrixMv.position(), _matrixMvi, _matrixMviOffset)) { throw new GLException(msgCantComputeInverse); } if( 0 != (usesMviMvit & 2) ) { // transpose matrix final float[] _matrixMvit = matrixMvit.array(); final int _matrixMvitOffset = matrixMvit.position(); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { _matrixMvit[_matrixMvitOffset+j+i*4] = _matrixMvi[_matrixMviOffset+i+j*4]; } } } } private final void setMviMvitNIODirectAccess() { if(!projectFloat.gluInvertMatrixf(matrixMv, matrixMvi)) { throw new GLException(msgCantComputeInverse); } if( 0 != (usesMviMvit & 2) ) { // transpose matrix for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { matrixMvit.put(j+i*4, matrixMvi.get(i+j*4)); } } } } protected final boolean usesBackingArray; protected Buffer matrixBuffer; protected FloatBuffer matrixIdent, matrixPMvMvit, matrixPMvMvi, matrixPMv, matrixP, matrixTex, matrixMv, matrixMvi, matrixMvit; protected float[] matrixMult, matrixTrans, matrixRot, matrixScale, matrixOrtho, matrixFrustum, vec3f; protected List matrixTStack, matrixPStack, matrixMvStack; protected int matrixMode = GL_MODELVIEW; protected int modified = 0; protected int usesMviMvit = 0; // 0 - none, 1 - Mvi, 2 - Mvit, 3 - MviMvit (ofc no Mvit w/o Mvi!) protected ProjectFloat projectFloat; public static final int DIRTY_MODELVIEW = 1 << 0; public static final int DIRTY_PROJECTION = 1 << 1; public static final int DIRTY_TEXTURE = 1 << 2; }